MACHAKOS COUNTY KCSE TRIAL AND PRACTICE EXAM 2015
 Kenya Certificate of Secondary Education (K.C.S.E.)
 121/1
 MATHEMATICS
 Paper 1
 2½ hours

SECTION I (50 MARKS)

Answer all the questions in this section in the spaces provided.

1. Evaluate without using a calculator.
(3 Marks)
$\frac{\frac{5}{6} \text { of }\left(4 \frac{1}{3}-3 \frac{5}{6}\right)}{\frac{5}{12} \times \frac{3}{25}+1 \frac{5}{9} \div 2 \frac{1}{3}}$
2. Without using a calculator or mathematical tables simplify.
(3 Marks)
$\sqrt{\frac{0.504 \times 14.3 \times 910}{0.28 \times 1.17 \times 28.6 \times 7}}$
3. Find the value of x if
$\left(\frac{27}{8}\right)^{x+7}=\left(\frac{4}{9}\right)^{-3 x}$
4. Three sirens wail at intervals of thirty minutes, fifty minutes and thirty minutes. If they wail together at 7.18 a.m. on Monday, what time and day will they wail together?
(3 Marks)
5. A two-digit number is such that the sum of the ones digit and the tens digit is 10 . If the digits are reversed, the number exceeds the original number by 54 . Find the number.
(3 Marks)
6. The figure below shows quadrilateral ABCD in which $\mathrm{AB}=6 \mathrm{~cm} . \mathrm{BC}=\frac{1}{2} \mathrm{CD}, \mathrm{CD}=\mathrm{DA}$ and angle $\mathrm{ADC}=$ angle $\mathrm{BCD}=90^{\circ}$.

Calculate the area of the quadrilateral ABCD .
7. The interior angle of a regular polygon is 108° larger than the exterior angle. How many sides has the polygon?
8. A salesman is paid a salary of Sh. 10,000 per month. He is also paid a commission on sales above Sh. 100,000 . In one month he sold goods worth Sh. 500,000 . If his total earning that month was $\mathrm{Sh} .56,000$. Calculate the rate of commission.
9. A cylinder of radius 14 cm contains water. A metal solid cone of base radius 7 cm and height 18 cm is submerged into the water. Find the change in height of the water level in cylinder.
(3 Marks)
10. Simplify the following.
$\frac{2 x-4}{12-3 x^{2}}-\frac{1}{3 x+6}$
11. A mother is now $2 \frac{1}{2}$ times as old as her daughter Mary. Four years ago the ratio of their ages was $3: 1$. Find the present age of the mother.
(3 Marks)
12. The line which joins the point $A(3, k)$ and $B(-2,5)$ is parallel to the line whose equation is
$5 y+2 x-7=0$. Find the value of k.
(3 Marks)
13. A Kenyan bank buys and sells foreign currencies at the exchange rates shown below.

| | Buying
 (KShs.) | (KShs.) |
| :--- | :--- | :--- | Selling

An American arrived in Kenya with 20000 Euros. He converted all the Euros to Kenya shillings at the bank. He spent KShs. 2,512,000 while in Kenya and converted the remaining Kenya shillings into US Dollars at the bank. Find the amount in Dollars that he received.
14. The diagram below represents a right pyramid on a square base of side 3 cm . The slant edge of the pyramid is 4 cm .

(a) Draw a labelled net of the pyramid.
(b) On the net drawn, measure the height of a triangular face from the top of the pyramid.
15. Using logarithms tables only, evaluate.
$\sqrt[3]{\frac{849.6 \times 2.41}{3941}}$
16. Use reciprocal and square tables to evaluate, to 4 significant figures, the expression.
$\frac{1}{0.3654}-4.151^{2}$

SECTION II (50 MARKS)

Answer only five questions in this section in the spaces provided.
17. A group of people planned to contribute equally towards buying land at a price of Shs 180,000 . However 3 members of the group withdrew from the project. As a result, each of the remaining members were to contribute KShs. 3000 more.
(a) Find the original number of members in the group.
(6 Marks)
(b) How much would each person have contributed if the 3 people had not withdrawn.
(2 Marks)
(c) Calculate the percentage increase in the contribution per person caused by the withdrawal.
(2 Marks)
18. The figure below shows a cone from which a frustum is made. A plane parallel to the base cuts the cone two thirds way up the vertical height of the cone to form frustum ABCD. The top surface radius of the frustum is labelled r and the bottom radius R .

(a) Find the ratio $r: R$.
(b) Given that $r=7 \mathrm{~cm}$, find R .
(c) If the height VY of the original cone is 45 cm . Calculate to the nearest whole number the volume of the frustum. (Take $\pi=\frac{22}{7}$)
(d) The frustum represents a bucket which is used to fill a rectangular tank measuring 1.5 m long, 1.2 m wide and 80 cm high with water. How many full buckets of water are required to fill the tank.
(3 Marks)
19. (a) The figure below is a velocity time graph for a car.

Velocity m / s

(i) Find the total distance travelled by the car.
(ii) Calculate the deceleration of the car.
(b) A car left Nairobi towards Eldoret at 7.12 a.m. at an average speed of $90 \mathrm{~km} / \mathrm{h}$. At $8.22 \mathrm{a} . \mathrm{m}$, a bus left Eldoret for Nairobi at an average speed of $72 \mathrm{~km} / \mathrm{hr}$. The distance between the two towns is 348 km . Calculate:
(i) the time when the two vehicles met.
(4 Marks)
(ii) the distance from Nairobi to the meeting place.
(2 Marks)
20. The following distribution shows the marks obtained by 82 students in a Mathematics test.

Marks	$20-29$	$30-39$	$40-49$	$50-59$	$60-69$	$70-79$	$80-89$
Frequency	3	18	13	14	17	12	5

(a) State the modal class.
(1 Mark)
(b) Calculate to 2 decimal places:
(i) the mean mark
(4 Marks)
(ii) the difference between the median and the mean marks.
21. John bought 3 brands of tea; A, B and C. The cost price of the three brands were Sh. $25, \mathrm{Sh} .30$ and Sh. 45 per kilogram respectively. He mixed the three brands in the ratio 5:2:1 respectively. After selling the mixture, he made a profit of 20%.
(a) How much profit did he make per kilogram of the mixture?
(b) After one year the cost price of each brand was increased by 10%.
(i) For how much did he sell one kilogram of the mixture to make a profit of 15% ? (Give your answer to the nearest 5 cents)
(ii) What would have been his percentage profit if he sold one kilogram of the mixture at Sh. 45 .
22. Triangle $P Q R$ is inscribed in the circle. $P Q=7.8 \mathrm{~cm}, P R=6.6 \mathrm{~cm}$ and $Q R=5.9 \mathrm{~cm}$.

Find;
(a) size of angle QPR
(3 Marks)
(b) the radius of the circle.
(c) the area of the shaded region.
23. P, Q and R are three villages such that $P Q=10 \mathrm{~km}, Q R=8 \mathrm{~km}$ and $P R=4 \mathrm{~km}$ are connecting roads.
(a) Using a scale of 1 cm to represent 1 km , locate the relative positions of the three villages.
(b) A water tank T is to be located at a point equidistant from the three villages. By construction locate water tank T and measure its distance from R .
(2 Marks)
(c) Determine the shortest distance from T to the road PQ by construction.
(d) Determine the area enclosed by the roads $P Q, Q R$ and $P R$ by calculation.
24. Triangle $P Q R$ has vertices at $P(2,3), Q(1,2)$ and $R(4,1)$, while triangle $P^{I} Q^{I} R^{\mathrm{I}}$ has vertices $P^{\mathrm{I}}(-2,3), Q^{\mathrm{I}}(-1,2), R^{\mathrm{I}}(-4,1)$
(a) (i) Draw triangle $P Q R$ and $P^{1} Q^{I} R^{I}$ on the grid provided.
(ii) Describe fully a single transformation which maps triangle $P Q R$ onto triangle $P^{1} Q^{1} R^{1}$.
(b) (i) On the same grid, draw triangle $P^{\mathrm{II}} Q^{\text {II }} R^{\text {II }}$ the image of $P Q R$ under a reflection on the line $y+x=0$
(ii) Describe fully a single transformation which maps triangle $P^{\text {II }} Q^{\text {II }} R^{I I}$ onto triangle PIQIRI.
(2 Marks)
(1 Mark)

MACHAKOS COUNTY KCSE TRIAL AND PRACTICE EXAM 2015

Kenya Certificate of Secondary Education (K.C.S.E.)

121/2
MATHEMATICS
Paper 2
$211 / 2$ hours

SECTION I-50 MARKS

Answer all questions in this section.

1. The length and breadth of a metal sheet are measured to the nearest centimetre and recorded as 25 cm and 16 cm respectively.
(a) Find the maximum possible error in the area of the sheet.
(b) Calculate to one decimal place the percentage error in the area of the sheet.
2. The number of bacteria in a colony was originally 3 millions. This number doubled itself after every one hour. Calculate the number of bacteria generated in the colony during the $7^{\text {th }}$ hour.
(2Marks)
3. Solve for θ in the equation.
$6 \operatorname{Cos}^{2} \theta-\operatorname{Sin} \theta-4=0$ in the range $0^{0} \leq \theta \leq 180^{\circ}$
(3 Marks)
4. The equation of a circle is $x^{2}-8 x+y^{2}+12 y+16=0$

Determine the coordinates of the centre of the circle and its radius.
(2 Marks)
5. A quantity P is partly constant and partly varies as the square of Q when $Q=2, P=40$ and when $Q=3, P=65$. Determine the value of P when $\mathrm{Q}=4$.
(4 Marks)
6. The table below shows the masses of 40 students in a form 4 class.

Mass (kg)	Frequency
$40-44$	4
$45-49$	10
$50-54$	15
$55-59$	8
$60-64$	3

(a) State the modal class.
(1 Mark)
(b) Calculate the median mass
(2 Marks)
7. Under a transformation whose matrix
$\mathrm{T}=\left(\begin{array}{cc}a-2 & -2 \\ a & a\end{array}\right)$
a figure whose area is $2.5 \mathrm{~cm}^{2}$ is mapped onto a figure whose area is $10 \mathrm{~cm}^{2}$. Find two possible values of a and hence write down two possible matrices for T .
(4 Marks)
8. (a) Expand and simplify the binomial expression.
$\left(2-\frac{1}{2} y\right)^{5}$
(b) Use the first four terms of the simplified expression in (a) above to evaluate to 5 significant figures. (1.98)5.
9. Solve for x in the equation $\log (x-1)=\log 12-\log (x-2)$
10. The figure below shows a circle centre 0 and AOC is a straight line. PB is a tangent to the circle at and angle $\mathrm{PBC}=35^{\circ}$.

Giving reasons for each answer, find th B.ze of
(a) Angle BDC
(b) Angle ACB
(2 Marks)
11. Solve the simultaneous equation.
(3 Marks)

$$
\begin{aligned}
& \frac{x-1}{y+1}=\frac{1}{4} \\
& \frac{x+1}{y-1}=\frac{2}{3}
\end{aligned}
$$

12. Wambua invested Sh. 6400 at 15% per annum compound interest for 3 years. Muinde invested twice that amount at $12 \frac{1}{2} \%$ per annum simple interest for the same period of time. Find whose investment earned more interest and by how much.
13. Make x the subject of the equation.
$3 \mathrm{y}=\mathrm{y}+\frac{p}{q+\frac{1}{x}}$
14. Given the column vectors.
$\underset{\sim}{\mathrm{a}}=\left(\begin{array}{c}1 \\ -2 \\ 1\end{array}\right), \underset{\sim}{\mathrm{\sim}}=\left(\begin{array}{c}6 \\ -3 \\ 9\end{array}\right), \underset{\sim}{\mathrm{c}}=\left(\begin{array}{c}-3 \\ 2 \\ 3\end{array}\right)$ and that $\underset{\sim}{\mathrm{p}}=\underset{\sim}{2 a}-\underset{\sim}{3} \underset{\sim}{3} \mathrm{~b}+\underset{\sim}{\mathrm{c}}$
express p as a column vector and hence calculate its magnitude to 3 significant figures.
(3 Marks)
15. The gra $\widetilde{d i e n t}$ function of a curve is given by $\frac{d y}{d x}=2 \mathrm{x}-4$

Determine;
(a) the equation of the curve given the curve passes through point $(0,3)$
(2 Marks)
(b) the coordinates of the turning point of the curve.
(1 Mark)
16. A particle starts from 0 and moves in a straight line so that its velocity $V \mathrm{~ms}^{-1}$ after t seconds is given by $\mathrm{v}=3 \mathrm{t}-\mathrm{t}^{2}$. The distance of the particle from 0 at time t seconds is s metres.
(a) Express s in terms of t and c where c is a constant. (1 Mark)
(b) Calculate the time taken before the particle returns to 0 .
(3 Marks)

SECTION II - 50 Marks

Answer only 5 (Five) questions in this section.

17. Kennedy bought three cows and twenty-five goats spending a total of Sh. 75000 . If he had bought two cows and thirty three goats, he would have saved Sh. 5400. Kennedy later sold all his animals at a profit of 40% per cow and 50% per goat.
Determine;
(a) the cost at which he bought each animal.
(b) the total amount of money Kennedy received after selling all the animals.
18. Under a transformation represented by a matrix m a point $p(x, y)$ is mapped onto $P^{1},\left(x^{I}, y^{l}\right)$ where
$\binom{x^{I}}{y^{I}}=\binom{3 x-2 y}{x+3 y}$
(a) Write down the matrix for m.
(b) Find the inverse of m.
(c) The points $A^{I}(16,-2) B^{I}(-8,1), C^{I}(8,-1)$ and $D^{I}(9,-8)$ are the images of A, B, C and D respectively under M. Determine the coordinates of A, B, C and D.
19. The figure below shows the position of a boat Q which is observed sailing directly towards the pier P at the base of a vertical cliff PT. The angle of elevation of the top of the cliff from Q is 25.4°. After 14 seconds the boat is at point R, and the angle for elevation of T is now 64.7°.

If the cliff is 50 m high, calculate
(a) The distance $P Q$
(b) The distance QR
(c) The speed of the boat in km / h
20. Two towns on the earth's surface are located at $P\left(07^{\circ} \mathrm{N}, 30^{\circ} \mathrm{E}\right)$ and $Q\left(13^{\circ} \mathrm{S}, 30^{\circ} \mathrm{E}\right)$. A pilot plans to fly from P to Q the shortest route between the two towns.
(a) Calculate the shortest distance between P and Q in $k m$.
(b) Find the distance in nautical miles (nm)
(c) The speed of the aircraft is 360 knots. Determine how long it takes to fly from P to Q .
(2 Marks)
21. Veterinary researchers were experimenting with a new drug on fowls in a research station. A sample of fowls which were known to have the disease was used. In this sample 30 fowls were treated with the drug and the remaining 18 fowls were not treated.
(a) Calculate the probability that a fowl selected at random from the sample is
(i) treated with the drug
(ii) not treated with the drug
(b) The probability that a fowl treated with the drug will die is $\frac{1}{10}$, while the probability that one which is not treated will die is $\frac{7}{10}$.
Calculate the probability that a fowl picked at random from the sample is
(i) treated with the drug and will die
(ii) not treated with the drug and will die
(iii) treated with the drug and will not die
(iv) not treated with the drug and will not die
22.

In the figure above, OPQ is a triangle in which $\mathrm{OS} \underset{\sim}{=} \frac{3}{4} \mathrm{OP}$ and $\mathrm{PR}: \underset{\sim}{\mathrm{RQ}}=\underset{\sim}{2}: 1$
Line OR and SQ meet at T.
(a) Given that $\underset{\sim}{P}=\underset{\sim}{p}$ and $\underset{\sim}{O Q}=\underset{\sim}{q}$, express the following vectors in terms of $\underset{\sim}{p}$ and $\underset{\sim}{q}$.
(i) PQ
(ii) $\widetilde{O R}$
(iii) $\widetilde{S Q}$
(b) $\widetilde{Y o u}$ are further given that $\mathrm{ST}=\mathrm{mSQ}$ and $\mathrm{OT}=\mathrm{nOR}$. Determine the values of m and n .
23. (a) Using a ruler and compasses only, construct triangle ABC such that $\mathrm{AB}=\mathrm{AC}=4.3 \mathrm{~cm}$ and angle $\mathrm{ABC}=30^{\circ}$.
(b) Measure BC
(c) A point p is always on the same side of $B C$ as A. Draw the points of P such that angle $B A C$ is always twice angle BPC.
(d) Drop a perpendicular from A to meet BC at D . Measure AD.
(e) Calculate the area of triangle ABC.
24. Two variables A and B are connected by the equation.
$\mathrm{A}=\mathrm{kBn}$
Where k and n are constants.
The table below gives values of A and B.
$\begin{array}{llllll}\text { A. } & 1.5 & 1.95 & 2.51 & 3.20 & 4.50\end{array}$
$\begin{array}{llllll}\text { B. } & 1.59 & 2.51 & 3.98 & 6.31 & 11.5\end{array}$
(a) Find a linear equation connecting A and B
(b) On square paper draw a suitable straight line graph to represent the relation in (a) above (scale 1 cm to represent 0.1 units on both axis)
(c) Use your graph to estimate the values of k and n in to one decimal place.

MACHAKOS COUNTY KCSE TRIAL AND PRACTICE EXAM 2015

Kenya Certificate of Secondary Education (K.C.S.E.)
121/1
MATHEMATICS
Paper 1
2½ hours

\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{1. \(\begin{aligned} \& \frac{\frac{5}{6} \text { of }\left(\frac{13}{3}-\frac{23}{6}\right)}{\frac{5}{12} \times \frac{3}{25}+\frac{14}{9} \times \frac{3}{7}} \\ \& =\frac{\frac{5}{6} \times \frac{3}{6}}{\frac{1}{20}+\frac{2}{3}} \\ \& =\frac{\frac{5}{12}}{\frac{43}{60}} \\ \& =\frac{5}{12} \times \frac{60}{43} \\ \& =\frac{25}{43}\end{aligned}\)}} \& \[
\begin{aligned}
\& \text { M1 } \\
\& \text { M1 }
\end{aligned}
\] \& 5 \& \begin{tabular}{l}
\[
\begin{aligned}
\& \hline x+y=10 \\
\& (10 y+x)-(10 x+y)=54 \\
\& 9 y-9 x=54 \\
\& y-x=6 \\
\& x+y=10 \\
\& \frac{-x+y=6}{2 y=16} \\
\& y=8 \\
\& x=2
\end{aligned}
\] \\
Number is 28
\end{tabular} \& M1
M1

A1

\hline \& \& A1 \& \& \& 3

\hline 2. \& \& | 03 |
| :--- |
| M1 |
| M1 |
| A1 | \& 6 \& \& M1

A1
M1
A1

\hline \& \& 03 \& \& \& 04

\hline 3. \& \[
$$
\begin{aligned}
& \left(\frac{3^{3}}{2^{3}}\right)^{x+7}=\left(\frac{2^{2}}{3^{2}}\right)^{-3 x} \\
& \left(\frac{3}{2}\right)^{3(x+7)}=\left(\frac{3}{2}\right)^{6 x} \\
& 3(\mathrm{x}+7)=6 \mathrm{x} \\
& 3 \mathrm{x}+21=6 \mathrm{x} \\
& \mathrm{x}=7
\end{aligned}
$$

\] \& | M1 |
| :--- |
| M1 |
| A1 | \& 7 \& \[

$$
\begin{aligned}
& \hline \text { Inter. } \angle=\mathrm{x} \\
& \text { Exter. } \angle=\mathrm{y} \\
& \mathrm{x}+\mathrm{y}=180^{\circ} \\
& \frac{\mathrm{x}-\mathrm{y}=108^{0}}{2 \mathrm{x}=288} \\
& \mathrm{x}=144^{0} \\
& \therefore \text { ext. } \angle 36^{\circ}
\end{aligned}
$$
\]

$$
\text { No. of sides }=\frac{360}{36} \quad=10 \text { sides }
$$ \& B1

M1
A1

\hline \& \& 03 \& \& \&

\hline \multirow[t]{2}{*}{4.} \& \multirow[t]{2}{*}{$$
\begin{aligned}
& 30=2 \times 3 \times 5 \\
& 50=2 \times 5^{2} \\
& 35=5 \times 7 \\
& \text { L.C.M }=2 \times 3 \times 5^{2} \times 7 \\
& =1050 \mathrm{mins} \\
& 17 \text { hrs } 30 \mathrm{mins} \\
& \text { Time }=\quad 7.18 \\
& \quad+\frac{17.30}{2448} \\
& \Rightarrow \quad 12.48 \text { a.m. } \\
& \quad \text { Tuesday }
\end{aligned}
$$} \& B1 \& 8 \& Let the commission be $\mathrm{x} \%$

$$
\begin{aligned}
& \frac{x}{100}(500000-100000) \\
&=4000 \mathrm{x} \\
& 4000 \mathrm{x}+10000=56000 \\
& \mathrm{x}=12.5 \%
\end{aligned}
$$ \& M1

M1
A1

\hline \& \& $$
\begin{aligned}
& \text { M1 } \\
& \text { A1 }
\end{aligned}
$$ \& 9 \& \[

$$
\begin{aligned}
& \left.\begin{array}{rl}
\text { Vol. cylinder } \Rightarrow \pi\left(14^{2}\right) \mathrm{h} \\
\text { Vol. cone } \Rightarrow \frac{1}{3} \pi\left(7^{2}\right) \times 18
\end{array}\right\} \\
& \begin{aligned}
\pi\left(14^{2}\right) \mathrm{h} & =\frac{1}{3} \pi\left(7^{2}\right) \times 18 \\
\mathrm{~h} & =\frac{1}{3} \times 7^{2} \times 18 \times \frac{1}{14^{2}} \\
\mathrm{~h} & =1.5 \mathrm{~cm}
\end{aligned}
\end{aligned}
$$
\] \& M1

M1
A1

\hline \& \& 03 \& \& \&

\hline
\end{tabular}

Mathematics papers $1 \& 2$

MACHAKOS COUNTY KCSE TRIAL AND PRACTICE EXAM 2015

Kenya Certificate of Secondary Education (K.C.S.E.)

