MARKING SCHEME CHEMISTRY
 FORM 3

1. a) i) $B 2.8 .2$.

E 2.8 .7
ii) $\quad \mathrm{B}^{2+} \quad \mathrm{E}^{-}$
+2 -1
21
x1 x 2
BE_{2}
b) Between C and D in the table
c) An atom of G has one more energy level than that of A . The valence eletron is therefore more loosely held by the positive nucleus and thus easier to remove.
ii) The atom of D has a bigger / stronger nuclear charge than that of C . The number of energy level pulled is the same.
iii) A is more reactive than B. This is because A loses only one electron while B looses two electrons to obtain an octet configuration.
More ionisation energy is requird for B to react than is required for A .
d) i) Noble gases
ii) Helium is used in weather balloons.

Neon is used in electric lamps.
e) The bond between B and chlorine is ionic formed by transfer of electrons from B to chlorine. On the other hand, the bond between C and chlorine is covalent, formed by equal sharing of electrons, hence a molecular compound.

1
(a) (I) Ammona $\sqrt{ } \mathrm{mK}$
(ii) Ammonium chloride $\sqrt{1}$ ' mk
(iii) Sodium hydrogen carbonate. $/ 1 \mathrm{mk}$
(iv) Calcium chloride/water $\sqrt{ } / \mathrm{mk}$

(c) $\mathrm{CaCO}_{3}, \mathrm{CO}_{2}, \mathrm{NH}_{3}$, Brine - Names only
(d) (i) CO_{2}, NH_{3}, water - Accept names only
(ii) - Is denser than air, $\sqrt{ } / \mathrm{mk}$

- Doesn't support combustion. $\sqrt{\prime}$ mk
(iii) There is formation of $\mathrm{PbSO}_{4}, \sqrt{1} / 2 \mathrm{mk}$ which is insoluble, $\sqrt{1} / 2 \mathrm{mk}$

The PbSO_{4} coats $\mathrm{PbCO}_{3}, 1 / 2 \mathrm{mk}$ this stops surther reaction. $\sqrt{ } 1 / 2 \mathrm{mk}$
3.a) Under similar conditions of temperature and pressure, the rate of diffusion of a gas is inversely proportional to the square root of its density.
b) i) Yellow solid deposited.
ii) X close to Cl_{2} end
iii) If $45 \mathrm{~cm}^{3} \rightarrow 15 \mathrm{sec}$

$$
\text { then } 135 \mathrm{~cm}^{3} \rightarrow \frac{135 \times 15}{45}=45 \mathrm{sec} \checkmark 1
$$

$$
N o w \frac{T_{C_{2}}}{T_{H_{s} S}}=\frac{\sqrt{R M M_{C l_{2}}}}{\sqrt{R M M_{H_{2} S}}}
$$

$$
\Rightarrow \frac{45 \mathrm{sec}}{T_{H_{s} S}}=\frac{\sqrt{71}}{\sqrt{34}}
$$

$$
\Rightarrow T_{H_{s} S}=\left(\frac{45 \sqrt{34}}{\sqrt{71}}\right)=31.14 \mathrm{sec}
$$

4. a) Charles law states that, the volume of a given mass of a gas is directly proportional to its absolute temperature at constant pressure.
b) i)

Time $\left({ }^{\circ} \mathrm{C}\right)$	0	20	40	60	80	100	120
Temp. (k)	273	293	313	333	353	373	393

(a) $1 / 2 m a r k$

ii)
iii) Extrapolation $\checkmark 1 / 2$

Value $=-271 \pm 2 \sqrt{ } 1 / 2$
iv) Read from the graph

Volume at $-225^{\circ} \mathrm{C}=5 \mathrm{~cm}^{3} \pm 0.1 \checkmark$

$$
\begin{aligned}
& \frac{P_{1} V_{1}}{T_{1}}=\frac{P_{2} V_{2}}{T_{2}} \\
& P_{1}=P_{2}=\text { Atmospheri } c \text { pressure } \\
& \frac{V_{1}}{T_{1}}=\frac{V_{2}}{T_{2}} \\
& V_{1}=100 \mathrm{~cm}^{3} \\
& T_{1}=25+273=298 \mathrm{~K} \\
& T_{2}=40+273=313 \mathrm{~K} \\
& V_{2}=? \\
& V_{2}=\frac{V_{1} \times T_{2}}{T_{1}} \\
& =\frac{100 \times 313}{298} \\
& =105 \mathrm{~cm}^{3}
\end{aligned}
$$

a)fractionating
column. To
enhance
successive
condensation
and
evaporation
b) Leibig
c) Point X
d) ethanol condenser.