121/2
 MATHEMATICS

Paper 2
2 $1 / 2$ hours

\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{1.} \& \begin{tabular}{l}
```
(a) Working area \(=25 \times 16=400 \mathrm{~cm}^{2}\)
Maximum area \(=25.5 \times 16.5 \mathrm{~cm}^{2}=420.75\)
\(\mathrm{cm}^{2}\)
Minimum area \(=24.5 \times 15.5=379.75 \mathrm{~cm}^{2}\)
Max. possible error
\(=420.75-400\) or
400-379.75
\(= \pm 20.75\) \\
(b) \% error in area
\[
=\frac{\text { Absolute error }}{\text { Working } \text { area }} \times 100
\]
```
\end{tabular} \& B1

M1

A1 \& 5. \& \[
$$
\begin{aligned}
& \hline \mathrm{P}=\mathrm{L}+\mathrm{KQ}^{2} \text { where } \mathrm{K} \text { and } \mathrm{L} \text { are constants } \\
& 40=\mathrm{L}+4 \mathrm{~K} \text {------------(ii) } \\
& 65=\mathrm{L}+9 \mathrm{~K} \text { (i) } \\
& -25=-5 \mathrm{~K} \\
& \mathrm{~K}=5 \\
& \text { Subst. for } \mathrm{K} \text { in eqn (i) } \mathrm{L}+20=40 \\
& \\
& \begin{array}{l}
\text { Hence } \mathrm{P}=20+5 \mathrm{Q}^{2} \mathrm{~L}=20 \\
\text { when } \mathrm{Q}
\end{array} \\
& \mathrm{P}=4 \\
& \quad=20+5(4)^{2} \\
& \\
& =100
\end{aligned}
$$

\] \& | B1 |
| :--- |
| M1 |
| |
| |
| |
| M1 |
| A1 |

\hline \& $$
\begin{aligned}
& =\frac{20.75}{400} \times 100 \\
& =5.1 \%
\end{aligned}
$$ \& \& 6. \& (a) Modal class is $50-54$ \& B1

\hline \multirow[t]{2}{*}{2.} \& \multirow[t]{2}{*}{$$
\begin{aligned}
& \text { This is a GP with } 1^{\text {st }} \text { term }, \mathrm{a}=3 \text { million and } \\
& \text { common ratio, } \mathrm{r}=2 \\
& \text { Required is the } 7^{\text {th }} \text { term of GP } \\
& \mathrm{Tn}=\mathrm{ar}^{\mathrm{n}-1} \\
& 7^{\text {th }} \text { term, } \mathrm{T}_{7}=\mathrm{ar}^{7-1}=\mathrm{ar}^{6} \\
& =3 \times 2^{6} \\
& =3 \times 64 \\
& =192 \text { million }
\end{aligned}
$$} \& \& \& \[

$$
\begin{aligned}
\text { (b) Median } & =49.5+\left(\frac{2 .}{15}\right) 5 \\
& =51.5 \mathrm{~kg}
\end{aligned}
$$
\] \& M1

A1

\hline \& \& M1

A1 \& 7. \& | Determinant of $\mathrm{T}=$ Area scale factor Det. $T=\frac{10}{2.5}=4$ |
| :--- |
| Hence $a(a-2)-(-2 a)=4$ $a^{2}-2 a+2 a=4$ $\mathrm{a}^{2}=4$ | \& M1

\hline \multirow[t]{3}{*}{3.} \& \multirow[t]{3}{*}{\[
$$
\begin{aligned}
& \hline \operatorname{Cos}^{2} \theta+\operatorname{Sin}^{2} \theta=1 \\
& \operatorname{Cos}^{2} \theta=1-\operatorname{Sin}^{2} \theta \\
& 6\left(1-\operatorname{Sin}^{2} \theta\right)-\operatorname{Sin} \theta-4=0 \\
& 6 \operatorname{Sin}^{2} 0+\operatorname{Sin} \theta-2=0 \\
& \operatorname{Let} y=\operatorname{Sin} \theta \Rightarrow 6 y^{2}+y-2=0 \\
& 6 y^{2}-3 y+4 y-2=0 \\
& 3 y(2 y-1)+2(2 y-1)=0 \\
& (3 y+2)(2 y-1)=0 \\
& 3 y+2=0 \\
& 3 y=-2 \\
& y=-\frac{2}{3} \\
& \text { or } \\
& 2 y-1=0 \\
& 2 y=1 \\
& y=\frac{1}{2} \\
& \operatorname{Sin} \theta=\frac{-2}{3} \text { or } 1 / 2 \\
& \operatorname{Hence} \theta=30^{0}, 150^{0}
\end{aligned}
$$

\]} \& M1 \& \& | $a= \pm 2$ |
| :--- |
| When $\mathrm{a}=2, \mathrm{~T}=\left(\begin{array}{cc}0 & -2 \\ 2 & 2\end{array}\right)$ |
| When $\mathrm{a}=-2, \mathrm{~T}=\left(\begin{array}{ll}-4 & -2 \\ -2 & -2\end{array}\right)$ | \& A1

B1
B1

\hline \& \& M1 \& 8 \& \& | B1 |
| :---: |
| |
| M1 |
| |
| A1 |

\hline \& \& A1 \& 9 \& $$
\begin{aligned}
\log (x-1) & =\log 12-\log (x-2) \\
& =\log \left(\frac{12}{x-2}\right) \\
x-1 & =\frac{12}{x-2}
\end{aligned}
$$ \& M1

\hline 4. \& | $\begin{aligned} & \mathrm{x}^{2}-8 \mathrm{x}+\mathrm{y}^{2}+12 \mathrm{y}=-16 \\ & \mathrm{x}^{2}-8 \mathrm{x}+16+\mathrm{y}^{2}+12 \mathrm{y}+36=-16+16+36 \end{aligned}$ |
| :--- |
| Expressions as perfect squares $\begin{aligned} & (x-4)^{2}+(y+6)^{2}=36 \\ & (x-a)^{2}+(y-b)=r^{2} \\ & a=4 \\ & b=-6 \\ & r=\sqrt{36}=6 \end{aligned}$ |
| Centre(4,-6) and radius $=6$ units | \& M1

A1 \& \& | $\begin{aligned} & x^{2}-3 x+2=12 \\ & x^{2}-3 x-10=0 \\ & x^{2}+2 x-5 x-10=0 \\ & x(x+2)-5(x+2)=0 \\ & (x-5)(x+2)=0 \\ & x-5=0 \\ & x=5 \\ & x+2=0 \\ & x=-2 \end{aligned}$ |
| :--- |
| Drop the -ve value $x=5$ | \& M1

A1

\hline
\end{tabular}

CENTRAL KENYA NATIONAL SCHOOLS JOINT MOCK - 2015
Kenya Certificate of Secondary Education

121/1
 MATHEMATICS ALT A
 PAPER 1
 JULY/AUGUST, 2015
 TIME: 2½ HOURS
 SECTION I: (50 MARKS)

Answer all the questions in this section in the spaces provided.

1. Evaluate: $\frac{44--28}{12 \times-2}-\frac{8^{2} \times-12-24}{96 \div-12 \times 9}$
2. A basket ball team play 10 matches in a tournament. The following are scores in each match.
$9,15,17,16,7,20,21,15,10,12$
Determine:
(a) the mode. \quad (1 mark)
(b) the median.
3. A wholesaler sold a cell phone to a retailer making a profit of 20%. The retailer later sold the cell phone for Ksh. 3120 making a profit of 30% calculate the amount of money the wholesaler had paid for the cell phone.
4. Given that $\operatorname{Cos}\left(\chi+20^{\circ}\right)=0.7660$, find χ for $0^{\circ} \leq \chi \leq 360^{\circ}$.
5. (a) Express 1050 in terms of its prime factors.
(b) Determine the smallest positive number such that 1050p is a perfect square.
6. The exterior angle of a regular polygon is $(\chi-50)^{\circ}$ and the interior angle is $(2 \chi+20)^{\circ}$. Find the number of sides of the polygon.
7. A line P passes through the point $(-2,5)$ and has a gradient of $\frac{-3}{4}$. Another line Q is perpendicular to P and meets it at a point where $y=\frac{1}{2}$ find equation of Q .
8. Simplify the expression completely.
$\frac{(x+2 y)(x-2 y)-(x-2 y)^{2}}{x^{2}-4 y^{2}}$
9. The mass of two similar solid are 324 g and 768 g . Find
(a) height of the smaller solid if the height of the bigger solid is 20 cm .
(b) the surface area of the smaller solid if the surface area of the bigger solid is $40 \mathrm{~cm}^{2}$.
(2 marks)
10. A cylindrical pipe 5 metres long has an internal diameter 28 millimetres and an external diameter of 42 millimetres. The density of the material that makes the pipe is $1.45 \mathrm{~g} / \mathrm{cm}^{3}$. Calculate the mass of the pipe in kilograms.
(Take $\pi=\frac{22}{7}$).
11. Simplify: $\frac{32^{\frac{-1}{5}} \times 8100^{\frac{3}{4}}}{8^{\frac{-1}{2}} \times 5^{\frac{1}{2}} \times 4^{o} \times 4^{\frac{1}{4}}}$.
12. In the figure below PQRS is a rhombus, $\angle \mathrm{SQR}=55^{\circ}, \angle \mathrm{QST}$ is a right angle and TPQ is a straight line.

Find the size of the angle STQ.
13. The mass of a mixture A of beans and maize is 72 kg . The ratio of beans to maize is $3: 5$ respectively. Find the mass of maize in the mixture.
14. A square toilet is covered by a number of whole rectangular tiles of sides 60 cm by 48 cm . Calculate the least possible area of the room in square metres.
15. Form the inequalities represented by region R.

16. A point C is on a line $P Q$ where $P Q=9 \mathrm{~cm}$. C divides PQ such that $P C=\frac{4}{7} P Q$. By construction locate C.

SECTION B: (50 MARKS)

Answer any FIVE questions from this section in the spaces provided.

17. A construction company requires to transport 288 tonnes of stones to sites P and Q. The company pays 48,000 to transport 48 tonnes of stones for every 28 km . Joyce transported 96 tonnes to site $\mathrm{P}, 49 \mathrm{~km}$ away.
(a) Find how much she was paid.
(3 marks)
(b) Joyce spends Ksh. 6000 to transport every 8 tonnes of stones to site P. Calculate her total profit.
(c) Kimani transported the remaining stones to site Q, 84 km away. If he made 44% profit, find his transport cost.
(4 marks)
18. (a) A square carpet is laid on the floor of a room so that one of its sides is against a side of a room. If leaves strips of uncovered floor 1 m wide along the two opposite sides and 2 m wide along the remaining side. If the area of the room is $64 \mathrm{~m}^{2}$, find the dimensions of the carpet.
(b) Solve the equation: $\quad \frac{y+3}{24}=\frac{1}{y-2}$.
19. A trader bought 8 cows and 12 goats for a total of Ksh. 294,000 . If he had bought 1 more cows and 3 more goats he would have spend Ksh.337,500.
(a) Form two equations to represent the above information.
(b) Use matrix method to determine the cost of a cow and that of a goat.
(c) The trader sold the animals he had bought making a profit of 40% per low and 45% per goat.
(i) Calculate the total amount of money he received.
(ii) Determine his profit in Kenya shillings.
20. A truck left town X at 11.45 am and travelled towards town Y at an average speed of $60 \mathrm{~km} / \mathrm{hr}$. A car left town X at 2.15 pm on the same day and travelled along the same road at an average speed of $100 \mathrm{~km} / \mathrm{hr}$. The distance between the two towns is 500 km .
(a) Calculate the time of the day when the car overtook the truck.
(b) The distance from Y when the car overtook the truck.
(c) After overtaking the bus, both vehicles continued towards Y at their original speeds. Find how long the car had to wait at town Y before the truck arrived.
(3 marks)
21. The displacement S metres of a moving particle after t seconds is given by
$S=2 t^{3}-5 t^{2}+4 t+2$
Determine
(a) the velocity of the particle when $t=2$.
(3 marks)
(b) the value(s) of t when the particle is momentarily at rest.
(c) the displacement when the particle is momentarily at rest.
(d) the acceleration of the particle when $t=5$.
22. In the figure below, $\underset{\sim}{\mathrm{OA}}=\underset{\sim}{\mathrm{a}}, \underset{\sim}{\mathrm{OB}}=\underset{\sim}{\mathrm{b}}$ and $\underset{\sim}{\mathrm{O}}=\underset{\sim}{30 B}$.

(a) Express in terms of $\underset{\sim}{a}$ and $\underset{\sim}{b}$.
(i) $\underset{\sim}{\mathrm{AB}} \quad \sim \quad$ (1 mark)
(ii) $\quad \underset{\sim}{\mathrm{A}} \mathrm{C}$
(b) Given that $\underset{\sim}{\sim}=\frac{3}{4} \underset{\sim}{A B}$ and $\underset{\sim}{A N}=\frac{1}{2} \underset{\sim}{A C}$, express $\underset{\sim}{O M}$ and $\underset{\sim}{O N}$ in terms of a and $\underset{\sim}{b}$.
(c) Hence show that O, M and N are collinear.
23. Triangle $A B C$ has vertices $A(1,2), B(2,3)$ and $C(4,1)$ while triangle $A^{1} B^{1} C^{1}$ has vertices $A^{1}(1,-2), B^{1}(2,-3)$ and $C^{1}(4,-1)$.
(a) Draw triangle ABC and $\mathrm{A}^{1} \mathrm{~B}^{1} \mathrm{C}^{1}$ on the same grid.
(b) Describe fully a single transformation that maps triangle $A B C$ onto triangle $A^{1} B^{1} C^{1}$.
(c) On the same grid draw triangle $\mathrm{A}^{11} \mathrm{~B}^{11} \mathrm{C}^{11}$ the image of triangle ABC under a reflection in line $\mathrm{Y}=-\chi$. (2 marks)
(d) Draw $\Delta A^{111} B^{111} \mathrm{C}^{111}$ such that it can be mapped onto triangle $A B C$ by a negative quarter turn about the origin.
(e) Find the matrix of transformation that maps triangle ABC onto triangle $\mathrm{A}^{111} \mathrm{~B}^{111} \mathrm{C}^{111}$.
24. Arc of a circle of radius 40 cm subtends an angle of 126° at the centre of the circle.
(a) Calculate:
(i) the length of the arc.
(ii) the area of the sector.
(2 marks)
(b) The sector is folded to form a cone.

Calculate:
(i) the radius of the base of the cone
(ii) the height of the cone.
(iii) the capacity of the cone in litres.

121/2
MATHEMATICS ALT A
PAPER 2
JULY/AUGUST, 2015
TIME: 2½ HOURS
SECTION I: (50 MARKS)
Answer all the questions in this section in the spaces provided.

1. Simplify:

$$
\frac{2 \frac{1}{4}-1 \frac{2}{3}}{\frac{1}{6}-\left(\frac{-1}{3}\right)^{2}}-\frac{5}{8} \text { of } 3
$$

2. (a) Expand $(2+\chi)^{4}$.
(b) Use the expansion in (a) above to. Find the value (2.01) ${ }^{4}$ to $4 \mathrm{~d} . \mathrm{p}$.
3. Solve for y in the equation.
$\log _{10}(3 y+2)-1=\log _{10}(y-4)$.
4. Make P the subject of the formula.
$\mathrm{E}+\chi=\chi+\sqrt{\frac{P-3 u}{y-3 \chi P}}$.
5. Points P, Q and R are points on the circumference of a circle. If $P Q=P R=13 \mathrm{~cm}$ and $Q R=10 \mathrm{~cm}$, what is the radius of the circle.
6. Find the radius and the centre of the circle whose equation is:
$3 \chi^{2}+3 y^{2}-6 \chi+12 y+3=0$.
7. Find C that divide AB externally in the ratio 5 : 2 , given that $A(3,-6,9)$ and $B(-15,3,12)$.
(3 marks)
8. A two digit number is formed from the first four prime numbers.
(a) Draw the table to show the possible out comes.
(2 marks)
(b) Calculate the probability that a number chosen from the two digits is even number.
(2 marks)
9. A dam containing $4158 \mathrm{~m}^{3}$ of water is to be drained. A pump is connected to a pipe of radius 3.5 cm and machine operate for 8 hours per day. Water flows through the pipe at the rate of 1.5 m per second. Find the number of days it takes to drain the dam.
(4 marks)
10. The population of two town Kana and Jane for three years were as follows:

Kana 40,000, 48000, 56000
Jane $40,000,48000,57600$
Calculate the difference in population of the two after six years.
11. The gradient of a curve at any point given by $2 \chi-1$. Given that the curve passes through point $(1,5)$. Find the equation of the curve.
12. Simplify: $\frac{3}{\sqrt{7}-\sqrt{2}}-\frac{2}{\sqrt{7}+\sqrt{2}}$.
13. Given that $A B=6 \mathrm{~cm}$ construct locus of P such that angle $\angle A P B=90$.
14. A car valued at Ksh.500,000 in January 2008. Each year, it value depreciates at 12% p.a. Find after how long would the value depreciate to Ksh.250,000.
15. In below figure $\mathrm{PT}=4 \mathrm{~cm}$ and $\mathrm{TQ}=5 \mathrm{~cm}$ and $\mathrm{TS}=2.5 \mathrm{~cm}$ find TR by calculation.

16. Given that $2 \leq \mathrm{A} \leq 4$ and $0.1 \leq \mathrm{B} \leq 0.2$. Find the minimum value of $\frac{A B}{A-B}$.

SECTION B: (50 MARKS)

Answer any FIVE questions from this section in the spaces provided.

17. Two towns A and B lie on the same parallel of latitudes $60^{\circ} \mathrm{N}$. If the longitudes of A and B are $42^{\circ} \mathrm{W}$ and $29^{\circ} \mathrm{E}$ respectively.
(a) Find the distance between A and B in nautical miles along the parallel of latitude.
(b) Find the local time at A if at B is 1.00 pm .
(c) Find the distance between A and B in km . (Take $\pi=\frac{22}{7}$ and $R=6370 \mathrm{~km}$).
(d) If C is another town due South of A and 10010 km away from A, Find the co-ordinate of C.
18. In the figure below AOC is a diameter of the circle centre $\mathrm{O} . \mathrm{AB}=\mathrm{BC}$ and $\angle \mathrm{ACD}=35^{\circ}, \mathrm{EBF}$ is a tangent to the circle at B. G is a point on minor arc CD.

Calculate the size of the following angles giving reasons in each case.
(a) $\angle \mathrm{BCD}$.
(b) Obtuse angle BOD.
(c) $\angle \mathrm{BAD}$.
(d) \angle CGD.
(e) $\angle A E B$.
19. (a) Complete the table below for the function $\mathrm{y}=3 \chi^{2}-2 \chi-1$ for $-3 \leq \chi \leq 4$.

χ	-3	-2	-1	0	1	2	3	4
$\mathrm{y}=3 \chi^{2}-2 \chi-1$		15				7		

(b) Draw the graph of $y=3 \chi^{2}-2 \chi-1$.
(c) Draw the line $y=3 \chi+1$ on the same axis hence find the values of χ for which $y=3 \chi+1$ and $y 3 \chi^{2}-2 \chi-1$ are equal.
(3 marks)
(d) Write down the simplified quadratic equation whose roots are the solutions of the simultaneous equation in (c) above.
(2 marks)
20. The diagram below shows a right pyramid VPQRS with V as the vertex and a rectangular base $P Q R S . P Q=3 \mathrm{~cm}, \mathrm{QR}=$ 4 cm . The height of the pyramid is 6 cm .
$P M=M Q$ and $O Q=N R$.

(a) Calculate.
(i) the length PV.
(ii) the angle between face VPQ and the base.
(b) (i) the slant height VM and VN.
(ii) What is the surface area of the pyramid?
21. On the same axes, draw this graph of $y=2 \operatorname{Sin} \chi$ and $y=3 \operatorname{Sin}\left(\chi+30^{\circ}\right)$ for the domain $-360^{\circ} \leq \chi \leq 360^{\circ}$. (5 marks) From your graph determine.
(a) the period of each of the functions.
(b) the amplitude of each of the functions.
(c) the solution to $2 \operatorname{Sin} \chi=3 \operatorname{Sin}\left(\chi+30^{\circ}\right)$.
(d) the transformation that maps the graph of $y=2 \operatorname{Sin} \chi$ onto the graph of $y=3 \operatorname{Sin}\left(\chi+30^{\circ}\right)$.
22. The diagram below shows a histogram marks obtained in a certain test.

(a) Develop a frequency distribution table for the data if the first class 5-9 has a frequency of 8 .
(b) Estimate the mean.
(c) Calculate interquatile range.
23. The cost C, of producing n items varies partly as n and partly as the inverse of n.

To produce two items it cost 50Sh and to produce six items it costs 70Sh.
Find
(a) the constants of proportionality and hence write the equation connecting C and n .
(b) the cost of producing 12 items.
(c) the number of items produced at a cost of 106 Sh .
24. An auto spare dealer sells two types of lubricant A and B in his shop. While purchasing type A cost Sh. 40 per 100 ml tin and type B cost Sh. 60 per 100 ml tin. He decided to buy at least 30 tins altogether of type A and B with Sh. 1500 available. He decides that at least one third of the tins should be of type B. He buys χ tins of type A and y tins of type B.
(a) Write down three inequalities, which represent the above information.
(b) On a graph paper, draw a graph to show the three inequalities (a) above.
(c) Determine how many tins of each type that he should buy to maximize his profit if he makes a profit of Sh. 10 of each type A and a profit of Sh. 20 on each type B tin.
(d) Calculate maximum possible profit.

CENTRAL KENYA NATIONAL SCHOOLS JOINT MOCK - 2015
121/1
MATHEMATICS
PAPER 1

$\underline{23}$	(a) (b) (c) (d) (e)	$\Delta A B C \checkmark$ drawn B1 $\Delta A^{1} B^{1} C^{1} \checkmark$ drawn B1 Reflection, line $y=0$ or χ-axis B2 Line $y=-\chi$ drawn B1 $\Delta A^{11} \mathrm{~B}^{11} \mathrm{C}^{11} \checkmark$ drawn B1 $\Delta \mathrm{A}^{111} \mathrm{~B}^{111} \mathrm{C}^{111} \checkmark$ drawn B2 Using the unit square $m=\left(\begin{array}{rr} 0 & -1 \\ 1 & 0 \end{array}\right) \quad \text { M1A1 }$ Alternative $\begin{aligned} & \left(\begin{array}{ll} a & b \\ c & d \end{array}\right)\left(\begin{array}{lll} 1 & 2 & 4 \\ 2 & 3 & 1 \end{array}\right)=\left(\begin{array}{rrr} -2 & -3 & -1 \\ 1 & 2 & 4 \end{array}\right) \mathrm{M} 1 \\ & \left(\begin{array}{ll} a & b \\ c & d \end{array}\right)=\left(\begin{array}{rr} 0 & -1 \\ 1 & 0 \end{array}\right) A 1 \end{aligned}$	$\underline{24}$	(a)	(i) (ii) (b)	$\frac{126}{360}$ $\frac{126}{360} \times$ (i) (ii) (iii)	$\begin{aligned} & \times \frac{22}{7} \times 2 \times 40 \\ & =88 \mathrm{~cm} \end{aligned}$ $\begin{aligned} & \frac{22}{7} \times 40 \times 40 \\ & =1760 \mathrm{~cm}^{2} \end{aligned}$ $\begin{array}{r} 2 \times \frac{22}{7} \times r=88 \\ r=14 \mathrm{~cm} \end{array}$ $\begin{aligned} h & =\sqrt{40^{2}-14^{2}} \\ & =37.47 \mathrm{~cm} \end{aligned}$ $\begin{aligned} & \frac{1}{3} \times \frac{22}{7} \times \frac{14 \times 14 \times 37.47}{1000} \\ & =7.669 \text { litres } \end{aligned}$	M1 A1 M1 A1 A M1 A1 M1 A1 M1 M1 A

CENTRAL KENYA NATIONAL SCHOOLS JOINT MOCK - 2015
121/2
MATHEMATICS
PAPER 2

\begin{tabular}{|c|c|c|c|c|c|c|}
\hline 12 \& \multicolumn{2}{|l|}{\[
\frac{3(\sqrt{7}+\sqrt{2})-2(\sqrt{7}-\sqrt{2})}{(\sqrt{7}-\sqrt{2})(\sqrt{7}+\sqrt{2})}=\frac{3 \sqrt{7}+3 \sqrt{2}-2 \sqrt{7} 2 \sqrt{2}}{7-2}
\]} \& \& (b)
(c) \& \[
\begin{aligned}
\& \angle \mathrm{BOD}=2 \angle \mathrm{BCD} \\
\&=2 \times 80^{\circ} \\
\&=160^{\circ} \\
\& \angle . S \text { sub at centre of a circle is cirm } \\
\& \angle \mathrm{BAD}=180^{\circ}-\angle \mathrm{BCD} \\
\&=180^{\circ}-80^{\circ} \\
\&=100^{\circ}
\end{aligned}
\] \& B1
B1 \\
\hline 13 \& \multicolumn{2}{|l|}{} \& \& (d)
(e) \& \begin{tabular}{l}
Opp. \(\angle\). S of cyclic quad are supp.
\[
\begin{aligned}
\angle \mathrm{CGD} \& =180^{\circ}-\angle \mathrm{CAD} \\
\& =180^{\circ}-55^{\circ} \\
\& =125^{\circ}
\end{aligned}
\] \\
Opp. \(\angle\). S of cyclic quad are supp.
\[
\begin{aligned}
\angle \mathrm{AEB}= \& 180^{\circ} 0\left(100^{\circ}-45^{\circ}\right) \\
\& =35^{\circ}
\end{aligned}
\] \\
Sum of interior angles of \(D\) is supp.
\end{tabular} \& B1
B1
B1
B1 \\
\hline 14 \& \[
\begin{aligned}
\& A=P\left(1-\frac{V}{100}\right)^{n} \\
\& 250,000=500,000\left(1-\frac{12}{100}\right)^{n} \\
\& 0.5=0.88^{n} \log 0.5=\mathrm{n} \log 0.88 \\
\& n=\frac{\log 0.5}{\log 0.88}=5.422 y r s
\end{aligned}
\] \& M1
M1
A1 \& \multirow[t]{4}{*}{19} \& \multicolumn{3}{|l|}{\multirow[t]{3}{*}{}} \\
\hline 15 \& \[
\begin{aligned}
\& 4 \times 5=2.5 \times \chi \\
\& \chi=\frac{20}{2.5}=8 \mathrm{~cm}
\end{aligned}
\] \& \[
\begin{aligned}
\& \hline \text { M1 } \\
\& \text { A1 }
\end{aligned}
\] \& \& \& \& \\
\hline 16 \& \[
\begin{aligned}
\& \frac{2(0.1)}{4-0.1}=\frac{0.2}{3.9} \\
\& \frac{0.2}{3.9}=\frac{2}{39}
\end{aligned}
\] \& B1
\(M 1\)

A1 \& \& \& \&

\hline 17 \& \multirow[t]{2}{*}{| (a) |
| :--- |
| (c) $\begin{array}{rl} 71 \times 60 \times \operatorname{Cos} 60 \\ & =2130 \mathrm{n} . \mathrm{m} \\ 71 \times 4 \mathrm{mins} & =284 \mathrm{~min} \\ 4 \mathrm{hrs} & =44 \mathrm{~min} \\ 1300-4 \mathrm{hrs} & 44 \mathrm{~min} \\ & =8.16 \mathrm{am} \end{array}$ |
| (c) $\frac{\theta}{360} \times 2 R \operatorname{Cos} \theta \times \frac{22}{7}$ $\begin{aligned} & \frac{71}{360} \times 2 \times 6370 \times \operatorname{Cos} 60 \times \frac{22}{7} \\ &=3948.39 \mathrm{KM} \end{aligned}$ |
| (d) $\begin{gathered} \frac{\theta}{360} \times 2 \times \frac{22}{7} \times 6370=10010 \\ \theta=\frac{10010 \times 7 \times 360}{2 \times 22 \times 6370} \\ =90^{\circ} \\ \left(30^{\circ} \mathrm{S}, 42^{\circ} \mathrm{W}\right) \end{gathered}$ |} \& M1

A1
B1
A1

B1

M1 \& \& \& | (b) $\begin{aligned} & \chi_{1}=-0.5 \pm 0.1- \\ & \chi_{2}=2 \pm 1 \end{aligned}$ |
| :--- |
| (d) $\begin{aligned} & \left(x+\frac{1}{2}\right)(x-2)=0 \\ & x^{2}-2 x+\frac{1}{2} x-1=0 \\ & x^{2}-\frac{3}{2} x-1=0 \end{aligned}$ | \& B1

B1
M1
A1

\hline \& \& $$
\begin{aligned}
& \text { M1 } \\
& \text { M1 } \\
& \text { A1 }
\end{aligned}
$$ \& $\underline{20}$ \& \& (i) $\quad O P=\frac{1}{2}\left(\sqrt{3^{2}+4^{2}}\right)=2.5$ \& M1

\hline 18 \& (a)

$$
\begin{aligned}
& \angle \mathrm{BCD}=35^{\circ}+45^{\circ} \\
& =80^{\circ} \\
& \angle . \mathrm{S} \text { in a semi-circle } \frac{180^{\circ}-90^{\circ}}{2}=45^{\circ}
\end{aligned}
$$ \& B1 \& \& \& $=\sqrt{6^{2}+2.5^{2}}=6.964$ \& M1A1

\hline
\end{tabular}

22.	(a)	Class	$5-9$	$10-19$	$20-39$	$40-49$	B1	$10-19 \mathrm{f}=24$
	Frequency	8	24	16	16	B1	$20-39 \mathrm{f}=16$	
					B1	$40-49 \mathrm{f}=16$		

(b)

χ	7	14.5	29.5	44.5			
f	8	24	16	16			
$\mathrm{f} \chi$	56	348	472	712	$\Sigma \mathrm{f} \chi=1588$	B 1	$\checkmark \mathrm{f} \chi$

$$
\text { Mean }=\frac{\Sigma f \chi}{\Sigma f}=\frac{1588}{64}=24.8125
$$

M1 $\quad \checkmark$ subst
A1
(c)

	$5-9$	$10-19$	$20-39$	$40-49$
f	8	24	16	16
cf	8	32	48	68

$$
\begin{array}{ll}
\frac{1}{4} \times 64=16 & \text { M1 } \\
{ }^{\mathrm{L}} Q=9.5+\frac{16-8}{24} \times 10 & \mathrm{M} 1 \\
& 9.5+\frac{1}{3} \times 10=12.83 \\
& \\
\mathrm{U}_{Q}=19.5+\frac{48-32}{16} \times 20 & \\
\text { Interquatile range } & \\
\begin{array}{l}
39.5-12.83 \\
=26.67
\end{array} & \mathrm{M} 1 \\
&
\end{array}
$$

23. (a) $C=K n+\frac{h}{n}$
$\left.\begin{array}{l}70=6 K+\frac{h}{6} \\ 50=62 K+\frac{h}{2}\end{array}\right\}$

$$
420=36 \mathrm{~K}+\mathrm{h}
$$

$$
-100=4 \mathrm{~K}+\mathrm{h}
$$

$$
320=32 \mathrm{~K} \quad \mathrm{~K}=10 \quad \mathrm{~h}=60
$$

$$
C=10 n+\frac{60}{n}
$$

(b) $C=10 \times 12+\frac{60}{12}$

$$
C=120+5=125
$$

(c) $106=10 n+\frac{60}{h}$
$106 \mathrm{n}=10 \mathrm{n}^{2}+60 \Rightarrow 5 \mathrm{n}^{2}-53 \mathrm{n}+30=2$
$\frac{53 \pm \sqrt{2809-4 \times 5 \times 30}}{2 \times 5}=\frac{53 \pm 47}{10}=\frac{100}{10}=10$
M1A1

KIRINYAGA CENTRAL SUB-COUNTY JOINT EXAMINATION - 2015
Kenya Certificate of Secondary Education
121/1
MATHEMATICS

PAPER 1

JULY/AUGUST, 2015
TIME: $2 ½$ HOURS

SECTION I: (50 MARKS)

Answer all the questions in the section.

1. Evaluate without using Mathematical tables or the calculator.
$\sqrt{\frac{153 \times 0.18}{0.68 \times 0.32}}$
2. Reduce the following expression onto a single fraction.
$\frac{4 \chi-5}{2}-\frac{2 \chi-1}{6}$
3. Solve the equation $\log 3(\chi+3)=3 \log 3+2$.
4. Use tables of square roots and reciprocals tables to evaluate:

$$
\frac{10}{\sqrt{0.625}}+\frac{4}{\sqrt{164}}
$$

5. A point P has the coordinates $(1,2,3)$. If $\underset{\sim}{P Q}=\underset{\sim}{5 i}+\underset{\sim}{j}+\underset{\sim}{2 k}$, find.
(a) the coordinates of point Q .
(2 marks)
(b) the modulus of PQ.
6. The figure below shows a circle centre O diameter 7 cm . Angle $P O Q=144^{\circ}$.

Calculate the area of the shaded region.
(4 marks)
7. Point B is 30 m away from point A at a bearing of 150°. Point C is 25 m from A at a bearing of 120°. Find how far C is from B.
(3 marks)
8. The currency exchange rates of a given bank in Kenya are as follows.

Currency	Buying	Selling
1 Sterling pound	135.50	135.97
1 US pound	72.23	72.65

A tourist arrived in Kenya with 5000US dollars which he converted to Kenya shillings upon arrival. He spent Ksh.214,500 and converted the remaining to sterling pounds. How many pounds did he receive?
(3 marks)
9. Find the equation of a perpendicular bisector of line $P Q$, in the form $y=m \chi+C$. If the coordinates of P and Q are $(-2,6)$ and $(4,-2)$ respectively.
10. Make n the subject of the formulae in:
$A=P\left(1+\frac{r}{100}\right)^{n}$
11. In the figure below lines ABC and DC are tangents to the circle at B and D respectively. Angle $\mathrm{ACD}=40^{\circ}$ and angle $\mathrm{ABE}=60^{\circ}$.

Find the size of angle:
(i) CBD.
(1 mark)
(ii) CDE .
(1 mark)
(1 mark)
(iii) BED.
(1 mark)
12. A map has a scale of $1: 25000$ on this map; a square piece of land is represented by an area of $2 \mathrm{~cm}^{2}$. Calculate the actual area, in hectares of the plot.
13. In triangle ABC below, angle $\mathrm{ABC}=90^{\circ}$, angle $\mathrm{ACB}=60^{\circ}$, angle $\mathrm{ADE}=90^{\circ}, \mathrm{AB}=4 \mathrm{~cm}$ and $\mathrm{BC}=\mathrm{BE}$.

Calculate:
(a) BC.
(1 mark)
(b) CE .
(c) DC.
14. A particle moves in a straight line from a fixed point. Its velocity $V \mathrm{~ms}^{-1}$ after t seconds is given by $\mathrm{V}=9 \mathrm{t}^{2}-4 \mathrm{t}+1$. Calculate the distance travelled by the particle during the third second.
15. (a) Fid the value of χ given that $\left(\begin{array}{lr}\chi & 1-\chi \\ \chi+2 & -\chi\end{array}\right)$ is a singular matrix.
(2 marks)
(b) If $A=\left(\begin{array}{rr}2 & 4 \\ 3 & -5\end{array}\right)$ and $\chi=\binom{6}{-2}$, find Z given that $\mathrm{AZ}=\chi$.
(2 marks)
16. From the roof of a house, a boy can see an avocado tree which is 20 m away from the house. He measures the angle of elevation of the top of the tree as 21° and the angle of depression of the bottom of tree as 31°. Find the height of the avocado tree.
(3 marks)

SECTION II: (50 MARKS)

Answer only ANY FIVE questions in this section.

17. A matatu left town K at 7.00 am and travelled towards town M at an average speed of $60 \mathrm{~km} / \mathrm{hr}$. A car left town M at 9.00 am and travelled towards K at an average speed of $80 \mathrm{~km} / \mathrm{hr}$. The distance between the two towns is 324 km . Find.
(a) the time each vehicle arrived at their destination.
(i) Matatu.
(ii) Car.
(b) (i) The distance the matatu covered before the car started to move from town M to town K .
(ii) The time the two vehicles met on the way.
(c) How far the car was from town K when they met?
18. (a) The numerator of the fraction $\frac{p}{q}$ is increased in the ratio $3: 2$ while the denominator is decreased in the ratio $2: 3$. If the resulting fraction is $\frac{27}{28}$, find
(i) the fraction $\frac{p}{q}$ in its simplest form.
(3 marks)
(ii) the percentage change in the fraction.
(2 marks)
(b) A piece of work can be done by 30 men in 12 days. They work for 4 days after which 6 of the men leave. How long will it take the remaining men to complete the job if they work at the same rate?
(3 marks)
(c) Given that the cost of maize is Sh .30 per kg and that of beans is Sh .50 per kg , find the cost of 1 kg of a mixture of maize and beans if they are in the ratio of 3: 2 respectively.
(2 marks)
19. A boat P leaves part $A\left(45^{\circ} \mathrm{N}, 50^{\circ} \mathrm{W}\right)$ and sails at an average speed of 10 knots. It sails due east along a parallel of latitude to $\mathrm{B}\left(45^{\circ} \mathrm{N}, 42^{\circ} \mathrm{W}\right)$ and then sails due north to $\mathrm{C}\left(48^{\circ} \mathrm{N}, 42^{\circ} \mathrm{W}\right)$. Another boat Q leaves $\mathrm{D}\left(55^{\circ} \mathrm{N}, 10^{\circ} \mathrm{W}\right)$ at the same time as P leaves A. It sails due west and then due south to meet boat P at C.
(a) How long does it take boat P to reach point C ?
(4 marks)
(b) If boat Q sails at the same speed as boat P, how long does the former take to reach point C.
(4 marks)
(c) At what speed would boat Q have to sail to reach point C at the same time as boat P.
(2 marks)
20. (a) Complete the table below for the equation $\mathrm{y}=\chi^{2}-6 \chi+5$.

χ	0	1	2	3	4	5	6
χ^{2}	0		4	9		25	
-6χ	0	-6			-24		-36
5	5	5	5	5	5	5	5
y	5					0	

(2 marks)
(b) Draw the graph of $y=\chi^{2}-6 \chi+5$ using the values in the table.
(3 marks)
(c) Use the graph to solve the equations.
(i) $\chi^{2}-6 \chi+5=0$
(1 mark)
(ii) $\chi^{2}-6 \chi+7=0$
(2 marks)
(iii) $\quad \chi^{2}-6.5 \chi+5=0$
(2 marks)
21. In an agricultural research station, the lengths of a sample of leaves were measured and recorded as shown in the frequency distribution table below.

Length in (cm)	$3.0-3.4$	$3.5-3.9$	$4.0-4.4$	$4.5-4.9$	$5.0-5.4$	$5.5-5.9$	$6.0-6.4$	$6.5-6.9$	$7.0-7.4$
No. of leaves	1	4	9	14	12	10	6	3	1

(a) State the modal class.
(1 mark)
(b) Calculate the median (4 dp).
(3 marks)
(c) Using an assumed mean of 5.2 , find:
(i) Mean (4dp).
(3 marks)
(ii) Standard deviation (4dp).
22. Construct triangle $P Q R$ such that $P Q=7 \mathrm{~cm}, Q R=6 \mathrm{~cm}$ and $R P=5 \mathrm{~cm}$.
(3 marks)
(a) Construct the locus of point X which is equidistant from Q and R.
(b) Construct the locus of M which is equidistant from PR and QR .

Mark with letter M the point where this locus meets PQ. Measure QM.
(c) Construct the locus of Y such that PY = 4 cm .
(d) Shade the region in which T lies given that $\mathrm{QT} \geq \mathrm{TR}$ and $\angle \mathrm{PRT} \geq \angle \mathrm{QRT}$ and $\mathrm{PT} \leq 4 \mathrm{~cm}$.
3. The diagram below (not drawn to scale) shows the cross-section of a regular hexagonal solid metal prism length 20 cm .

Calculate:
(a) the area of the shaded region.
(5 marks)
(b) the volume of the material used to make the metal in cm^{3}.
(c) If the density of the metal prism is $3.5 \mathrm{~g} / \mathrm{cm}^{3}$. Find its mass in kg .
24. (a) Write down the first three terms of the sequence whose $n^{\text {th }}$ term is $5 n-2$.
(b) The $3^{\text {rd }}$ term of a geometric sequence is 18 and the $6^{\text {th }}$ term is 486 . Find the $1^{\text {st }}$ term and the common ratio.
(c) The first and the last term of an AP with 34 terms are 8 and - 190 respectively.

Find the sum of the first 34 terms.
(3 marks)
(d) The $2^{\text {nd }}, 4^{\text {th }}$ and $7^{\text {th }}$ term of an AP are the first 3 consecutive terms of a GP. Find the common ratio if the term is 2.
(3 marks)

KIRINYAGA CENTRAL SUB-COUNTY JOINT EXAMINATION - 2015

Kenya Certificate of Secondary Education
121/2
MATHEMATICS
PAPER 2
JULY/AUGUST, 2015
TIME: 2½ HOURS

SECTION I: (50 MARKS)

Answer all the questions in the section.

1. Evaluate: $\frac{1}{2}$ of $3 \frac{1}{2}+1 \frac{1}{2}\left(2 \frac{1}{2}-\frac{2}{3}\right)$
(3 marks)
2. Simplify: $\frac{512^{\frac{4}{3}} \times 27^{\frac{-2}{3}}}{128^{2} \times 9^{-2}}$
3. The height and radius of a cone are measured as 21 cm and 14.0 cm respectively. Taking $\pi=3.142$, find the percentage error in the volume of the cone.
4. Use logarithms to 4 decimal places to evaluate:
$\left(\frac{0.7841 \times \sqrt{0.1356}}{\log 84.92}\right)^{\frac{1}{3}}$
5. A bag contains 3 red and 5 green marbles. Two marbles are picked at random from the bag one at a time without replacement. Find the probability that two marbles picked will be of different colours.
6. The figure below shows a triangular prism. The measurements are in cm .

Draw the net of the prism and hence find the total surface area.
(3 marks)
7. List all the integral values of χ which satisfy the inequalities.
$\frac{4+\chi}{-3}>3 x+2>-13$
8. The equation $2 \chi^{2}-12 \chi+2 y^{2}+28 y=-44$ represents a circle. Determine the coordinates of the centre and the length of it's diameter.
9. Expand $(1+2 \chi)^{8}$ in ascending powers of χ up to and including the term in χ^{3}. Hence evaluate (1.02) ${ }^{8}$. (4 marks)
10. Express in surd form and simplify by rationalizing the denominator.

$$
\frac{1+\operatorname{Cos} 30^{\circ}}{1-\operatorname{Sin} 60^{\circ}}
$$

11. Find the quadratic equation whose roots are $\frac{-3}{4}$ and $\frac{2}{3}$ and write it in the form $\mathrm{a} \chi^{2}+\mathrm{b} \chi+\mathrm{c}=0$ where a, b and c are integers.
(3 marks)
12. Three angles of a polygon are $125^{\circ}, 140^{\circ}$ and 160°. The remaining angles are 145° each. Calculate the sum of the interior angles of the polygon.
(3 marks)
13. XYZ is a triangle. Draw the locus of a point M such that angle XYZ is equal to angle XMZ and Y must lie on the locus of M.

14. The G.C.D of three numbers is 30 and their L.C.M is 900 . If two of the numbers are 150 and 60 , what are the other three possible third numbers?
15. In a race of 100 km , John beats James by 10 km and beats David by 13 km . By how much will James beat David in a race of 120 km assuming all run at constant speeds throughout?
(3 marks)
16. The table below shows the height of 50 athletes in a college.

Height (cm)	Number of athletes
$150-159$	2
$160-169$	9
$170-179$	12
$180-189$	16
$190-199$	7
$200-209$	4

Calculate the median height of the athletes.
(3 marks)

SECTION II: (50 MARKS)

Answer only ANY FIVE questions in this section.
17. Jane is a teacher who has been recruited to reach. She starts with an annual salary of Sh.792000. At end of every year her salary increases by 15% of the previous year.
(a) Find the salary she gets in her fourth year in the job.
(b) In which year will she earn Sh. $1,831,944$.
(c) Find the total she will have earned in ten years.
18. (a) Complete the table below for the functions $\mathrm{y}=3 \operatorname{Cos} \chi$ and $\mathrm{y}=\operatorname{Sin} 2 \chi$.

χ°	-180	-150	-120	-90	-60	-30	0	30	60	90	120	150	180
$2 \chi^{\circ}$		-300			-120		0			180			360
$3 \operatorname{Cos} \chi^{\circ}$							3.0						-3.0
$\operatorname{Sin} 2 \chi^{\circ}$							0.0						0.0

(b) On the same axes, draw the graphs of $\mathrm{y}=3 \operatorname{Cos} \chi$ and $\mathrm{y}=\operatorname{Sin} 2 \chi$ for $-180^{\circ} \leq \chi \leq 180^{\circ}$.
(c) Use the graphs in (b) above to find:
(i) the values of χ such that $3 \operatorname{Cos} \chi-\operatorname{Sin} 2 \chi=0$.
(ii) the difference in the values of y when $\chi=45^{\circ}$.
19. (a) Draw $\triangle P Q R$ whose vertices are $P(1,1), Q(-3,2)$ and $R(0,3)$ on the grid provided.
(b) Find and draw the image of $\triangle \mathrm{PQR}$ under the transformation whose matrix is $\left(\begin{array}{ll}3 & 0 \\ 1 & 1\end{array}\right)$ and label the image $\mathrm{P}^{1} \mathrm{Q}^{1} \mathrm{R}^{1}$.
$P^{1} Q^{1} R^{1}$ is then transformed into $P^{11} Q^{11} R^{11}$ by the transformation with the matrix $\left(\begin{array}{rr}-1 & 0 \\ 1 & 3\end{array}\right)$.
(c) Find the co-ordinates of $\mathrm{P}^{11} \mathrm{Q}^{11} \mathrm{R}^{11}$ and draw $\mathrm{P}^{11} \mathrm{Q}^{11} \mathrm{R}^{11}$.
(3 marks)
(d) Describe fully the single transformation which maps $P Q R$ onto $P^{11} Q^{11} R^{11}$ find the matrix of this transformation.
(3 marks)
20. In a triangle $A O B, O \underset{\sim}{O A}=\underset{\sim}{a}$ and $O \underset{\sim}{B}=\underset{\sim}{b} . ~ M$ is the mid-point of $A B$ and N is a point on $O B$ such that $O N: N B=1: 2$. AN and OM intersect at P.
(a) Express $\underset{\sim}{\mathrm{AB}}, \underset{\sim}{\mathrm{OM}}$ and $\underset{\sim}{\mathrm{AN}}$ in terms of $\underset{\sim}{\mathrm{a}}$ and $\underset{\sim}{\mathrm{b}}$.
(b) If $\underset{\sim}{\mathrm{OP}}=\mathrm{s} \underset{\sim}{\mathrm{OM}}$ and $\underset{\sim}{\mathrm{AP}}=\mathrm{t} \underset{\sim}{\mathrm{AN}}$ express $\underset{\sim}{\mathrm{OP}}$ in two different ways and find the values of s and t .
(c) Hence state the ratio AP: PN.
(1 mark)
21. (a) P, Q and R are three quantities such that P varies directly as the square of Q and inversely as the square root of R.
(i) Given that $P=12$ when $Q=24$ and $R=36$, find P when $Q=27$ and $R=121$.
(3 marks)
(ii) If Q increases by 10% and R decreases by 25%, find the percentage increase in P.
(b) If Q is inversely proportional to the square root of P and $\mathrm{P}=4$ when $\mathrm{Q}=3$.

Calculate the value of P when $\mathrm{Q}=8$.
(3 marks)
22.

The figure above shows the structure of a building under construction. $\mathrm{HA}=\mathrm{IB}=\mathrm{JC}=\mathrm{ED}=12 \mathrm{~m}$ and $\mathrm{BC}=\mathrm{AD}=\mathrm{IJ}=$ HE 16 m ; and $\mathrm{AB}=\mathrm{DC}=\mathrm{HI}=\mathrm{EJ}=10 \mathrm{~m}$ and $\mathrm{HG}=\mathrm{IG}=\mathrm{FJ}=\mathrm{FE}=7 \mathrm{~m}$ and $\mathrm{GF}=9 \mathrm{~m}$.
Calculate:
(a) the angle face GHI makes with base ABCD .
(b) vertical height of ridge GF above base ABCD.
(c) angle face GFJI makes with ABCD.
(d) M is midpoint of $A B$. What is the projection of MF to the base ABCD?
23. In the figure below 0 is the centre of the circle. Angle $S P Q=53^{\circ}$ and angle $P Q 0=30^{\circ}$.

(a) Giving reasons find the size of angles:
(i) SOQ.
(ii) PSO.
(iii) SRT.
(b) If the radius of the circle is 14 cm , find the area of the quadrilateral OQPS.
24. The diagram below, not drawn to scale shows part of the curve $y=\chi^{2}+5$ and the line $y=8.2 \chi$. The line intersects the curve at points C and D . Lines AC and BD are parallel to the y -axis.

(a) Determine the coordinates of C and D .
(b) Use integration to calculate the area bounded by the curve and the χ-axis between the points C and D . (3 marks)
(c) Calculate the area enclosed by the lines CD, CA, BD and the χ-axis.
(d) Hence determine the area of the shaded region.

KIRINYAGA CENTRAL SUB-COUNTY JOINT EXAMINATION - 2015
Kenya Certificate of Secondary Education
121/1
MATHEMATICS

PAPER 1

JULY/AUGUST, 2015
TIME: 2½ HOURS

1	$\begin{aligned} & \sqrt{\left(\frac{153 \times 0.18 \times 104}{0.68 \times 0.32 \times 104}\right)}=\sqrt{\left(\frac{153 \times 18 \times 100}{68 \times 32}\right)} \mathrm{M} 1 \\ & =\sqrt{\left(\frac{9 \times 9 \times 25}{4 \times 4}\right)} \\ & =\frac{9 \times 5}{4} \\ & 11 \frac{1}{4} \text { or } 11.25 \quad \mathrm{~A} 1 \end{aligned}$	6	
$\underline{2}$	$\begin{array}{ll} \hline \frac{3(4 \chi-5)-(2 \chi-1)}{6} & \text { M1 } \\ \frac{12 \chi-15-2 \chi+1}{6} & \\ \frac{10 \chi-14}{6} & \text { M1 } \\ \frac{5 \chi-7}{3} & \text { A1 } \end{array}$	$\underline{7}$	
$\underline{3}$	$\begin{aligned} \log (3 \chi+9) & =\log 3^{3}+\log 100 \\ \log (3 \chi+9) & =\log 2700 \\ 3 \chi & =2691 \\ \chi & =897 \end{aligned}$		Cosine rule $\begin{array}{rlr} \mathrm{BC}=30^{2}+ & 25^{2}-2(30)(25) \cos 30^{\circ} & \mathrm{M} 1 \\ & =188.49 & \\ B C=\sqrt{188.49} & \mathrm{M} 1 \\ & =13.729 \mathrm{~m} & \mathrm{~A} 1 \end{array}$
4	$\begin{aligned} & \frac{10}{0.7906}+\frac{4}{12.806} \\ & \frac{1}{0.7906}=0.1265 \times 10=1.265 \quad \mathrm{M} 1 \\ & \frac{1}{12.806}=0.7806 \times 10^{-1}=0.07806 \mathrm{M} 1 \\ & 10 \times 1.265 \quad=12.65 \\ & 4 \times 0.07806 \quad=\frac{0.31224}{12.96224} \quad \mathrm{~A} 1 \\ & \hline \hline \end{aligned}$	8	$5000 \times 72.23=361,150$ M1 $361,150-214500=146,650$ $=\frac{146,650 \times 1}{135.97}$ M1 $=£ 1078.55$ A1
$\underline{5}$	(a) $\begin{aligned} & \left(\begin{array}{l} \chi \\ y \\ z \end{array}\right)-\left(\begin{array}{l} 1 \\ 2 \\ 3 \end{array}\right)=\left(\begin{array}{l} 5 \\ 1 \\ 2 \end{array}\right) \\ & \left(\begin{array}{l} \chi \\ y \\ z \end{array}\right)=\left(\begin{array}{l} 5 \\ 1 \\ 2 \end{array}\right)+\left(\begin{array}{l} 1 \\ 2 \\ 3 \end{array}\right)=\left(\begin{array}{l} 6 \\ 3 \\ 5 \end{array}\right) \\ & \therefore Q \text { at }(6,3,5) \end{aligned}$ (b) $\begin{aligned} & \mid P Q /=\sqrt{5^{2}+1^{2}+2^{2}} \\ &=\sqrt{30} \\ &=5.477 \\ & \hline \end{aligned}$	$\underline{9}$	$\begin{aligned} & \text { Gradient }=\frac{-2-6}{4--2}=\frac{-4}{3} \\ & \therefore \text { Gradient of } \underline{h}=\frac{3}{4} \end{aligned}$ $\text { Mid point }\left(\frac{-2+4}{2}, \frac{6-2}{2}\right)=(1,2)$ $\begin{aligned} & \frac{y-2}{x-1}=\frac{3}{4} \\ & y=\frac{3}{4} \chi+\frac{5}{4} \end{aligned}$

KIRINYAGA CENTRAL SUB-COUNTY JOINT EXAMINATION - 2015
Kenya Certificate of Secondary Education
121/2
MATHEMATICS
PAPER 2
JULY/AUGUST, 2015
TIME: 2½ HOURS

7.	$\begin{array}{lc} \hline \hline \frac{4+3}{-3}>3 \chi+2 & \\ 4+\chi<(3 \chi+2)-3 & \\ 10 \chi<-10 & \text { B1 } \\ \quad \chi<-1 & \\ 3 \chi+2>-13 & \text { B1 } \\ 3 \chi>-15 & \\ -5<\chi<-1 \therefore \text { values }-4,-3,-2 & \frac{B 1}{3} \\ \hline \end{array}$	13	
8.	$\begin{array}{lc} \hline 2 \chi^{2}-12 \chi+2 y^{2}+28 y=-44 \\ \chi^{2}-6 \chi+y^{2}+14 y=-22 & \\ \chi^{2}-6 \chi+M+y^{2}+14 y+N=-22+M+N \\ M=(-6 \div 2)^{2}=9 ; \text { and } N=(14 \div 2)^{2}=49 \\ \chi^{2}-6 \chi+9+y^{2}+14 y+49=36 & \text { M1 } \\ (\chi-3)^{2}+(y+7)^{2}=6^{2} & \\ \text { Centre }(3,-7) \text { radius }=6 & \text { A1 } \\ \therefore \text { diameter }=12 \text { units } & \frac{B 1}{3} \end{array}$		\perp Bisector of two sides B1 Centre of circle B1 Sector drawn with B1 $\quad \gamma=O X=O Y=O Z$. Circle should not go beyond XZ on lower sides.
		$\underline{14}$	$\left.\begin{array}{l} \left.\begin{array}{l} \text { G.C.D }=30 \Rightarrow 2 \times 3 \times 5 \\ \text { L.C.M }=900 \Rightarrow 2^{2} \times 3^{2} \times 5^{2} \\ 1^{\text {st }} \text { Number } 150 \Rightarrow \end{array}\right\} \end{array}\right\}$
$\underline{9}$	$\begin{array}{cc} \hline(1+2 \chi)^{8}= & 1+8 \times 2 \chi+28(2 \chi)^{2}+56(2 \chi)^{3}+ \\ =1+16 \chi+112 \chi^{2}+448 \chi^{3} \\ \text { Sin Ca }(1+2 \chi)^{8}=(1.02)^{8} & \text { B1 } \\ 2 \chi=0.02 & \\ \chi=0.01 & \\ 1.02^{8}=1+16(0.01)+112(0.01)^{2}+4.48(0.01)^{3} \text { B1 } \\ =1+0.16+0.0112+0.000448 \\ =1.171648 \\ =1.1716 \end{array}$		$\begin{aligned} & 2^{\text {nd }} \text { Number } 60 \Rightarrow 2^{2} \times 3 \times 5 \quad \int \\ & 3^{\text {rd }} \text { Number } 60 \Rightarrow 90,180,450 \quad \frac{A 1}{3} \\ & \hline \end{aligned}$
		$\underline{15}$	$\left.\begin{array}{l} \text { Fraction done by James }=\frac{90}{100} \\ \text { Fraction done by David }=\frac{87}{100} \end{array}\right\}$
10	$\begin{aligned} \frac{1+\frac{\sqrt{3}}{2}}{1-\frac{\sqrt{3}}{2}} & =\frac{2+\sqrt{2}}{2} \div \frac{2-\sqrt{3}}{2} \\ & =\frac{2+\sqrt{3}}{2-\sqrt{3}} \\ & =\frac{(2+\sqrt{3})(2+\sqrt{3})}{(2-\sqrt{3})(2+\sqrt{3})} \\ & =7+4 \sqrt{3} \end{aligned}$		$\left.\begin{array}{l}\text { For } 120 \mathrm{~km} \text {, James does } \Rightarrow \frac{90}{100} \times 120 \\ \quad \text { David does } \Rightarrow \frac{87}{100} \times 120 \\ \text { James }=108 \mathrm{~km} \\ \text { David }=104.4 \mathrm{~km} \\ \text { James beats David by } 3.6 \mathrm{~km}\end{array}\right\}$
		16	Height in (cm)f C
			$150-159$ 2 2 100
			$160-169$ 9 11 $170-179$ 12 23
			$170-179$ 12 23
			$180-189$ 16 39 180
11	$\left(x+\frac{3}{4}\right)\left(x-\frac{2}{3}\right)=0 \quad$ M1		$190-199$ 7 46 $200-209$ 4 50
	$\begin{aligned} & \chi^{2}-\frac{2}{3} \chi+\frac{3}{4} \chi-\frac{6}{12}=0 \\ & 12 \chi^{2}-8 \chi+9 \chi \quad-6=0 \\ & 12 \chi^{2}+\chi-6=0 \end{aligned}$		200-209 4 50$\text { Median }=179.5+\frac{(25-23)}{16} 10 \quad \text { M1 }$
12			$=180.75 \quad \frac{A 1}{3}$

Kenya Certificate of Secondary Education (K.C.S.E.)

121/1

MATHEMATICS
Paper 1
$2^{1 / 2}$ hours

SECTION 1: (50 MARKS)

Answer ALL Questions in this section

1. The marked price of a car in a dealer's shop was Ksh. 450,000/=. Nasieku bought the car at 7\% discount. The dealer still made a profit of 13%. Calculate the amount of money the dealer had paid for the car.
2. Evaluate:
$1 / 2+2^{4} / 5$ of $8 \div 6\left(2 \times 4^{2} / 5\right)$
$2 / 4$ of $6\left(8 \div 3^{1} / 3\right)$
3. A man was born in 1956. His father was born in 1928 and the mother three years later. If the man's daughter was born in 1992 and the son 5 years earlier, find the difference between the age of the man's mother and that of his son.
(3mks)
4. Solve for x in the equation:
$\log _{8}(x+6)-\log _{8}(x-3)=1 / 3$
5. Solve the simultaneous equations:
$\frac{x}{2}+\frac{y}{3}=\frac{-13}{6}, \quad \frac{2 y}{3}-x \quad=11$
$\underline{x}+\underset{3}{y}=\frac{-13}{6}, \quad \frac{2 y}{3}-x \quad=11$
6. Simplify: $12 x^{2}-27$

$$
4-(2 x+1)
$$

7. Find the angle the line $3 y=2 x+6$ makes with the x-axis.
(3mks)
8. The curved surface area of a cylindrical container is $880 \mathrm{~cm}^{2}$. Calculate to one decimal place the capacity of the container in litres given that the height is 17.5 cm . (Take $\pi=22 / 7$).
9. State all the integral values of a which satisfy the inequality $\frac{3 a+2}{4} \leq \frac{2 a+3}{5} \leq \frac{4 a+15}{6}$
(4mks)
10. Line L_{1} passes through the points $A(1,-2)$ and $B(3,-4)$. Find the equation of the line L_{2} passing through the mid-point of $A B$ and perpendicular to L_{1}, leaving your answer in the form $a x+b y+c=0$.
(4 mks)
11. 1.5 litres of water (density $1 \mathrm{~g} / \mathrm{cm}^{3}$) is added to 5 litres of alcohol (density $0.8 \mathrm{~g} / \mathrm{cm}^{3}$). Calculate the density of the mixture.
(3mks)
12. A map of a certain town is drawn to a scale of $1: 50,000$ on the map, the railway quarters cover an area of $10 \mathrm{~cm}^{2}$. Find the area of the railway quarters in hectares.
(2mks)
13. $A B C D$ is a rectangle. $A B=10 \mathrm{~cm}, A D=A X=6 \mathrm{~cm}$ and $X Y$ is an arc of a circle centre D.
$\mathrm{A} \quad \mathrm{X} \quad \mathrm{B}$

Calculate the area of the shaded region. (Take $\pi=3.142$)
14. If $\cos \propto=\underline{15}$, find without using tables or calculators $\sin \propto$ and $\tan \propto$.
15. Express 1.441441. in the form p / q where p and q are integers. ($q \# o$)
16. Leonorah Jerop was on top of a cliff 30 m high sees two boats P and Q out at sea. Both boats were in the same line and the angle of depression from Leonorah to P was 42° and the angle of depression from Leonorah to Q was 27°. Calculate the distance then between the two boats.
(3mks)

Answer any five questions in this section

17. The figure below shows two circles of radii 10.5 cm and 8.4 cm and with centres A and B respectively. The common chord PQ is 9 cm .
(a) Calculate angle PAQ.

(b) Calculate angle PBQ.
(c) Calculate the area of the shaded part.
18. Every Sunday Barmao drives a distance of 80 km on a bearing of 074^{0} to pick up her sister Afandi to go to church. The church is 75 km from Afandi's home on bearing of $550^{\circ} \mathrm{E}$. After church they drive a distance of 100 km on a bearing of 260° to check on their friend Akoth before Barmao drives to Afandi's home to drop her off then proceed to her house.
(a) Using a scale of 1 cm to represent 10 km , show the relative positions of these places.
(4mks)
(b) Use your diagram to determine:
(i) The true bearing of Barmao's home from Akoth's house.
(ii) The compass bearing of the Akoth's home from Afandi's home.
(c) (i) The distance between Afandi's home and Akoth's home.
(ii) The total distance Barmao travel every Sunday.
19. The vertices of triangle $P Q R$ are $P(0,0), Q(6,0)$ and $R(2,4)$.
(a) Draw triangle $P Q R$ on the grid provided.
(b) Triangle $P^{\prime} Q^{\prime} R^{\prime}$ is the image of a triangle $P Q R$ under an enlargement scale factor, $1 / 2$ and centre $(2,2)$. Write down the co-ordinates of triangle $P^{\prime} Q^{\prime} R^{\prime}$ and plot on the same grid.
(c) Draw triangle $P^{\prime \prime} Q^{\prime \prime} R^{\prime \prime}$ the image of triangle $P^{\prime} Q^{\prime} R^{\prime}$ under a positive quarter turn, about points $(1,1)$
(d) Draw triangle $P^{\prime \prime \prime} Q^{\prime \prime} R$ "' the image of triangle $P^{\prime \prime} Q^{\prime \prime} R^{\prime \prime}$ under reflection in the line $y=1$.
(e) Describe fully a single transformation that maps triangle $P^{\prime \prime \prime} Q^{\prime \prime \prime} R$ "' onto $P^{\prime} Q^{\prime} R^{\prime}$.
20. A pail is in the shape of a container frustrum with base radius 6 cm and top radius 8 cm . The slant height of the pail is 30 cm as shown below. The pail is full of water.

(a) Calculate the volume of water.
(6mks)
(b) All the water is poured into a cylindrical container of circular radius 7 cm , if the cylinder has the height of 35 cm ; calculate the surface area of the cylinder which is not in contact with water.
(4 mks)
21. (a) A bus travelling at $99 \mathrm{~km} / \mathrm{hr}$ passes a check-point at 10.00 a.m. and a matatu travelling at $132 \mathrm{~km} / \mathrm{h}$ in the same direction passes through the check point at 10.15a.m. If the bus and the matatu continue at their uniform speeds, find the time the matatu will overtake the bus.
(6mks)
(b) Two passenger trains A and B which are 240 m apart and travelling in opposite directions at $164 \mathrm{~km} / \mathrm{h}$ and $88 \mathrm{~km} / \mathrm{h}$ respectively approach one another on a straight railway line. Train A is 150 metres long and train B is 100 metres long. Determine time in seconds that elapses before the two trains completely pass each other.
22. (a) Solve the equation:

$$
\frac{x+3}{24}=\frac{1}{x-2}
$$

(b) A rectangular room is 4 m longer than its width. If its area is $12 \mathrm{~m}^{2}$, find its dimensions and hence the perimeter of the room.
23. Using a ruler and a pair of compasses only, construct triangle $A B C$, such that $A B=5 \mathrm{~cm}, B C=6 \mathrm{~cm}$ and $A C=6.4 \mathrm{~cm}$. Locate the locus of P such that it is equidistant from the sides $A B, B C$ and $A C$. Measure the shortest distance, r between side $A B$ and the centre P using length r and centre P. Draw a circle. Measure $C P$.
24. QRST is a rhombus. The equations of $Q R, R S$ and $T S$ are $2 x+y=7, x=1$ and $2 x+y=-1$ respectively. Determine:-
(a) The co-ordinates of Q and S.
(b) The co-ordinates of m, the point of intersection of the diagonals.
(c) The co-ordinates of R and T .

Kenya Certificate of Secondary Education (K.C.S.E.)
121/2
MATHEMATICS
Paper 2
2 $1 / 2$ hours

SECTION 1: (50 MARKS)

Answer ALL Questions in this section

1. Using logarithms, evaluate

$\sqrt[3]{\frac{4.684 \log 314.2}{\tan 87^{\circ}}}$

2. Make x the subject of the formula:

$$
A=\sqrt{\frac{1-x}{1+x}}
$$

3. A surveyor gave the length and width of a rectangular plot as 80 m and 55 m respectively. Find his percentage error in the area of the rectangular plot.
4. Find the radius and centre of the circle whose equations is $2 x^{2}+2 y^{2}-6 x+10 y+9=0$.
5. Simplify: $\frac{2}{2 \sqrt{3}+\sqrt{2}} \quad-\quad \frac{2}{2 \sqrt{3}-\sqrt{2}}$

Giving your answer in surd form with a rational denominator.
(3mks)
6. Expand $\left(x+\frac{a}{x^{2}}\right)^{6}$ in descending powers of x up to the term independent of x. If this independent term is

1215, find the value of a.
7. The sum of Shs. 50,000 is invested in a financial institution that gives 12% p.a. The interest is compounded quarterly. Find the total investment after 3 years.
8. If $p+3 q=\underline{3} \quad$ find the ratio $p: q$.
(3mks)

$$
2 p-q \quad 4
$$

9. The angles of a triangle are in the ratio $8: 7: 3$. If the longest side of the triangle is 5.4 cm . Calculate the length of the shortest side.
(3mks)
10. Solve for k in the following equation: $125^{\mathrm{k}+1}+5^{3 \mathrm{k}}=630$
11. Six men take 28 days working for 10 hours a day to pack 4480 parcels. How many more men working 8 hours a day will be required to pack 2500 parcels in 4 days?
12. A bird flies from its nest to some food in three stages. The routes are described by the following vectors.

$$
\left(\begin{array}{c}
3 \\
-2 \\
-1
\end{array}\right), \quad\left(\begin{array}{c}
7 \\
10 \\
5
\end{array}\right) \quad \text { and } \quad\left(\begin{array}{c}
4 \\
-2 \\
-7
\end{array}\right)
$$

Find the distance between the bird's nest and where the food is.
(3mks)
13. The size of an interior angle of a regular polygon is $3 x^{0}$ while exterior is $(x-20)^{0}$. Find the number of sides of the polygon.
(3mks)
14. In what ratio must "Murang'a" coffee costing sh. 25 g per 100 g be mixed with "Kisii" coffee costing sh. 17.50 per 100 g , so that by selling the mixture at sh. 25 per 100 g , a profit of 25% is made?
15. In the figure below, ABCDE is a cross-section of a solid. The solid has a uniform cross-section. Given that BG is a base edge of the solid, complete the sketch, showing the hidden edges with broken lines.

(2mks)
16.

(3mks)

SECTION II (50 MARKS)

Answer any five questions in this section
17. Mr. Chesingei earned an annual basic salary of Kenya pounds 12360 when the rates of taxation were as in the table below.
Monthly income (pounds) Rates (\%)
1-484
1853 and above 30

Apart from the basic salary, he is entitled to a house allowance of Kshs. 12,000 and medical allowance of Kshs. 6,000 per month.
(a) Calculate Chesingei's monthly taxable income in Kenya pounds.
(b) Calculate Chesinge's monthly net income if he is given a tax relief of Ksh. 980 per month. Give your answer in Kenyan shillings.
(5mks)
(c) How much more tax should he have paid per month in Kenya pounds if his monthly salary is increased by Ksh. 2500.
(2mks)
18. The table below shows the distribution of marks scored by 100 candidates of Cheptiret Boys High school in an examination.

Marks	$1-10$	$11-20$	$21-30$	$31-40$	$41-50$	$51-60$	$61-70$	$71-80$	$81-90$	$91-100$
No. of candidates	2	5	8	19	24	18	10	6	5	3

(a) Draw a cumulative frequency curve to illustrate the information above.
(b) From your graph, find:
(i) Median
(ii) Inter-quartile range
(iii) Pass mark if 70\% of the students passed.
19. The figure below shows a circle centre 0 in which QOT is a diameter. $\angle \mathrm{QTP}=46^{\circ}, \mathrm{TQR}=75^{\circ}$ and $\mathrm{SRT}=38^{\circ}, \mathrm{PTU}$ and RSU are straight lines.

Calculate the following angles giving a reason in each case.
(a) $<$ RST
(b) $<$ SUT
(c) $<$ PST
(d) Obtuse < ROT
(e) <SQT
20. In the figure below, $\mathrm{QT}=\mathrm{a}$ and $\mathrm{QP}=\mathrm{b}$.

(a) Express the vector PT in terms of a and b.
(b) If PX $=\mathrm{kPT}$, express QX in terms of a, b and k , where k is a scalar.
(c) If $\mathrm{QR}=3 \mathrm{a}$ and $\mathrm{RS}=2 \mathrm{~b}$, write down an expression for QS in terms of a and b .
(d) If $\mathrm{QX}=\mathrm{tQS}$, use your result in (b) and (c) to find the value of k and t .
(e) Find the ratio PX: XT.
21. The law $E=K X^{n}$ gives an expression for the energy E joules stored in a spring for the extension xcm . The table below shows the value of E and the corresponding value of X.

xcm	2	2.5	3	3.5	4	5
E (joules)	108	169	243	330	432	675

Determine graphically the values of k and n . Write the equation connecting E and X .
(10mks)
22. The first term of an Arithmetic Progression (AP) is 200. The sum of the first 10 terms of AP is 24500 .
(a) (i) Find the common difference.
(2mks)
(ii) Given that the sum of the first n terms of the AP is 80100 , find n.
(2mks)
(b) The $3^{\text {rd }}, 5^{\text {th }}$ and $8^{\text {th }}$ terms of another AP, form the first three terms of a Geometric Progression (GP). If the common difference of AP is 5, find:-
(i) The first term of the GP.
(ii) The sum of the first 12 terms of the GP, to four significant figures.
23. e table below, giving the values correct to 2 decimal places. (3mks)

x^{0}	0	30	60	90	120	150	180	210	240	270	300	330	360
$\operatorname{Sin} 2 \mathrm{x}$													
$3 \cos \mathrm{x}-2$													

(b) On the grid provided, draw the graphs of $y=\sin 2 x$ and $y=3 \cos x-2$ of $0^{0} \leq x \leq 360^{\circ}$; on the same axes. Use the scale of 1 cm to represent 30° on the x-axis and 2 cm to represent 1 unit on the y-axis.
(c) Use the graph in (b) above to solve the equation: $3 \cos x-\sin 2 x=2$
24. The probabilities of Makori, Newton and Patrick going to school on Monday are $6 / 7,7 / 8$ and $8 / 9$ respectively. Find the probability that:-
(a) They will all go to school on Monday.
(b) None of them will go to school on Monday.
(c) At least one of them will go to school on Monday.
(d) At most one of them will go to school on Monday.

NANDI NORTH SUB-COUNTY JOINT EVALUATION 2015 PRE MOCK
 Kenya Certificate of Secondary Education (K.C.S.E.)
 121/1
 MATHEMATICS

Paper 1

\begin{tabular}{|c|c|c|c|c|c|}
\hline NO \& WORKING \& \& \& \& \\
\hline 1 \& \[
\begin{aligned}
\& 100 \%=450,000 \\
\& 93 \% ? \\
\& \frac{93 \times 450000}{100}=418,500 \\
\& 113 \%=418500 \\
\& 100 \% ? \\
\& \frac{100 \times 18500}{113}=370353.9823
\end{aligned}
\] \& M1
M1
A1 \& \multirow[t]{2}{*}{5.} \& \begin{tabular}{l}
\(6(x / 3+6(y / 3)=(-13 / 6) 63(2 y / 3)-(x) 3=\) \\
(11)3
\[
\left.\begin{array}{l}
3 x+2 y=-13 \\
2 y-3 x=33
\end{array}\right\}
\]
\[
\begin{aligned}
\& 3 x+2 y=-13 \\
\& -3 x+2 y=33 \\
\& \hline
\end{aligned}
\]
\end{tabular} \& \\
\hline \multirow[t]{2}{*}{2} \& \[
\begin{aligned}
\& 1 / 2+14 / 5 \text { of } 8 \div 6(2 \times 22 / 5) \\
\& 1 / 2+14 / 5 \text { of } 8 \div 6 \mathrm{x}^{44} / 5 \\
\& 1 / 2+112 / 5 \div 6 \mathrm{x}^{44} / 5 \\
\& 1 / 2+112 / 5 \div 1 / 6 \mathrm{x}^{44} / 5 \\
\& 1 / 2+112 / 30 \mathrm{x}^{44} / 5
\end{aligned}
\] \& M1 \& \& \[
\begin{aligned}
\& 4 y=20 \\
\& y=5 \\
\& 10-3 x=33 \\
\&-3 x=23 \\
\& X=-72 / 3
\end{aligned}
\] \& \\
\hline \& \[
\begin{aligned}
\& \frac{1}{2}+\frac{2464}{75}=\frac{75+4928}{150} \\
\& =\frac{5003}{150} \\
\& \text { Denominator } \\
\& 2 / 4 \text { of } 6(8 \div 10 / 3) \\
\& 2 / 4 \text { of } 6(8 \div 3 / 10) \\
\& 1 / 2 \text { of } 6 \times 12 / 5 \\
\& 3 \times^{3} / 10=36 / 5 \\
\& \underline{5003} \div \underline{36} \\
\& 150 \\
\& \underline{5003} \times \underline{5} \\
\& 15036 \\
\& =\underline{5003} \\
\& 1080
\end{aligned}
\] \& \begin{tabular}{l}
A1 \\
M1 \\
A1
\end{tabular} \& 6. \& \[
\begin{aligned}
\& \frac{3\left(4 x^{2}-9\right)}{4-(2 x+1)} \\
\& =\frac{3\left(4 x^{2}-9\right)}{4-2 x-1} \\
\& \frac{3\left(4 x^{2}-9\right)}{3-2 x} \\
\& \frac{3(2 x-3)(2 x+3)}{(2 x-3)} \\
\& \frac{3(2 x+3)}{-1}=-6 x-9
\end{aligned}
\] \& M1 \\
\hline \& \& 04 \& \& \& \\
\hline 3 \& \begin{tabular}{lrl}
\& \\
Man \& 1956 \\
Father \& 1928 \\
Mother \& 1931 \\
Daughter \& 1992 \\
Son \& 1987 \& \\
1987-1931 \& \(=56\) years
\end{tabular} \& \[
\begin{aligned}
\& \text { M1 } \\
\& \text { M1 } \\
\& \text { A1 }
\end{aligned}
\] \& 7. \& \[
\begin{array}{|l}
\hline y=2 / 3 x+6 / 3 \\
y=0.6667 x+2 \\
\tan \theta=0.6667 \\
\theta=33.7^{0}
\end{array}
\] \& \[
\begin{aligned}
\& \hline \hline \text { M1 } \\
\& \text { M1 } \\
\& \text { A1 }
\end{aligned}
\] \\
\hline \& \& 03 \& \& \& \\
\hline 4 \& \[
\begin{aligned}
\& \log _{8}(x+6)-\log _{8}(x-3)=1 / 3 \log _{8} 8 \\
\& \log _{8}(x+6)-\log _{8}(x-3)=\log _{8} 8^{1 / 3} \\
\& \log 8(\underline{x+6})=\log _{8} 8^{1 / 3} \\
\& \quad(x-3) \\
\& \frac{x+6}{x-3}=8^{1 / 3} \\
\& \frac{x-6}{x+3}=? \\
\& x-3 \\
\& x+6=2(x-3) \\
\& x+6=2 x-6 \\
\& x-2 x=-6-6 \\
\& -x=-12
\end{aligned}
\] \& \& 8. \& \[
\begin{aligned}
\& \hline \text { Curved surface }=2 \pi \mathrm{rh} \\
\& 2 \pi r h=880 \\
\& 2 \times 22 / 7 \times 17.5 \mathrm{r}=880 \\
\& \frac{44 \times 17.5 \mathrm{r}}{7}=880 \\
\& \mathrm{r}=\underline{880 \times 7} \quad \mathrm{r}=8 \mathrm{~cm} \\
\& 44 \times 17.5 \quad \\
\& \mathrm{~V}=\pi \mathrm{rh} \\
\& =(22 / 7 \times 8 \times 8 \times 17.5) \mathrm{cm}^{3} \\
\& =24640 \mathrm{~cm}^{3} \\
\& 1000 \mathrm{~cm}^{3}=>11 \quad \\
\& 24640 \mathrm{~cm}^{3} ? \\
\& \\
\& =24.64 \text { litres } \quad=\quad \underline{24640 \times 1} \\
\& \hline \hline
\end{aligned}
\] \& B1
M1

A1

\hline
\end{tabular}

9	$\begin{aligned} & \frac{3 a+2}{4} \leq \frac{2 a+3}{5} \leq 4 a+15 \\ & \frac{3 a+2}{4}<\frac{2 a+3}{5} \\ & 20\left(\frac{3 a+2}{4}<(\underline{2 a+3}) 20\right. \\ & 15 a+10<8 a+12 \\ & 15 a-8 a<12-19 \\ & 7 a<2 \\ & a<2 / 7 \\ & \frac{2 a+3}{5}<\frac{4 a+14}{6} \\ & 30\left(\frac{3 a+2)<30(4 a+15)}{4} \quad 5\right. \\ & 12 a+18<2 a+75 \\ & 12 a-20 a<75-18 \\ & -8 a<57 \\ & a>57 / 8 \quad a=71 / 8 \\ & -71 / 8 \leq a \leq 2 / 7 \\ & -7,-6,-5,-4,-3,-2,-1,0 \\ & \hline \hline \end{aligned}$		13	Radius DX $\begin{aligned} & \mathrm{DX}=\sqrt{\mathrm{AD}^{2}+\mathrm{AX}^{2}} \\ & =\sqrt{6^{2}}+6^{2} \\ & \sqrt{72} \\ & 6 \sqrt{2} \end{aligned}$ $\begin{aligned} & \operatorname{Sin}=\frac{O P P}{1+4} \\ & =\underline{6} \\ & 662 \\ & \operatorname{Sin} 0=1 \end{aligned}$ 61 $\frac{62}{2}$ $A=1 / 2 b h+1 / 2 a b \sin 0$ $(1 / 2 \times 6 \times 6)+1 / 2 \times 6 \times 6 \times 2$ $=18+9 \times 1.4141=30.74 \mathrm{~cm}^{2}$	
		03			
10			14	$\begin{aligned} & \hline \begin{array}{l} \operatorname{Cos} \theta \\ \sqrt{17^{2}-15^{2}} \\ \sqrt{289-225} \\ =\sqrt{64}=8 \\ \operatorname{Sin} \theta=\underline{8} \\ 17 \\ \operatorname{Tan} \theta=\underline{8} \\ 15 \\ \hline \end{array} \\ & \hline \end{aligned}$	
		03			
11	$\begin{aligned} & \hline \mathrm{D}=\underline{\mathrm{M}} \\ & \mathrm{~V} \\ & \text { Water }=>1=\mathrm{m} \\ & 1.5 \mathrm{~L} \\ & 1 \text { lit }=1000 \mathrm{~cm}^{3} \\ & 1.5 \text { lit ? } \\ & \frac{1.5 \mathrm{x} 1000}{1}=1500 \mathrm{~cm}^{3} \\ & 1=\underline{\mathrm{m}} \quad \\ & 1500 \quad=1500 \mathrm{~g} \\ & \text { Alcohol }=>0.8=\frac{\mathrm{m}}{5} \text { lit } \\ & 1 \text { lit }=1000 \mathrm{~cm}^{3} \end{aligned}$		15	$\begin{aligned} & \hline \mathrm{r}=1.441441 \\ & 10 \mathrm{r}=14.41441 \\ & 100 \mathrm{r}=144.1441 \\ & 1000 \mathrm{r}=1441.441 \\ & \\ & 1000 \mathrm{r}=1441.441 \\ & \mathrm{r}=\quad 1.441 \\ & \hline 999 \mathrm{r}=1440 \\ & 999 \mathrm{r}=1440 \\ & \mathrm{r}=\frac{1440}{999} \\ & \mathrm{r}=160 \\ & 1111 \\ & \hline \hline \end{aligned}$	
			16	$\begin{aligned} & \tan 42^{\circ}=\frac{30}{\mathrm{k}} \\ & \mathrm{k}=\underline{30} \\ & \tan 42 \\ & \mathrm{t}=33.32 \\ & \tan 27=\underline{30} \\ & \mathrm{~L}=\underline{30} \end{aligned}$	
12.	$\begin{aligned} & \text { L.S.F. }=\frac{50000}{1}=50,000 \\ & \text { A.S.F. }=(50,000)^{2} \\ & =50000^{2} \times 10 \mathrm{~cm}^{2} \\ & 50000 \times 50000 \times 10 \\ & \frac{25000000000}{100000000}=250 \mathrm{ha} \end{aligned}$			$\begin{gathered} \quad \tan 27 \\ \mathrm{~L}=58.88 \\ 58.88-33.32 \\ =25.56 \mathrm{~m} \end{gathered}$	

NANDI NORTH SUB-COUNTY JOINT EVALUATION 2015 PRE MOCK
Kenya Certificate of Secondary Education (K.C.S.E.)

121/2

MATHEMATICS
Paper 2

\begin{tabular}{|c|c|c|c|c|c|}
\hline 1 \& \& M1

M1

M1 \& 4 \& $$
\begin{aligned}
& \hline x^{2} y^{2}-2 a x-2 b y+a^{2}+b^{2}-r^{2}=0 \\
& 2 x^{2}+2 y^{2}-6 x-b y+9=0 \\
& x^{2}+y^{2}-3 x+5 y+4.5=0 \\
& -2 a x=-3 x \quad-2 b y=5 y \\
& -2 a=-3 \quad-2 b=5 \\
& a=1.5 \quad \quad b=-2.5 \\
& \text { centre }(1.5,-2.5) \\
& a^{2}+b^{2}-r^{2}=4.5 \\
& (1.5)^{2}+(-2.5)^{2}-r^{2}=4.5 \\
& 2.25=+6.25-r^{2}=4.5 \\
& 8.5-r^{2}=4.5 \\
& -r^{2}=4.5-8.5 \\
& -r^{2}=-4 \\
& -\quad r^{2}=4 \\
& -r= \pm 2 \\
& -\quad r=2 c m
\end{aligned}
$$ \& M1

M1
M1

A1

\hline \& $$
\begin{aligned}
& =\dot{1} .9292 \\
& 8.496 \times 10-1 \\
& =0.8496
\end{aligned}
$$ \& A1 \& \multirow[t]{2}{*}{5} \& \[

$$
\begin{aligned}
\frac{2}{(2 \sqrt{3}+\sqrt{2})} & \left.\frac{2}{(2 \sqrt{3}}+\sqrt{2}\right) \\
= & \frac{2(2 \sqrt{3}+\sqrt{2})}{(2 \sqrt{3}+\sqrt{2})}-\frac{2(2 \sqrt{3}+\sqrt{ } 2)}{\left(2 \sqrt{3}+5^{2}\right)}
\end{aligned}
$$
\] \& M1

\hline \& \& 04 \& \& $$
=\frac{4 \sqrt{3}+2 \sqrt{2}-4 \sqrt{3}-2 \sqrt{2}}{(2 \sqrt{2}+\sqrt{2})}
$$ \&

\hline \multirow[t]{2}{*}{2} \& \multirow[t]{2}{*}{$$
\begin{aligned}
& (A)^{2}=\left(\sqrt{\frac{1-x}{1+x}}\right) \\
& (1+x)(A)^{2}=\left(\frac{1-x}{1+x}\right)(1+x) \\
& A^{2}+A^{2} x=1-x \\
& A^{2} x+x=1-A^{2} \\
& x\left(A^{2}+1\right)=1-A^{2} x \\
& x\left(A^{2}+1\right)=1-A^{2} \\
& x=\frac{1-A^{2}}{A^{2}+1}
\end{aligned}
$$} \& M1

M1 \& \& $$
\begin{aligned}
& =\frac{(2 \sqrt{3}+\sqrt{2})(2 \sqrt{3}+\sqrt{2})}{(4 \sqrt{9}-2 \sqrt{2}+2 \sqrt{6}-\sqrt{ } 4} \\
& =\frac{-4 \sqrt{2}}{12-2} \\
& =\frac{-4 \sqrt{2}}{10} \\
& =\frac{-3 \sqrt{2}}{5}
\end{aligned}
$$ \& M1

A1

\hline \& \& A1 \& \multirow[t]{3}{*}{6} \& \&

\hline \& \& 03 \& \& coefficient when $\mathrm{a}=6$ \&

\hline \multirow[t]{2}{*}{3} \& \multicolumn{3}{|l|}{} \& \&

\hline \& $$
\begin{aligned}
& \text { Actual }=>80 \times 55=4400 \mathrm{~m}^{2} \\
& \frac{67.5 \times 100=1.5341 \%}{4400}
\end{aligned}
$$ \& A1 \& 7 \& \[

$$
\begin{aligned}
& \mathrm{A}=\mathrm{P}(1+\underline{\mathrm{r}})^{\mathrm{n}} \\
& 10 \\
& \mathrm{~A}=50000 \quad(1+\underline{3})^{6} \\
& \\
& =50000(1.03)^{6} \\
& =50000 \times 1.1941=59705
\end{aligned}
$$
\] \& M1

M1
A1

\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|c|}
\hline 8. \& \[
\begin{aligned}
\& \hline \frac{p+3 q=3}{2 p-q} 4 \\
\& =3(2 p-q)=4(p+3 q) \\
\& =6 p-3 q=4 p+12 q \\
\& =6 p-4 p=12 q+3 q \\
\& =2 p=15 q \\
\& p=15 \\
\& \quad q=2 \\
\& p: q=15: 2
\end{aligned}
\] \& \begin{tabular}{l}
M1 \\
M1 \\
A1
\end{tabular} \& 13 \& \[
\begin{aligned}
\& \left.\begin{array}{l}
3 x+x-20 \\
4 x=200 \\
x=50
\end{array}\right) \\
\& \frac{360}{30} \quad=180
\end{aligned}
\] \& \\
\hline 9 \& \& \begin{tabular}{l}
M1 \\
M1 \\
A1
\end{tabular} \& 14 \& \[
\begin{aligned}
\& \hline \hline \mathrm{m}: \mathrm{k}=1: \mathrm{n} \\
\& \mathrm{~m}=25 \\
\& \mathrm{k}=17.50 \\
\& \text { B.P }=>25+17.50 \mathrm{n} \\
\& \text { S.P }=>25+25 \mathrm{n} \\
\& 100 \%=25+17.50 \mathrm{n} \\
\& 125 \%=25+25 \mathrm{n} \\
\& 125(25+17.50 \mathrm{n})=100(25+25 \mathrm{n}) \\
\& 25+17.50 \mathrm{n}=\frac{100}{125}(25+25 \mathrm{n}) \\
\& \\
\& 25+17.50 \mathrm{n}=4 / 5(25+25 \mathrm{n}) \\
\& 25+17.50 \mathrm{n}+20+20 \mathrm{n} \\
\& 25-20=20 \mathrm{n}-17.50 \mathrm{n} \\
\& 5=2.5 \mathrm{n} \\
\& \mathrm{n}=2 \mathrm{~m}: \mathrm{k}=1: 2 \\
\& \hline
\end{aligned}
\] \& \\
\hline 10 \& \[
\begin{aligned}
\& 5^{3(k+1)}+5^{3 k}=5^{1} \times 126 \\
\& 5^{3 k+3}+5^{3 k}=5^{1} \times 126 \\
\& 5^{3 k} \cdot 5^{3}+5^{3 k}=5^{1} \times 126 \\
\& 5^{3 \mathrm{k}}\left(5^{3}+1\right)=5^{1} \times 126 \\
\& 5^{3 \mathrm{k}}(126)=5^{1}(126) \\
\& 5^{3 \mathrm{k}}=5^{1} \\
\& 3 \mathrm{k}=1 \quad \mathrm{~K}=1 / 3 \\
\& \hline
\end{aligned}
\] \& \begin{tabular}{l}
M1 \\
M1 \\
A1
\end{tabular} \& 15 \& \& \\
\hline 11 \& \begin{tabular}{lccc}
Men \& days \& hrs \& parcels \\
6 \& 28 \& 10 \& 4480 \\
\(\times\) \& 4 \& 8 \& 2500 \\
\(6 \times 28 \times 10=4480\) \& \& \\
\(\times \times 4 \times 2500\) \& \& \\
\(1680=4480\) \& \&
\end{tabular} \& M1 \& 16 \& \[
\begin{aligned}
\& \hline \mathrm{A}(\mathrm{x}, 0) \\
\& =2 \mathrm{x}-\mathrm{x}^{2} \\
\& 0=2 \mathrm{x}-\mathrm{x}^{2} \\
\& \mathrm{x}^{2}=2 \mathrm{x} \\
\& \mathrm{X}=2 \\
\& \mathrm{~A}(2,0)
\end{aligned}
\] \& \\
\hline \& \[
\begin{aligned}
\& 32 \mathrm{x}=2500 \\
\& 32 \mathrm{x} \times 4480=1680 \times 2500 \\
\& 32 \mathrm{x}=\frac{1680 \times 2500}{4480} \\
\& 32 \mathrm{x}=937.5 \\
\& x=29.296875 \\
\& \quad=30 \\
\& 30-6=24
\end{aligned}
\] \& A1 \& 17 \& \begin{tabular}{l}
(a) Taxable income \\
Basic slary + allowances \\
Basic \(=12,360\) \\
Allowances:
\[
\begin{aligned}
\& \mathrm{HA}=12000=600 \\
\& 20 \\
\& \mathrm{MA}=\underline{6000}=300
\end{aligned}
\]
\end{tabular} \& \\
\hline 12 \& \[
\begin{aligned}
\& \left(\begin{array}{c}
7 \\
10 \\
5
\end{array}\right)=\left(\begin{array}{c}
3 \\
-2 \\
-1
\end{array}\right)=\left(\begin{array}{l}
4 \\
12 \\
6
\end{array}\right) \\
\& \left(\begin{array}{c}
4 \\
-2 \\
-7
\end{array}\right)\left(\begin{array}{c}
4 \\
10 \\
5
\end{array}\right) \\
\& \left.\sqrt{4^{2}+12^{2}+6^{2}+} \sqrt{0} \begin{array}{l}
-12 \\
-12
\end{array}\right) \\
\& \sqrt{(16+144+36)}+\sqrt{0+133+144} \\
\& \sqrt{196}+\sqrt{288} \\
\& 14+16.97=30.97
\end{aligned}
\] \& M1
M1

A1 \& \& | Taxable income $=12360+600+300=13260$ |
| :--- |
| (b) $\begin{aligned} & 1^{\text {st }} \text { slab } \\ & =\underline{10} \times 4.84=48.4 \\ & 100 \\ & \text { Slab } 2=\underline{15} \times 4.56=68.4 \\ & \text { Slab } 3=\underline{100} \times 4.56=91.2 \\ & \quad 100 \\ & \text { Slab } 4=\underline{25} \times 4.56=144 \\ & \text { Slab } 5=\underline{\frac{30}{100}} \times 11408=3422.4 \\ & 100 \end{aligned}$ |
| Total tax $\begin{aligned} & =48.4+68.4+91.2+144+3422.4 \\ & =3774.4 \end{aligned}$ |
| Subtract relief $3774.4 \times 20=75488$ | \&

\hline
\end{tabular}

18.	$\begin{array}{ccccccc}\text { (a) Upper limits } & 10.5 & 20.5 & 30.5 & 40.5 & 50.5 & 60.5 \\ \text { C.f } & 2 & 7 & 15 & 34 & 58 & 76 \\ & & & & & & \\ & 70.5 & 80.5 & 90.5 & 100.5 \\ & 86 & 92 & 97 & 100\end{array}$ (b) Median $=50.5+2=52.5$ (c) $\begin{aligned} & \mathrm{Q} 3=60.5+4 \\ & \text { Q1 }=64.5 \\ & \text { I.Q.R. }=\text { Q3 }=\text { Q1 } \\ & 64.5-52.5=12 \end{aligned}$		(c) (d) (e)	$\begin{aligned} & \overrightarrow{\mathrm{QR}=3 \mathrm{a}} \overrightarrow{\mathrm{RS}}=2 \mathrm{~b} \\ & \mathrm{QS}=\overrightarrow{\mathrm{QR}}+\overrightarrow{\mathrm{RS}} \\ & \mathrm{QS}=3 \mathrm{a}+2 \mathrm{~b} \\ & \mathrm{QX}=\mathrm{t}(3 \mathrm{a}+2 \mathrm{~b}) \\ & \mathrm{C}>\mathrm{b}+\mathrm{k}(\mathrm{a}-\mathrm{b})=\mathrm{t}(3 \mathrm{a}+2 \mathrm{~b}) \\ & \mathrm{b}+\mathrm{ak}-\mathrm{bk}=3 \mathrm{at}+2 \mathrm{bt} \\ & \mathrm{~b}-2 \mathrm{bt}+\mathrm{bk}+\mathrm{ak}-3 \mathrm{a}=0 \\ & \mathrm{~b}(\mathrm{~b}-2 \mathrm{t}-\mathrm{k})+\mathrm{a}(\mathrm{k}-3 \mathrm{t})=0 \\ & 1-2 \mathrm{t}-\mathrm{k}=0 \quad \text { and } \mathrm{k}-3 \mathrm{t}=0 \\ & =>\mathrm{k}=3 \mathrm{t} \\ & 1-2 \mathrm{t}-3 \mathrm{t}=0 \\ & 1-5 \mathrm{t}=0 \\ & 5 \mathrm{t}=1 \\ & \mathrm{k}=3 \mathrm{t} \\ & \mathrm{k}=3 \mathrm{x} 1 / 5 \quad \mathrm{t}=1 / 5 \\ & \mathrm{PX}=3 / 5 \mathrm{PT} \\ & \mathrm{XT}=2 / 5 \mathrm{PT} \\ & \mathrm{PX}: \mathrm{XT}=3 / 5 \mathrm{PT}: 2 / 5 \mathrm{PT} \\ & =3: 2 \end{aligned}$	
19	(a) \angle RST $=180-75=105^{0}$ Cyclic angles add up to 180°. (b) $<$ SUT $=180-(82+75)=23^{0}$ Angles of a triangle add up to 180° (c) $\angle \mathrm{PST}=44^{\circ}$ Angles subtended by the same chord i.e. chord PT are equal. The angle $\mathrm{PQT}=44^{\circ}$ (d) Obtuse of \angle ROT $75^{\circ} \times 2=150^{\circ}$ Chord RT subtended $<\mathrm{RQT}=75^{\circ}$ Same chord RT subtends $<$ ROT at the centre Hence $75 \times 2=150^{\circ}$ (e) $180-(44+46+15+37)=38^{0}$ Cyclic angles add up to 180°. SQOT $\angle \mathrm{SQP}+\angle \mathrm{PTS}=180^{\circ}$	B1 B1	22	(i) $\begin{aligned} & \hline \hline T 1=200=9 \\ & S n=n / 2[2 a+(n-1) d] \\ & S_{10}=10 / 2[2 a+(10-1) d] \\ & 24500=5(2 \times 200+9 d) \\ & 4900=400+9 d \end{aligned}$ $9 \mathrm{~d}=4500$ $\mathrm{d}=500$ (ii) $\begin{aligned} & S n=n / 2[2 a+(n-1) d] \\ & 80100=10 / 2[400+500(n-1)] \\ & 80100=10 / 2[400+500-500 \\ & 160200=n(500 n-100) \\ & 1602=n(5 n-1) \\ & 5 n^{2}-n=1602 \\ & 5 n^{2}-n=1602=0 \\ & n=\frac{-b+b^{2}-4 a c}{2 a} \\ & =\frac{1 \pm 1+20 \times 1602}{10} \end{aligned}$	
20	(a) $\begin{aligned} & \overrightarrow{\mathrm{PT}}=\overrightarrow{\mathrm{PQ}}+\overrightarrow{\mathrm{OT}} \\ & =-\mathrm{b}+\mathrm{a} \\ & =\mathrm{a}-\mathrm{b} \end{aligned}$ (b) $\begin{aligned} & \mathrm{PX}=\overrightarrow{\mathrm{KPT}} \\ & =>\mathrm{PX}=\mathrm{K}(\mathrm{a}-\mathrm{b}) \\ & \overrightarrow{\mathrm{OX}}=\overrightarrow{\mathrm{QP}}+\overrightarrow{\mathrm{PX}} \\ & =\mathrm{b}+\mathrm{k}(\mathrm{a}-\mathrm{b}) \end{aligned}$			$\left.\begin{array}{l} (a+20)^{2}=(a+10)(a+35) \\ a^{2}+40 a+400=a^{2}+45 a+350 \\ 40 a-45 a=350-400 \\ -5 a=-50 \\ a=10 \\ r \end{array}\right)=\frac{30}{20} \quad r=1.5 \quad \begin{aligned} \text { Sn } & =\frac{a(r n-1)}{r-1} \\ & =\frac{10\left(1.5^{12}-1\right)}{0.5} \\ & =20(128.7463)=2574.93 \\ & =2,575 \end{aligned}$	

21
$\mathrm{E}=\mathrm{KX}^{\mathrm{n}}$
$\log E=\log X^{n}+\log K$
$\log E=n \log X+\log K$

X	2	2.5	3	3.5	4	5
E	108	169	243	330	432	675
Log X	0.3010	0.3979	0.4771	0.5441	0.6021	0.6990
Log E	2.0334	2.2279	2.3856	2.5185	2.6355	2.8293

$\log K=1.4$
$\frac{\mathrm{m}}{\mathrm{k}}$ $\log 1.4$
2.512×10^{1}
$K=25.12$
$\mathrm{n}=\frac{2.0334-2.8293}{0.3010-0.6990}=-0.7959 \quad=1.9997$
$=2$

KURIA EAST JOINT EXAMINATION COUNCIL 1015

Kenya Certificate of Secondary Education (K.C.S.E.)
121/1
MATHEMATICS
Paper 1

SECTION I (50 Marks)

1. Points $S(-2,2)$ and $T(-3,7)$ are mapped onto $S^{1}(4,-10)$ and $T^{1}(0,10)$ by an enlargement. Calculate the enlargement scale factor.
(3 Marks)
2. Given that $\frac{1}{2 x}=(0.732)+\sqrt[3]{85.3}$, use mathematical tablets to find the value of x in standard form correct to 3 significant figures.
(3 Marks)
3. Simplify $\frac{12 x^{2}+a x-6 a^{2}}{9 x^{2}-4 a^{2}}$
4. All prime numbers less than ten are arranged in ascending order to form a number.
(a) Write down the number formed.
(1 Mark)
(b) Express the number in (a) above in expanded form.
(2 Marks)
5. A two digit number is such that the one's digit is four more than the tens digit, and the sum of the digits is 14 . Find the number.
(3 Marks)
6. Marwa bought a refrigerator on hire purchase by paying monthly installments of KSh. 2000 per month for 40 months and a deposit of KSh. 12,000. If this amounted to an increase of 25% of the original cost of the refrigerator, what was the cash price of the refrigerator?
7. Find the integral values of x which satisfy the inequality.
$3(1+x)<5 x-11<x+45$
8. Without using calculator, evaluate.
$\left(\frac{7}{3}\left[\frac{2}{5} \text { of } 1 \frac{2}{3}-\frac{1}{2}\left(\frac{1 \frac{2}{3}-2 \frac{1}{2}}{\frac{1}{3}-\frac{19}{27}}\right)^{\frac{1}{2}}+\frac{2}{3}\right]\right)^{\frac{1}{2}}$ leaving the answer as a mixed fraction.
(4Marks)
9. During a certain month, the exchange rates in a bank were as follows;

	Buying (KSh)	Selling (KSh)
1USD	91.65	91.80
1 Euro	103.75	103.93

A tourist left Kenya to the United States with KSh. 1,000,000.At the airport he exchanged all the money to dollars and spent 190 dollars on air ticket. While in US he spent 4500 dollars for upkeep and proceeded to Europe. While in Europe he spent a total of 2000 Euros. How many Euros did he remain with?
(3 Marks)
10. A school decided to make a beautiful picnic site to be used by students and teachers as a resting point. The site was designed to be triangular in shape measuring 40 metres, 60 metres and 80 metres. Calculate the area of the picnic site. (Answer correct to $1 \mathrm{~d} . \mathrm{p}$)
(3 Marks)
11. A regular n-sided polygon has its interior angle equal to 4 times its exterior. Find n.
12. The ratio of the lengths of the corresponding sides of two similar rectangular petrol tanks is $3: 5$. The volume of the smaller tank is $8.1 \mathrm{~m}^{3}$. Calculate the volume of the larger tank.
(3 Marks)
13. $A B C D$ is a rhombus. A is the point $(2,1)$ and C is the point $(4,7)$. Find the equation of the diagonal $B D$ in the form ax + by $=c$
(3 Marks)
14. A woman walks directly from point A towards the foot of a tall building 240 m away. After covering 180 m , he observes that the angle of elevation of the top of the building is 45°. Determine the angle of elevation of the top of the building from A.
(3 Marks)
15. The G.C.D. and L.C.M of three numbers are 3 and 1008 respectively. If two of the numbers are 48 and 72 , find the least possible value of the third number.
(3 Marks)
16. An ant moved from Y to X the midpoint of $R S$ through P in the right pyramid below.

Draw the net of the pyramid showing the path of the ant hence find the distance it moved.
(4 Marks)

SECTION II (50 Marks)

Answer any Five Questions in this section

17. Three warships A, B and C are at sea such that ship B is 500 km on a bearing N30E from ship A. Ship C is 700 km from ship B on a bearing of 120°. An enemy ship D is sighted 800 km due south of ship B.
(a) Taking a scale of 1 cm to represent 100 km , locate the positions of ships A,B, C and D.
(b) Find the bearing of:
(i) Ship A from D
(ii) Ship D from C
(c) Use scale drawing to determine the distance between
(i) D and A
(ii) C and D
(d) Measure angle DAC and angle BCD
18. (a) A rectangular tank of base 2.4 m by 2.8 m and a height of 3 m contains 3600 litres of water initially. Water flows into the tank at the rate of 0.5 litres per second. Calculate:
(i) The amount needed to fill the tank
(ii) The time in hours and minutes required to fill
b) Pipe A can fill an empty tank in 3 hours while pipe B can fill the same tank in 6 hours. When the tank is full, it can be emptied by pipe C in 8 hours. Pipes A and B are opened at the same time when the tank is empty. If one hour later pipe C is also opened, find the total time taken to fill the tank.
(5 Marks)
19. A solid is made up of a conical frustum and a hemispherical top. The slant height of the frustum is 8 cm and its base radius is 4.2 cm . If the radius of the hemispherical top is 3.5 cm .
(a) Find the area of:
(i) the circular base.
(2 Marks)
(ii) the curved surface of the frustum
(iii) the hemispherical surface
(b) A similar solid has a total surface area of $81.51 \mathrm{~cm}^{2}$. Determine the radius of its base.
20. In the figure below, O is the centre of the circle. PQ is a tangent to the circle at N . Angle NCD is 10^{0} and angle ANP is 30°.

Giving reasons;
(a) Angle DON
(b) Angle DNQ
(c) Angle DBA
(d) Angle ONA
(e) Angle ODN
21. Two quantities P and Q are connected by the equation $P=K Q^{n}$. The table below gives the values of P and Q

P	1.2	1.5	2.0	2.5	3.5	4.5
Q	1.58	2.25	3.39	4.74	7.86	11.5

(a) State the linear equation connecting P and Q.
(1 Mark)
(b) Using a scale of 1 cm to represent 0.1 units in both axes, draw a suitable straight line graph on the grid provided.
(5Marks)
(c) Use your graph in (b) above to determine the approximate values of K and N .
(2 Marks)
(d) From the graph, find the value of Q when $\mathrm{P}=3$
(2 Marks)
22. The displacement h metres of a particle moving along a straight line after t seconds is given by $h=2 t^{3}+\frac{3}{2} t^{2}+3 t$
(a) Find its initial acceleration
(3 Marks)
(b) Calculate;
(i) The time when the object was momentarily at rest
(3 Marks)
(ii) Its displacement by the time it comes to rest
(c) Calculate the maximum speed attained
(2 Marks)
23. (a) Complete the table below for graphs of $y=\sin x$ and $y=2 \sin (x+30)$ (2 Marks)

x	0	30	60	90	120	150	180	210	240	270	300	330	360
$\operatorname{Sin} \mathrm{x}$	0		0.87			0.5			-0.87			-0.5	
$2 \sin (\mathrm{x}+30)$	1	0.5		1.74		0	-1				-1		

(b) Using a suitable scale on the grid below draw the graphs of $y=\sin x$ and $y=2 \sin (x+30)$ for $0 \leq x \geq 360^{\circ}(4$ Marks)
(c) State the transformations that would map $y=\sin x$ onto $y=2 \sin (x+30)$
(2 Marks)
(d) Find the values of x which satisfy the equation $\sin x-2 \sin (x+30)=0$
24. A bus moving at a speed of $80 \mathrm{~km} / \mathrm{h}$ is being overtaken by a car moving at $100 \mathrm{~km} / \mathrm{h}$ in a clear section of a road. Given that the bus is 21 m long and the car is 4 m long.
(a) How much time (in seconds) will elapse before the car can completely overtake the bus?
(b) How much distance (in metres) will the car travel before it can completely overtake the bus?
(c) Given that as soon as the car completed overtaking the trailer, a bus heading towards the trailer and the car and moving at a speed of $90 \mathrm{~km} / \mathrm{h}$ became visible to the car driver. It took exactly 18 seconds for the car and the bus to completely by pass each other from the moment they first saw each other.
(i) How far was the tail of the bus from tail of the car at the instance they first saw each other giventhat the bus is 12 metres long?
(3 Marks)
(ii) How far a part was the trailer and the bus just immediately after the car and the bus had passed each other?

KURIA EAST JOINT EXAMINATION COUNCIL 1015

Kenya Certificate of Secondary Education (K.C.S.E.)
121/2
MATHEMATICS
Paper2
SECTION A. (50 MARKS)

1. The cost of maize floor and millet flour is KSh. 40 and KShs. 52 respectively. Calculate the ratio in which they were mixed if a profit of 15% was made by selling the mixture at 52.90 per kilogram.
(3 Marks)
2. In the figure below $X Y=8 \mathrm{~cm}$ and O is the centre of the circle.

Determine the area of the circle if angle AOX $=15^{0}$
(3 Marks)
3. $\mathrm{OA}=3 \mathrm{i}+4 \mathrm{j}-6 \mathrm{k}$ and $\mathrm{OB}=2 \mathrm{i}+3 \mathrm{j}+\mathrm{k}$ are two position vectors. P divides a line AB in the ratio $3:-2$. Write down the coordinates of P.
4. The table below show tax rates on a certain year.

Income (K $£$ p.a)	Rate (KSh. per $£$)
$1-4200$	2
$4201-8000$	3
$8001-12600$	4
12601	5

Robi earns a basic salary of KSh. 20,000 per month, she is given allowances amounting to KSh. 5000 . She is housed by her employer therefore pays a nominal rent of Sh. 700 per month and is entitled to a personal relief of Sh. 1200 per month. Calculate;
(i) Her taxable income in Kenya pounds per year.
(ii) Her gross tax per month.
5. Rationalize the denominator and simplify
$\frac{\sqrt{3}}{\tan 60-1}$
6. Solve for x in
$3 \log _{3} x+4=\log _{3} 24$
7. The transformation represented by the matrix $\left[\begin{array}{cc}x-1 & x \\ 1 & 2 x\end{array}\right]$ maps a triangle whose vertices are $\mathbf{A}(-1,2) B(4,1)$ and $C(1,-4)$ onto a straight line. Find the possible values of x.
8. Expand $\left(2+\frac{1}{4} x\right)^{6}$, hence find the value of $(2.025)^{6}$ rounded off to 3 decimal places.
9. The resistance to the motion of a car is partly constant and partly varies as the square of the speed. At $40 \mathrm{~km} / \mathrm{h}$ the resistance is 530 and at $60 \mathrm{~km} / \mathrm{h}$ it is 730 N . What will be the resistance at $70 \mathrm{~km} / \mathrm{h}$
10. By completing the square, solve for x in the equation $2 x^{2}-6=x$
11. A die has two of its faces numbered 3. Calculate the probability of obtaining a 1 or a 3 on a single cast.
12. Solve the equation $4 \cos (3 x-10)^{0}=-3.0640$ for $0^{0} \leq x \leq 180^{0}$
13. The top of a table is regular pentagon. Each side of the pentagon measures 40.0 cm . Find the maximum percentage error in calculating the perimeter of the top of the table.
14. The points $P(8,4)$ and $Q(2,2)$ are the ends of a diameter of a circle. Find the equation of the circle.
15. In the diagram below, $P Q=10 \mathrm{~cm}$, and the radius of the circle centres P and Q are 2 cm and 4 cm respectively, calculate the length of the transverse common tangent SR.

16. Line $\mathrm{y}=\frac{3}{5} \mathrm{x}$ is parallel to diameter $L M$ of circle $\mathrm{x}^{2}+\mathrm{y}^{2}+6 \mathrm{x}-8 \mathrm{y}=0$. Find the equation of the tangent to the circle at L.

SECTION II (50 MARKS)

Answer any Five Questions in this section

17. The figure below shows a frustum $A B C D E F G H$ of a right pyramid such that $\mathrm{AB}=9 \mathrm{~cm}, \mathrm{BC}=12 \mathrm{~cm}, \mathrm{FG}=6 \mathrm{~cm} \mathrm{GH}=8 \mathrm{~cm}$ and the height of the frustum is 10 cm .

(a) Height of pyramid
(b) Length of
(i) AC
(ii) AH
(c) Calculate the angle between:
(i) Line AH and the plane $A B C D$
(ii) The planes ABHE and ABCD
18. A and B are two points on the latitude $40^{\circ} \mathrm{N}$. The two points lie on the longitude $20^{\circ} \mathrm{W}$ and $100^{\circ} \mathrm{E}$ respectively.
(a) Calculate:-
(i) The distance from A to B along a parallel of latitude.
(ii) The shortest distance from A to B along a great circle.
(b) Two planes P and Q left A for B at 400 knots and 600 knots respectively. If P flew along the great circle and Q along parallel latitude, which one arrived earlier and by how long. Give your answer to the nearest minute. (Take $\mathrm{R}=$ 6370 km and $\pi=\frac{22}{7}$)
19. The following table shows the distribution of marks obtained by 50 students of Matare Secondary School.

Marks	$45-49$	$50-54$	$55-59$	$60-64$	$65-69$	$70-74$	$75-79$
No. of Students	3	9	13	15	5	4	1

(a) By using an assumed of 62 , calculate:
(i) The mean
(5 Marks)
(b) The variance
(3 Marks)
(c) The standard deviation
20. Matrix S represents a reflection on line $y=x$, matrix T represents a rotation through positive 90° centre (0,0). A triangle whose vertices are $A(-2,0), b(1,-2)$ and $C(0,1)$ is subjected to these transformations, such that: the triangle $A^{1} B^{1} C^{1}$ is the image of $A B C$ under transformation matrix S and that $A^{11} B^{11} C^{11}$ is the image of $A^{1} B^{1} C^{1}$ under transformation matrix \mathbf{T}.
(a) Plot the three triangles on the grid provided below.
(b) Find a single matrix that will map $\mathrm{A}^{11} \mathrm{~B}^{11} \mathrm{C}^{11}$ onto ABC .
(c) Describe the matrix in (b) above.
(d) If triangle $A B C$ is sheared, shear factor 2 with the y - axis invariant, find the coordinates of the image. (2 Marks)
21. Transmasra Sugar Company has 36 hectares of land. The company decides to prepare the land for planting wheat and maize. The labour cost of planting maize is KSh. 300 per hectare while it costs KSh. 900 to plant a hectare of wheat. Maize takes 3 labourers per hectare while wheat takes 6 labourers per hectare. Atleast 72 labourers are to be hired and KSh. 15,000 is to be spent for labour costs. The company hopes to make a profit of KSh. 2,000 per hectare of maize and KSh. 4,500 per hectare of wheat. Let the number of hectares for maize be x, Let the number of hectares for wheat bey
(a) Write down inequalities representing the above information.
(3 Marks)
(b) On the grid provided, draw the inequalities by shading unwanted regions
(c) Use the graph to:-
(i) determine the number of hectares of maize and wheat that should be prepared in order for the company to maximize profit.
(2 Marks)
(ii) Calculate the maximum profit
(1 Mark)
22. (a) Using a ruler and pair of compasses only, construct parallelogram ABCD in which $\mathrm{AB}=7 \mathrm{CM}, \mathrm{BC}=5 \mathrm{~cm}$ and angle $C B A=45^{\circ}$.
(4 Marks)
(b) From a point $T, 3 \mathrm{~cm}$ from D on $D C$, construct the locus of a point $Q, 3.5 \mathrm{~cm}$ from T to intersect $A D$ and $D C$ at V and W respectively. Measure angle VTW.
(4 Marks)
(c) Find the area of the minor sector TVW in cm^{2}
(2 Marks)
23. The thirteen term of an arithmetic progression is 27 . Given that the seventh term equals to three times the second term, find
(a) The first term and the common difference of the progression.
(b) The sum of the first three even numbered terms of the progression.
(c) It's given that $\left(b-\frac{9}{4}\right), b$ and $(b+3.375)$ are the $2^{\text {nd }}, 3^{\text {rd }}$, and $4^{\text {th }}$ terms of a geometric progression. Determine the value of b.
24. The equation of a curve is given by $y=11 x-x^{2}$.
(a) Determine coordinates of the stationary point.
(b) By integration, determine the actual area bounded by the curve $y=11 x-x^{2}$ and the line $y=2 x$
(c) Find the equation of the normal to the curve at $x=2$

KURIA EAST DISTRICT JOINT EXAMINATION COUNCIL
kenya certificate of secondary education (k.c.s.e.)

PAPER 1 MARKING SCHEME

1.	$\begin{aligned} & \sqrt{\left(4^{2}+-20^{2}\right)} \div \sqrt{\left(C-1^{2}+-5^{2}\right)} \\ & =\sqrt{\frac{416}{26}} \\ & =4 \end{aligned}$	$\begin{aligned} & \hline \hline \text { M1 } \\ & \text { M1 } \\ & \text { A1 } \\ & \hline \hline 3 \end{aligned}$	9	$\begin{array}{\|l} \hline \frac{1000,000}{91.80}=10,893.25 \\ 10,893.25-(190+4500)=6203.25 \\ 6203.25 \times 91.65=568,278.86 \\ \frac{568,527.86}{103.93}=5,470.30 \\ 5470.30-2000=3,470.30 \\ \hline \end{array}$	
2.	$\begin{aligned} & \hline\left(7.32 \times 10^{-1}\right)^{3}=392.2 \times 10^{-3} \\ & =3922+4.402 \\ & =\frac{1}{2} \mathrm{x}=4.7942 \\ & 2 \mathrm{x}=0.2086 \\ & \mathrm{x}=0.104 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \hline \text { M1 } \\ & \text { M1 } \\ & \text { A1 } \end{aligned}$	10	$\begin{aligned} & \mathrm{S}=\frac{40+60+80}{2}=90 \\ & \text { Area }=\sqrt{90(90-40)(90-60)(90-80)} \\ & \text { Area }=\sqrt{1350000} \end{aligned}$	
		3	11	$\begin{aligned} & \hline 4 \mathrm{x}+\mathrm{x}=180 \\ & \mathrm{x}=36 \\ & \frac{360}{36}=\mathrm{n} \\ & \mathrm{n}=10 \text { sides } \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { M1 } \\ & \text { A1 } \end{aligned}$
3.	$\begin{aligned} & \frac{(3 x-2 a)(4 x+39)}{(3 x+2 a)(3 x-2 a)} \\ & =\frac{4 x+3 a}{3 x+2 a} \end{aligned}$	M2 A1			
4.	(a) 2357 (b) $200+300+50+7$	$\begin{aligned} & \text { A1 } \\ & \text { M1A1 } \end{aligned}$	12	$\begin{aligned} & \text { 1.s.f }=\frac{3}{5} \quad \text { v.s.f }=\frac{27}{125} \\ & \frac{8.1}{v}=\frac{27}{125} \\ & \mathrm{v}=37.5 \mathrm{~m}^{3} \end{aligned}$	M1M1A1
		3			
5.	$\begin{aligned} & y-x=4 \\ & y+x=14 \\ & y=4+x \\ & 4+x+x=14 \\ & 2 x=10 \text { thus } x=5 \text { and } y=9 \\ & =59 \end{aligned}$	M1			
		$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$	13	$\begin{aligned} & \text { Midpoint }=(3,4) \\ & \text { Gradient of AC }=3 \\ & \text { Gradient of perpendicular line }=-\frac{1}{3} \\ & \frac{y-4}{x-3}=-\frac{1}{3} \\ & 3 y+\mathrm{x}=5 \\ & \hline \end{aligned}$	M1 M1 A1
6.	$\begin{aligned} & 2000 \times 40=80,000+1200= \\ & 92000 \\ & \frac{100}{125} \times 92,000=\text { KSh. } 73,600 \end{aligned}$	$\begin{aligned} & \hline \hline \text { B1 } \\ & \text { M1 } \\ & \text { A1 } \\ & \hline \hline \end{aligned}$	14	$\begin{aligned} & \frac{h}{60}=\operatorname{Tan} 45, \mathrm{~h}=60 \tan 45 \\ & \operatorname{Tan} \theta=\frac{60 \tan 45}{240} \\ & \theta=14.040^{\circ} \end{aligned}$	M1 M1 A1
		3			
7.	$\begin{aligned} & 3(1+x)<5 x-11<x+45 \\ & 3(1+x)<-11<x+45=-2 x<-14 \\ & 3+3 x<5 x-11=x>7 \\ & 5 x-11<x+45=4 x<56 \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { M1 } \end{aligned}$	15	$\begin{array}{\|l} \hline 48=2^{4} \times 3 \\ 72=2^{3} \times 3^{2} \\ 1008 / 2^{4} \times 3^{2}=7 \\ \text { Least no is } 7 \times 3=21 \\ \hline \end{array}$	M1 M1 A1
	$\begin{aligned} & 7<x<14 \\ & (8,9,10,11,12,13) \\ & \hline \end{aligned}$	A1	16	Correct labelling, equal dimensions shown, proper construction$\text { Distance }=15+\sqrt{(144+16)}$	
8.	$\begin{aligned} & \left(\frac{7}{3}\left[\frac{2}{3}-\frac{1}{2}\left(-\frac{5}{6} \div-\frac{10}{27}\right)^{\frac{1}{2}}\right]\right)^{\frac{1}{2}} \\ & \left(\frac{7}{3}\left[\frac{2}{3}-\frac{1}{2}\left(\frac{9}{4}\right)^{\frac{1}{2}}+\frac{2}{3}\right]\right)^{\frac{1}{2}} \\ & \left(\frac{7}{3}\left[\frac{2}{3}-\frac{2}{3}+\frac{2}{3}\right]\right)^{\frac{1}{2}} \\ & \left(\frac{7}{3}\left[\frac{4}{3}-\frac{3}{4}\right]\right)^{\frac{1}{2}} \\ & \left(\frac{49}{36}\right)^{\frac{1}{2}} \\ & \frac{7}{6}=1 \frac{1}{6} \end{aligned}$				

KURIA EAST DISTRICT JOINT EXAMINATION COUNCIL
kenya certificate of secondary education (k.c.s.e.)
PAPER 2 MARKING SCHEME

KAHURO/KIHARU DISTRICT JOINT EXAMINATION - 2015
 Kenya Certificate of Secondary Education
 121/1
 MATHEMATICS ALT A
 PAPER 1
 JULY/AUGUST, 2015
 TIME: $2 ½$ HOURS

SECTION I: (50 MARKS)

Answer all the questions in this section in the spaces provided.

1. The signals have been set to flash at interval of 15 minutes, 24 minutes if they all flash at 8.13 am when will they flash together.
2. Solve for m in the equation:
$3^{4(\mathrm{~m}+1)}+3^{4 \mathrm{~m}}=246$
3. Use logarithm to evaluate:
$\sqrt[3]{\frac{(0.08294)^{2} \times(39.24)^{3}}{8458}}$
4. Evaluate:
$\frac{\frac{1}{2} \text { of } 3 \frac{1}{2}+1 \frac{1}{2}\left(2 \frac{1}{2}-\frac{2}{3}\right)}{\frac{3}{4} \text { of } 2 \frac{1}{2} \div \frac{1}{2}}$
5. A Kenyan Bank buys and sells foreign currencies as shown below.

	Buying (Ksh.)	Selling (Ksh.)
1 Euro	84.15	84.26
50 Japanese Yen	65.37	65.45

A Japanese travelling from France arrives in Kenya with 5000 Euros. He converts all the 5000 Euros to Kenya Shillings at the bank. While in Kenya he spends a total of Ksh. 289,850 and then converts the remaining Ksh. to Japanese Yen at the bank. Calculate the amount in Japanese Yen that he receives.
6. Find the equation of a line passing through $(2,1)$ and perpendicular to the line which makes an angle of $45{ }^{\circ}$ with the χ-axis.
7. Use the tables of reciprocals and square roots to evaluate.
$\frac{0.1}{0.0351}+\sqrt{0.498}$
8. Convert $0 . \dot{1} 2 \dot{3}$ into a fraction.
9. Find the perimeter of the figure below. Give your answer correct to 4 s.f.

10. The interior angle of a regular polygon is $6 \frac{1}{2}$ times the exterior angle. How many sides has the polygon.
11. Simplify:

$$
\frac{3 a^{2}-48}{48-24 a+3 a^{2}}
$$

(3 marks)
12. A solid metal cuboid 1.5 m long, 0.4 m wide and 0.25 m high is made of material of density $7.5 \mathrm{~g} / \mathrm{cm}^{3}$. Calculate its mass in kg .
13. Thirty two men working at the rate of 9 hrs a day can complete a piece of work in 7 days. How many more men working at the rate of 8 hrs a day would complete the same work in 6 days?
14. Ruto is $2 \frac{1}{4}$ times as old as his son. Five years ago, the ratio of their ages was $8: 3$. What will be their ages 6 years from now?
15. Two similar cylinders have diameter of 7 cm and 21 cm . If the larger cylinder has a volume of $6237 \mathrm{~cm}^{3}$. Find the heights of the two cylinders.
16. Find the inequalities that define the region R shown in the figure below.

SECTION B: (50 MARKS)

Answer any FIVE questions from this section

17. A salesman is paid a commission of 2% on goods worth over Ksh. 100000 . He is also paid a monthly salary of Ksh.12000. In a certain month, he sold 360 pairs of shoes at Ksh. 500 each pair.
(a) Calculate the salesman's earning that month.
(b) The following month, his monthly salary was increased by 10%. His total earnings that month were Ksh. 17600. Calculate
(i) The total amount of money received from the sales of the shoes that month.
(5 marks)
(ii) The number of pairs of shoes sold that month.
18. In the figure below $\mathrm{O} \mathrm{Q}=\underset{\sim}{\mathrm{q}}$ and $\mathrm{OR}=\underset{\sim}{r}$. Point X divides OQ in the ratio 1:2 and Y divides OR in the ratio 3:4. Lines XR and YQ intersect at E .

(a) Express in terms of q and $\underset{\sim}{r}$.
(i) $\underset{\sim}{X R}$.
(ii) YQ .
(b) If $\mathrm{XE}=\mathrm{mX}_{\sim} \mathrm{XR}$ and $\underset{\sim}{\mathrm{YE}}=\underset{\sim}{\mathrm{n}} \mathrm{\sim}$, express $\mathrm{O} \underset{\sim}{E}$ in terms of
(i) $\underset{\sim}{\sim} \underset{\sim}{\sim}$ a and m.
(ii) $\underset{\sim}{\sim}, q$ and n.
(c) Using the results in (b) above, find the values of m and n.
19. From town P, a town Q is 60 km away on a bearing South 80 East. A third town R is 100 km from P on the bearing South 400 West. A cyclist travelling at $20 \mathrm{~km} / \mathrm{h}$ leaves P for Q. He stays at Q for one hour and then continues to R. He stays at R for $11 / 2 \mathrm{hrs}$ and then returns directly to P .
(a) Calculate the distance of Q from R .
(3 marks)
(b) Calculate the bearing of R from Q.
(c) What is the time taken for the whole round trip?
20. (a) Complete the table given below for the equation $y=-2 \chi^{2}+3 \chi+3$ for the range $-2 \leq x \leq 3.5$ by filling in the blank spaces.

χ	-2	-1.5	-1	-0.5	0	0.5	1	1.5	2	2.5	3	3.5
y		-6		1						-2		-11

(b) Use the values from the table above to draw the graph of $\mathrm{y}=-2 \chi^{2}+3 \chi+3$.
(3 marks)
(c) Use your graph to:
(i) Determine the integral values of χ in the graphs range which satisfy the inequality $2 \chi^{2}-3 \chi-3 \geq 3$.
(ii) Solve $-2 \chi^{2}+2 \chi+5=0$.
21. A sector of a circle of radius 40 cm subtends an angle of 26° at the centre of the circle. (Take $\pi=\frac{22}{7}$).
(a) Calculate
(i) the area of the sector.
(2 marks)
(ii) the length of the arc.
(b) The sector is folded to form an inverted right cone. Calculate
(i) the base radius of the cone.
(ii) To one decimal place, the vertical height of the cone.
(c) Calculate the capacity of the cone in litres.
(2 marks)
22. The table below shows marks obtained by 100 candidates at Eastside High School in a Biology examination.

Marks	$15-24$	$25-34$	$35-44$	$45-54$	$55-64$	$65-74$	$75-84$	$85-94$
Frequency	6	14	24	14	χ	10	6	4

(a) Determine the value of χ.
(b) State the modal frequency.
(c) Calculate the median mark.
(d) Calculate the mean mark.
23. (a) A racing cyclist completes the uphill section of a mountain course of 75 km at an average speed of $(\mathrm{V}+20) \mathrm{km} / \mathrm{h}$. Given that the difference between the time is one hour, form and solve an equation in V. Hence,
(i) find the total time taken to complete the uphill and the downhill sections of the course. (4 marks)
(ii) Calculate the cyclists average speed over the 150 km .
(b) A train moving at an average speed of $72 \mathrm{~km} / \mathrm{hr}$ takes 15 seconds to complete cross a bridge that is 80 m long.
(i) Express $72 \mathrm{~km} / \mathrm{hr}$ in metres per second.
(ii) Find the length of the train.
24. (a) After t seconds, a particle moving along a straight line has a velocity of Vm / s and an acceleration of $(5-2 \mathrm{t}) \mathrm{m} / \mathrm{s}^{2}$. the particles initial velocity is $2 \mathrm{~m} / \mathrm{s}$.
(i) Express V in terms of t .
(ii) Determine the velocity of the particle at the beginning of the third second.
(b) Find the time taken by the particle to attain maximum velocity and the distance it covered to attain the maximum velocity.

KAHURO/KIHARU DISTRICT JOINT EXAMINATION - 2015
 Kenya Certificate of Secondary Education
 121/2
 MATHEMATICS ALT A
 PAPER 2
 JULY/AUGUST, 2015
 TIME: $2 ½$ HOURS

SECTION I: (50 MARKS)

Answer all the questions in this section in the spaces provided.

1. Kamoni bought four pens and three books for a total of Shs. 17 while Jane bought five similar pens and two books for Shs.16. Find the cost of a pen and an exercise.
(3 marks)
2. A shopkeeper mixes rice worth Kshs. 47 and Kshs. 55 per kg, how many kilograms of each should be used to obtain 24 kg of the mixture worth Kshs. 52 per kg.
3. Solve for χ in
$\log _{2}\left(\chi^{2}-9\right)=3 \log _{2} 2+1$
4. John deposits Shs. 24000 in a fixed account. After 4 years the money accumulated to Kshs. 45,000 . If the bank paid compound interest of $r \%$ p.a compounded semi annually find r.
5. If $4 \chi^{2}+3 \chi-20+K$ is a perfect square find value of K.
6. A triangle whose area is $6.5 \mathrm{~cm}^{2}$ is mapped onto a triangle whose area is $13 \mathrm{~cm}^{2}$ by a matrix
$\left(\begin{array}{rr}x+4 & 6 \\ 5 & \chi\end{array}\right)$. Find the possible values of χ.
7. Given that χ is an acute angle and $\operatorname{Cos} \theta=\frac{2 \sqrt{5}}{5}$ find without Mathematical tables or calculator tan (90- θ).
8. The diameter $A B$ of a circle passes through points $A(-4,1)$ and $B(2,1)$. Find the equation of the circle and leave your answer in the form $\chi^{2}+y^{2}+a \chi+b y=c$ where a, b and c are constants.
9. Expand $\left(1+\frac{\chi}{4}\right)^{5}$ up to the term in χ^{4}. Hence evaluate $(0.95)^{5}$ giving your answer correct to 4 s.f.
10. Two variables are such that A is partly constant and partly varies as the square root of B. Given that $A=27$ when $B=\frac{1}{4}$ and $\mathrm{A}=18$; when $\mathrm{B}=25$, find A when ${ }_{B}=12 \frac{1}{4}$.
11. A curve passes through the point $(3,-3)$, if its gradient function is $5 \chi^{2}+1$, find its equation.
12. Pipe A can fill an empty water tank in 3 hrs while Pipe B can fill the same tank in 6 hrs. When the tank is full it can be emptied by Pipe C in 8 hrs . Pipe A and B are opened at the same time when the tank is empty. If one hour later Pipe C is also opened, find the total time taken to fill the tank.
(3 marks)
13. Make χ the subject of the formula:
$\sqrt{\frac{(2 \chi+r)^{2}}{4}}=\chi+r$
(3 marks)
14. The $16^{\text {th }}$ term of an A.P. is seven times the $8^{\text {th }}$ term. The sum of the first ten terms is -35 . Find the first term and the common difference.
(4 marks)
15. The following were recorded on a field note book by a surveyor. Taking the base line as 550 M find the area in M^{2}.
(3 marks)

16. Given that $\frac{1}{1+\sqrt{2}}-\frac{3}{1-\sqrt{2}}=P+Q \sqrt{R}$ find the values of P, Q and R .

SECTION B: (50 MARKS)

Answer any FIVE questions from this section.
17. The table below shows the rates at which income tax is charged on annual income.

Annual taxable income (K£)	Rates (Shs. Per K $£$)
$1-2800$	3
$2801-4600$	5
$4601-7200$	6
$7201-9000$	7
$9001-11800$	9
$11801-13600$	10
Over 13600	12

A company employee earns a gross monthly salary of Ksh.18600. He is housed by the company and as a result, his taxable income is increased by 15\%. If the employee is married and claims a monthly family relief of Shs.250, calculate
(a) his taxable income.
(2 marks)
(b) his net salary per month.
(8 marks)
18. (a) Complete the table below for the function $\mathrm{y}=\operatorname{Sin} 2 \chi$ and $\mathrm{y}=3 \operatorname{Cos} \chi$ for $-180^{\circ} \leq \mathrm{x} \leq 1800$.
(2 marks)

$\chi^{\underline{0}}$	-180	-150	-120	-90	-60	-30	0	30	60	90	120	150	180
$\operatorname{Sin} 2 \chi$	0			0	-0.87				0.87	0			0
$3 \operatorname{Cos} \chi$	-3	-2.6		0		2.6					-1.5		

(b) On the same axes, draw the graph of $\mathrm{y}=\operatorname{Sin} 2 \chi$ and $\mathrm{y}=3 \operatorname{Cos} \chi-180^{\circ} \leq \mathrm{x} \leq 180^{\circ}$.
(5 marks)
(c) Use the graph in (b) above to find:
(i) the value of χ such that $3 \operatorname{Cos} \chi-\operatorname{Sin} 2 \chi=0$.
(ii) the difference in value of y when $\chi=45^{\circ}$.
(iii) Range of values of χ such that $3 \operatorname{Cos} x>1.5$.
19. In the diagram below $\angle \mathrm{EDG}=36^{\circ}, \angle \mathrm{ABG}=42^{\circ}$ line EDC and ABC are tangents to the circle at D and B respectively.

Calculate by giving reason.
(a) $\angle \mathrm{DGB}$.
(2 marks)
(b) Obtuse $\angle \mathrm{DOB}$.
(2 marks)
(c) $\angle \mathrm{GDB}$.
(2 marks)
(d) $\angle \mathrm{DCB}$.
(e) $\angle \mathrm{DFB}$.
20. The position of two towns are $A\left(30^{\circ}\right.$ S, $\left.20^{\circ} \mathrm{W}\right)$ and $B\left(30^{\circ} \mathrm{S}, 80^{\circ} \mathrm{E}\right)$ find
(a) the difference in longitude between the two towns.
(b) (i) the distance between A and B along parallel of latitude in km (take radius of the earth as 6370 km and $\pi=\frac{22}{7}$).
(ii) in nm .
(c) Find local time in town B when it is 1.45 pm in town A .
21. In the figure below A and B are centres of the circle intersecting at point P and Q, angle $P B Q=97.2 \underline{o}$ while $P A Q=52^{\circ}$, $P B=4 \mathrm{~cm}$ while $A P=10 \mathrm{~cm}$.

Determine:-
(a) the length AB .
(b) the area of sector APQ.
(c) the area of the quadrilateral, APBQ .
(d) area of the shaded region.
22. ABCD is a quadrilateral with vertices $\mathrm{A}(3,1), \mathrm{B}(2,4), \mathrm{C}(4,3), \mathrm{D}(5,1)$.
(a) Draw the image $A^{1} B^{1} C^{1} D^{1}$ image of ABCD under transformation matrix $M\left(\begin{array}{rr}0 & -1 \\ 1 & 0\end{array}\right)$ and write down the co-ordinates.
(4 marks)
(b) A transformation represented by ${ }_{P}\left(\begin{array}{rr}1 & 0 \\ 0 & -1\end{array}\right)$ maps $\mathrm{A}^{1} \mathrm{~B}^{1} \mathrm{C}^{1} \mathrm{D}^{1}$ onto $\mathrm{A}^{11} \mathrm{~B}^{11} \mathrm{C}^{11} \mathrm{D}^{11}$ determine the co-ordinates of the image and draw $\mathrm{A}^{11} \mathrm{~B}^{11} \mathrm{C}^{11} \mathrm{D}^{11}$.
(3 marks)
(c) Determine the single matrix of transformation which maps $A B C D$ onto $\mathrm{A}^{11} \mathrm{~B}^{11} \mathrm{C}^{11} \mathrm{D}^{11}$ and describe the transformation.
23. (a) Without using a set square or a protractor, construct triangle ABC such that $\mathrm{AB}=\mathrm{AC}=5.4 \mathrm{~cm}$ and angle $A B C=30^{\circ}$
(b) Measure BC.
(c) A point P is always on the same side of $B C$ as A. Draw the locus of P such that angle BAC is always twice angle BPC.
(d) Calculate the area of triangle ABC .
(2 marks)
(e) Draw a perpendicular from A to meet $B C$ at D. Measure $A D$.
24. The figure below represent a right pyramid with vertex V and a rectangular base $P Q R S$. $\mathrm{VP}=\mathrm{VQ}=\mathrm{VR}=\mathrm{VS}=18 \mathrm{~cm}$ and $\mathrm{QR}=12 \mathrm{~cm}, \mathrm{M}$ and O are midpoints of QR and PR respectively.

Find:
(a) the length of the projection of VP on the plane PQRS.
(3 marks)
(b) size of angle between VP and plane PQRS.
(3 marks)
(c) size of angle between plane VQR and PQRS.
(4 marks)

KAHURO/KIHARU DISTRICT JOINT EXAMINATION - 2015
Kenya Certificate of Secondary Education
121/1
MATHEMATICS ALT A
PAPER 1
JULY/AUGUST, 2015
TIME: $21 / 2$ HOURS

KAHURO/KIHARU DISTRICT JOINT EXAMINATION - 2015
Kenya Certificate of Secondary Education
121/2
MATHEMATICS ALT A
PAPER 2
JULY/AUGUST, 2015
TIME: $2 ½$ HOURS

\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{1} \& \[
\begin{array}{|l}
\hline \hline \begin{array}{l}
2(4 \mathrm{P}+3 \mathrm{~B}=17) \\
\frac{3(5 P+2 B=16)}{8 P+6 B=34}
\end{array}
\end{array} \quad \text { B1formation of equation }
\] \& \& \[
\begin{gathered}
P R^{2}=5^{2}-(2 \sqrt{5})^{2} \\
\mathrm{PR}=\sqrt{5} \\
\operatorname{Tan}(90-\theta)=\frac{2 \sqrt{5}}{\sqrt{5}} \\
=2
\end{gathered}
\] \& B1
M1
A1 \\
\hline \& \begin{tabular}{l}
\[
\begin{gathered}
8+3 B=17 \\
3 B=9 \\
B=3 \\
\hline
\end{gathered}
\] \\
Pen Shs. 2, book = 3 A1
\end{tabular} \& 8 \& \[
\begin{aligned}
\& \text { Centre }\left(\frac{-4+2}{2}, \frac{1+1}{2}\right)=(-1,1) \\
\& \text { Radius }=\sqrt{0^{2}+6^{2}}=\frac{6}{2}
\end{aligned}
\] \& \begin{tabular}{l}
\[
\mathrm{B} 1
\] \\
B1radius
\end{tabular} \\
\hline \multirow[t]{2}{*}{2} \& \[
\begin{aligned}
\& \frac{55 \chi+47 y}{\chi+y}=\frac{52}{1} \\
\& 55 \chi-52 \chi=52 y-47 y
\end{aligned}
\] \& \& \[
\begin{aligned}
\& (\chi+1)^{2}+(y-1)^{2}=3 \\
\& \chi^{2}+2 \chi+1+y^{2}=2 y+1=9 \\
\& \chi^{2}+y^{2}+2 \chi-2 y=7 \\
\& \hline \hline
\end{aligned}
\] \& M1 \\
\hline \& \[
\begin{aligned}
\& \quad \chi: y=5: 3 \\
\& \frac{5}{8} \times 2 A^{3} \quad \frac{3}{8} \times 2 A^{3} \quad \text { M1 } \\
\& 15 \text { kgs and 9kgs }
\end{aligned}
\] \& \multirow[t]{2}{*}{9} \& \multirow[t]{2}{*}{\[
\begin{gather*}
\left(1+\frac{\chi}{4}\right)^{5}=1+\frac{5}{4} \chi+\frac{5}{8} \chi^{2}+\frac{5}{16} \chi^{3}+\frac{5}{256} \chi^{4} \\
(1-0.05)^{5}=\frac{\chi}{4}=0.05=-0.2 \\
(0.95)^{3}=1+\frac{5}{4}(-0.2)+\frac{5}{8}(-0.2)^{2}+ \\
\frac{5}{16}(-0.2)^{3}+\frac{5}{256}(-0.2)^{4} \tag{M1}\\
1-0.25+0.025+--0.7738 \\
=0
\end{gather*}
\]} \& B1 \\
\hline 3 \& \[
\begin{gathered}
\log _{2}\left(\chi^{2}-9\right)=\log _{2}(8 \times 2) \\
\chi^{2}-9=16 \\
\chi^{2}=25 \\
\chi= \pm 5
\end{gathered}
\] \& \& \& M1

A1

\hline 4 \& \[
$$
\begin{array}{cc}
45,000=24,000\left(1+\frac{\gamma}{100} \times \frac{1}{2}\right)^{8} \mathrm{M} 1 \\
1.875=\left(1+\frac{r}{200}\right)^{8} & \\
0.08175=\frac{\gamma}{200} & \mathrm{M} 1 \tag{M1}\\
\gamma=16.35 \% & \mathrm{~A} 1 \\
\hline \hline
\end{array}
$$

\] \& \multirow[t]{2}{*}{10} \& \multirow[t]{2}{*}{| $\begin{gathered} \hline A=a+K \sqrt{B} \\ -27=a+1 / 2 \mathrm{~K} \\ \frac{18=a+5 K}{9=-4.5 K} \\ K=-2 \\ 27=a-1 / 2(-2) \\ a=28 \end{gathered}$ |
| :--- |
| Law $A=28-2 K$ $\begin{align*} & =28-2 \times \sqrt{\frac{49}{4}} \\ & =28=21 \tag{A1} \end{align*}$ |} \& M1

\hline 5 \& $$
\begin{array}{rlrl}
\hline \hline 4 \chi^{2}+32 \chi-20+\mathrm{K} & =(2 \chi+\mathrm{c})^{2} & \\
4 \chi^{2}+32 \chi-20+\mathrm{K} & =4 \chi^{2}+4 \chi \mathrm{c}+\mathrm{c}^{2} & & \text { M1 } \\
4 \mathrm{c} & =32 & \\
\mathrm{c} & =8 & \text { A1 } \\
-20+\mathrm{K} & =64 \mathrm{~K}=84 & & \text { B1 } \\
\hline
\end{array}
$$ \& \& \& A1

B1

\hline 6 \& $$
\begin{array}{cc}
\hline \hline \operatorname{det}(\text { A.S.F })=\frac{13}{6.5}=2 & \text { B1 } \\
\chi(\chi-4)-30=2 & \text { M1 } \\
\chi^{2}+4 \chi-32=0 & \\
\chi(\chi+8)-4(\chi+8)=0 & \\
\chi=4 \quad \chi=-8 & \\
\hline \hline
\end{array}
$$ \& \multirow[t]{2}{*}{11} \& \multirow[t]{2}{*}{\[

$$
\begin{aligned}
& \frac{d y}{d \chi}=5 x^{2}+1 \\
& y=\frac{5 \chi^{3}}{3}+\chi+C \\
& -3=\frac{5}{3}(3)^{3}+3+C \\
& C=-51 \\
& y=\frac{5 \chi^{3}}{3}+x-51
\end{aligned}
$$
\]} \&

\hline \multirow[t]{2}{*}{7} \& $$
\stackrel{p}{f}(90-\theta)
$$ \& \& \&

\hline \& \& 12 \& | In 1 hour $\begin{aligned} & A \rightarrow \frac{1}{3} \\ & B \rightarrow \frac{1}{6} \\ & C \rightarrow \frac{1}{8} \end{aligned}$ |
| :--- |
| AH $\begin{aligned} \left(\frac{1}{3}+\frac{1}{6}-\frac{1}{8}\right) & =\frac{3}{8} \\ \frac{8}{3}= & 2 \frac{2}{3} \text { hours } \end{aligned}$ | \&

\hline
\end{tabular}

18	$\chi^{\text {o }}$	-180	-150	-120	-90	-60	-30	0	30	60	90	120	150	180
	Sin 2χ	0	0.87	0.87	0	-0.87	-0.87	0	0.87	0.87	0	-0.87	-0.87	0
	$3 \operatorname{Cos} \chi$	-3.00	-2.60	-1.50	0	1.50	-2.60	3.00	2.60	1.50	0	-1.50	-2.60	-3.00

(i) -90° or 90°
(ii) $2.1 \pm 1=1.1 \pm 0.1$
(iii) $-60^{\circ}<\chi<60^{\circ}$

22

	$\begin{aligned} & \left(\begin{array}{rr} 0 & -1 \\ 1 & 0 \end{array}\right)\left(\begin{array}{llll} A & B & C & D \\ 3 & 2 & 4 & 5 \\ 1 & 3 & 3 & 1 \end{array}\right)\left(\begin{array}{llll} A^{1} & B^{1} & C^{1} & D^{1} \\ -1 & -4 & -3 & -1 \\ 3 & 2 & 4 & 5 \end{array}\right) \\ & \left(\begin{array}{rr} 0 & 0 \\ 1 & -1 \end{array}\right)\left(\begin{array}{rrr} A^{1} & B^{1} & C^{1} \\ -1 & D^{1} \\ -4 & -3 & -1 \\ 3 \end{array}\right)\left(\begin{array}{rrr} A^{11} & B^{11} & C^{11} \\ -1 & -4 & -3 \\ \sigma^{11} \\ -1 & 5 \\ 1 & -1 \end{array}\right) \rightarrow\left(\begin{array}{lr} 0^{-3} \\ 1 & 0 \end{array}\right) \\ & \text { atrix } \rightarrow\left(\begin{array}{rr} -2 & -5 \end{array}\right) \end{aligned}$ Reflection along $\mathrm{y}=\chi$	B1 for ABCD B1 pr B1 coordinates of $A^{1} B^{1} C^{1} D^{1}$ B1 $A^{1} B^{1} C^{1} D^{1}$ drawn B1 for multiplication B1 coordinates $\mathrm{A}^{11} \mathrm{~B}^{11} \mathrm{C}^{11} \mathrm{D}^{11}$ B1 image drawn M1 multiplication A1 single matrix B1 \checkmark describing 10
23	$\begin{aligned} \text { Area } & =1 / 2 \times 9.2 \times 2.8 \\ & =12.88 \mathrm{~cm}^{2} \end{aligned}$	
24	(a) $\begin{aligned} & \hline \mathrm{PR}^{2}=16^{2}-12^{2} \\ & \mathrm{PR}^{2}=256-144 \\ & \mathrm{PR}=10.58 \mathrm{~cm} \end{aligned}$ (b) $\operatorname{Cos} \theta=\frac{29}{10}$ $\theta=58.05^{\circ}$ (c) $\begin{aligned} & \mathrm{VO}^{2}=10^{2}-5.29^{2} \\ & \mathrm{VO}=8.49 \\ & \quad \operatorname{Tan} \theta=\frac{8.49}{8} \\ & \theta=46.69^{\circ} \end{aligned}$	M1 M1 A1 B1 $\quad \checkmark$ for identification M1 A1 B1 $\quad \checkmark$ angle identification B1 M1 A1

MOKASA JOINT EVALUATION EXAMINATION
 121/1
 MATHEMATICS
 Paper 1
 March, 2015
 2 $1 / 2$ Hours
 Kenya Certificate of Secondary Education

Paper1 section 1(50marks)

1. Points $S(-2,2)$ and $T(-3,7)$ are mapped onto $S^{1}(4,-10)$ and $T^{1}(0,10)$ by an enlargement . Calculate the enlargement scale factor.
2. Given that $\frac{1}{2 x}=(0.732)^{3}+\sqrt[3]{85.3}$, use mathematical tables to find the value of x in standard form correct to 3 significant figures
3. Simplify $\frac{12 x^{2}+a x-6 a^{2}}{9 x^{2}-4 a^{2}}$
4. All prime numbers less than ten are arranged in ascending order to form a number.
(a) Write down the number formed
(1 mark)
(b) Express the number in (a) above in expanded form
(2 marks)
5. A two digit number is such that the one's digit is four more than the tens digit, and the sum of the digits is 14 . Find the number
6 Paul bought a refrigerator on hire purchase by paying monthly instalments of Ksh. 2000 per month for 40 months and a deposit of Ksh. 12,000. If this amounted to an increase of 25% of the original cost of the refrigerator, what was the cash price of the refrigerator?
6. Find all the integral values of x which satisfy the inequality
$3(1+x)<5 x-11<x+45$
7. Without using calculator, evaluate

$$
\left(\frac{7}{3}\left[\frac{2}{5} \text { of } 1 \frac{2}{3}-\frac{1}{2}\left(\frac{1 \frac{2}{3}-2 \frac{1}{2}}{\frac{1}{3}-\frac{19}{27}}\right)^{\frac{1}{2}}+\frac{2}{3}\right]\right)^{\frac{1}{2}} \text { leaving the answer as a mixed fraction. }
$$

9. During a certain month, the exchange rates in a bank were as follows;

	Buying (Ksh.)	Selling (Ksh.)
1 US \$	91.65	91.80
1 Euro	103.75	103.93

A tourist left Kenya to the United States with Ksh. 1000,000 .On the air port he exchanged all the money to dollars and spent 190 dollars on air ticket. While in US he spent 4500 dollars for upkeep and proceeded to Europe. While in Europe he spent a total of 2000 Euros. How many Euros did he remain with?
(3marks)
10. A school decided to make a beautiful picnic site to be used by students and teachers as a resting point. The site was designed to be triangular in shape measuring 40 metres, 60 metres and 80 metres. Calculate the area of the picnic site. (Answer correct to $1 \mathrm{~d} . \mathrm{p}$) (3 marks)
11 A regular n-sided polygon has its interior angle equal to 4 times its exterior. Find n.
12. The ratio of the lengths of the corresponding sides of two similar rectangular petrol tanks is $3: 5$.The volume of the smaller tank is $8: 1 \mathrm{~m}^{3}$. Calculate the volume of the larger tank.
(3 marks)
13. ABCD is a rhombus. A is the point $(2,1)$ and C is the point $(4,7)$. Find the equation of the diagonal $B D$ in the form ax + $b y=c$.
(3marks)
14. A man walks directly from point A towards the foot of a tall building 240 m away. After covering 180 m , he observes that the angle of elevation of the top of the building is 45°. Determine the angle of elevation of the top of the building from A.
(3 marks)
15. The G.C.D. and L.C.M. of three numbers are 3 and 1008 respectively. If two of the numbers are 48 and 72 , find the least possible value of the third number.
16. An ant moved from Y to X the midpoint of RS through P in the right pyramid below

Draw the net of the pyramid showing the path of the ant hence find the distance it moved.
(4marks)

SECTION II (50 marks)

ANSWER ANY FIVE
17. Three warships A,B and C are at sea such that ship B is 500 km on a bearing N30E from ship A. Ship C is 700 km from ship B on a bearing of 120°.An enemy ship D is sighted 800 km due south of ship B.
a) Taking a scale of 1 cm to represent 100 km , locate the positions of ships A, B, C and D.
b) Find the bearing of:

i)	(1 mark)
ii) from D	(1 mip D from C

c) Use scale drawing to determine the distance between
i) D and A
(1 mark)
ii) C and D.
(1 mark)
d) Measure angle DAC and angle BCD
18. a) A rectangular tank of base 2.4 m by 2.8 m and a height of 3 m contains 3600 litres of water initially. Water flows into the tank at the rate of 0.5 litres per second. Calculate:
i) The amount needed to fill the tank
(2marks)
ii) The time in hours and minutes required to fill
(3marks)
b). Pipe A can fill an empty tank in 3hours while pipe B can fill the same tank in 6hours. When the tank is full, it can be emptied by pipe C in 8 hours.Pipes A and B are opened at the same time when the tank is empty .If one hour later pipe C is also opened, find the total time taken to fill the tank.
(5marks)
19. A solid is made up of a conical frustum and a hemispherical top. The slant height of the frustum is 8 cm and its base radius is 4.2 cm .If the radius of the hemispherical top is 3.5 cm
a) Find the area of:
i) the circular base.
(2 marks)
ii) the curved surface of the frustum
(3 marks)
iii) the hemispherical surface
(3marks)
b) A similar solid has a total surface area of $81.51 \mathrm{~cm}^{2}$. Determine the radius of its base.
(2marks)
19. In the figure below, O is the center of the circle. PQ is a tangent to the circle at N . Angle NCD is 10° and angle ANP is 30°

Giving reasons find;
a) Angle DON
(2marks)
b) Angle DNQ
(2marks)
c) Angle DBA
d) Angle ONA
e) Angle ODN.
20. Two quantities P and Q are connected by the equation $P=K Q^{n}$. The table below gives the values of P and Q

P	1.2	1.5	2.0	205	3.5	4.5
Q	1.58	2.25	3.39	4.74	7.86	11.5

a) State the linear equation connecting P and Q
(1 mark)
b) Using a scale of 1 cm to represent 0.1 units in both axes, draw a suitable straight line graph on the grid provided
c) Use your graph in b) above to determine the approximate values of K and \mathbf{n}.
d) From the graph, find the value of Q when $\mathrm{P}=3$
22. The displacement h metres of a particle moving along a straight line after t seconds is given by $h=-2 t^{3}+\frac{3}{2} t^{2}+3 t$.
a) Find its initial acceleration
(3 marks)
b) Calculate;
i) The time when the object was momentarily at rest
ii) Its displacement by the time it comes to rest
c) Calculate the maximum speed attained
23. a) Complete the table below for graphs of $y=\sin x$ and $y=2 \sin (x+30)$

x	o	30	60	90	120	150	180	210	240	270	300	330
$\sin \mathrm{x}$	0		0.87			0.5			-0.87			-0.5
$2 \sin (\mathrm{x}+30)$	1	0.5		1.74		0	-1				-1	

b) Using a suitable scale on the grid below draw the graphs of $y=\sin x$ and $y=2 \sin (x+30)$ for $0 \leq x \geq 360^{\circ}$
c) State the transformations that would map $y=\sin x$ onto $y=2 \sin (x+30)$.
(2 mark)
d) Find the values of x which satisfy the equation $\sin x-2 \sin (x+30)=0$.
(2 marks)
24. A trailer moving at a speed of $80 \mathrm{~km} / \mathrm{h}$ is being overtaken by a car moving at $100 \mathrm{~km} / \mathrm{h}$ in a clear section of a road.

Given that the bus is 21 m long and the car is 4 m long.
a) How much time (in seconds) will elapse before the car can completely overtake the bus? (3 marks)
b) How much distances (in metres) will the car travel before it can completely overtake the bus? (2 marks)
c) Given that as soon as the car completed overtaking the trailer, a bus heading towards the trailer and the car and moving at a speed of $90 \mathrm{~km} / \mathrm{h}$ became visible to the car driver. It took exactly 18 seconds for the car and the bus to completely by pass each other from the moment they first saw each other.
i. How far was the tail of the bus from the tail of the car at the instance they first saw each other given that the bus is 12 metres long?
ii. How far a part was the trailer and the bus just immediately after the car and the bus had passed each other?

MOKASA JOINT EXAMINATIONS

Kenya Certificate of Secondary Education (K.C.S.E)
121/2
MATHEMATICS
PAPER 2
MARCH/APRIL 2015
TIME: $21 / 2$ HOURS

SECTION A- 50 MARKS

1. The cost of maize flour and millet flour is Ksh. 40 and Khs. 52 respectively. Calculate the ratio in which they were mixed if a profit of 15% was made by selling the mixture at Ksh. 52.90 per kilogram.
(3marks)
2. In the figure below $\mathrm{XY}=8 \mathrm{~cm}$ and O is the centre of the circle

Determine the area of the circle if angle $\mathrm{AOX}=15^{0}$
(3marks)
3. $\mathbf{O A}=3 \mathbf{i}+4 \mathbf{j}-6 \mathbf{k}$ and $\mathrm{OB}=2 \mathbf{i}+3 \mathbf{j}+\mathrm{k}$ are two position vectors. P divides a line AB in the ratio $3:-2$. Write down the coordinates of P .
(3marks)
4. The table below show tax rates on a certain year

Income (K£ p.a)	Rate (Ksh.per $£$)
$1-4200$	2
$4201-8000$	3
$8001-12600$	4
12601 and above	5

Rose earns a basic salary of ksh. 20,000 per month, she is given allowances amounting to ksh. 5000 . She is housed by her employer therefore pays a nominal rent of sh. 700 per month and is entitled to a personal relief of Ksh. 1200 per month. Calculate;
i) Her taxable income in Kenya pounds per year.
ii) Her gross tax per month.
5. Rationalize the denominator and simplify
$\frac{\sqrt{3}}{\tan 60-1}$
6. Solve for x in
$3 \log _{3} x+4=\log _{3} 24$
7. The transformation represented by the matrix $\left[\begin{array}{cc}x-1 & x \\ 1 & 2 x\end{array}\right]$ maps a triangle whose vertices are $A(-1,2), B(4,1)$ and $C(1,-4)$ onto a straight line. Find the possible values of x.
8. Expand $\left(2+\frac{1}{4} x\right)^{6}$, hence find the value of $(2.025)^{6}$ rounded off to 3 decimal places.
9. The resistance to the motion of a car is partly constant and partly varies as the square of the speed. At $40 \mathrm{~km} / \mathrm{h}^{-1}$ the resistance is 530 and at $60 \mathrm{kmh}^{-1}$ it is 730 N . What will be the resistance at $70 \mathrm{kmh}^{-1}$
10. By completing the square, solve for x in the equation $2 x^{2}-6=x$.
11. A die has two of its faces numbered 3.Calculate the probability of obtaining a 1 or a 3 on a single cast.
12. Solve the equation $4 \cos (3 x-10)^{0}=-3.0640$ for $0^{0} \leq x \leq 180^{0}$
13. The top of a table is regular pentagon. Each side of the pentagon measures 40.0 cm . Find the maximum percentage error in calculating the perimeter of the top of the table.
(3marks)
14. The points $P(8,4)$ and $Q(2,2)$ are the ends of a diameter of a circle. Find the equation of the circle. (3marks)
15. In the diagram below, $P Q=10 \mathrm{~cm}$, and the radius of the circle centers P and Q are 2 cm and 4 cm respectively, calculate the length of the transverse common tangent SR. (3marks)

16. Line $y=\frac{3}{5} x$ is parallel to diameter LM of circle $x^{2}+y^{2}+6 x-8 y=0$. Find the equation of the tangent to the circle at L.
(4marks)

SECTION B 50 MARKS

17. The figure below shows a frustum $A B C D E F G H$ of a right pyramid such that $\mathrm{AB}=9 \mathrm{~cm}, \mathrm{BC}=12 \mathrm{~cm}, \mathrm{FG}=6 \mathrm{~cm}, \mathrm{GH}=8 \mathrm{~cm}$ and the height of the frustum is 10 cm .

Find the
(2marks)
a) Height of the pyramid
i) AC
ii) AH
i) Line AH and the plane ABCD
18. A and B are two points on the latitude $40^{\circ} \mathrm{N}$. The two points lie on the longitudes $20^{\circ} \mathrm{W}$ and $100^{\circ} \mathrm{E}$ respectively.
a) Calculate:
i) The distance from A to B along a parallel of latitude.
(3marks
ii) The shortest distance from A to B along a great circle.
(a) Two planes P and Q left A for B at 400 knots and 600 knots respectively. If P flew along the great circle and Q along parallel latitude, which one arrived earlier and by how long. Give your answer to the nearest minute (Take $\mathrm{R}=$ 6370 km and $\pi=22 / 7$).
(3marks)
19.The following table shows the distribution of marks obtained by 50 students.

Marks	$45-49$	$50-54$	$55-59$	$60-64$	$65-69$	$70-74$	$75-79$
No of Students	3	9	13	15	5	4	1

a) By using an assumed mean of 62, calculate:
(i) The mean
b) The variance
c) The standard deviation
20. Matrix S represents a reflection on line $y=x$, matrix T represents a rotation through positive 90° centre (0,0).A triangle whose vertices are $A(-2,0), B(1,-2)$ and $C(0,1)$ is subjected to these transformations, such that :the triangle $A^{I} B^{I} C^{I}$ is the image of $A B C$ under transformation matrix S and that $A^{I I} B^{I I} C^{I I}$ is the image of $A^{1} B^{I} C^{I}$ under transformation matrix T .
a) Plot the three triangles on the grid provided below.
(4marks)
b) Find a single matrix that will map $\mathrm{A}^{\text {II }} \mathrm{B}^{\mathrm{II}} \mathrm{C}^{\mathrm{II}}$ onto ABC .
c) Describe the matrix in b) above.
d) If triangle ABC is sheared, shear factor 2 with the y-axis invariant, find the coordinates of the image.
(2marks)
21. Sigei's Flower Achievers Company has 36 hectares of land. The company decides to prepare the land for planting wheat and maize. The labour cost of planting maize is Ksh. 300 per hectare while it costs Ksh 900 to plant a hectare of wheat. Maize takes 3 labourers per hectare while wheat takes 6 labourers per hectare. Atleast 72 labourers are to be hired and Ksh. 15,000 is to be spent for labour costs. The company hopes to make a profit of Ksh 2,000 per hectare of maize and Ksh 4,500 per hectare of wheat. let the number of hectares for maize be x
let the number of hectares for wheat be y
(a) Write down inequalities representing the above information
(3marks)
(b) On the grid provided, draw the inequalities by shading unwanted regions
(4marks)
c) Use the graph to:
(i) determine the number of hectares of maize and wheat that should be prepared in order for the company to maximize profit
(2marks)
(ii) Calculate the maximum profit
(1mark)
22. a) Using a ruler and a pair of compasses only, construct parallelogram $A B C D$ in which $A B=7 \mathrm{~cm}, B C=5 \mathrm{~cm}$ and angle $C B A=45^{\circ}$.
(4marks)
b) From a point T, 3 cm from D on DC , construct the locus of a point $\mathrm{Q}, 3.5 \mathrm{~cm}$ from T to intersect AD and DC at V and W respectively. Measure angle VTW.
c) Find the area of the minor sector TVW in cm^{2}
23. The thirteenth term of an arithmetic progression is 27.Given that the seventh term equals to three times the second term, find
a) The first term and the common difference of the progression.
(4marks)
b) The sum of the first three even numbered terms of the progression.
c) It's given that $\left(b_{\frac{9}{4}}\right), b$ and $(b+3.375)$ are the $2^{\text {nd }}, 3$ rdand $4^{\text {thterms }}$ of a geometric progression. Determine the value of b.
24. The equation of a curve is given by $y=11 x-x^{2}$
(a) Determine coordinates of the stationary point.
(b) By integration, determine the actual area bounded by the curve $y=11 x-x^{2}$ and the line $y=2 x$
(c) Find the equation of the normal to the curve at $x=2$

MOKASA JOINT EVALUATION EXAMINATION

121/1
MATHEMATICS
Paper 1
2 $1 / 2$ Hours

Kenya Certificate of Secondary Education

Paper1 section 1(50marks)

MOKASA JOINT EVALUATION EXAMINATION

121/1
MATHEMATICS
Paper 1

KASSU JOINT EVALUATION TEST (J.E.T)
 Kenya Certificate of Secondary Education (K.C.S.E)

121/1

Mathematics

Paper 1
$21 / 2$ Hours
June 2015

1. Evaluate without using tables or calculator.
$\frac{1 / 4 \text { of } 2+33 / 4 \div 3 / 8-4 \frac{1}{2} \times 31 / 3}{24 / 5 \times 13 / 7-4 \div 2 / 3+3 / 5 \text { of } 15}$
2. Using tables evaluate.

$$
\frac{1}{34.52}+\sqrt[3]{0.787}+(0.934)^{3}
$$

3. A tourist arrived in Kenya with US Dollars 3000 which he exchanged into Kenya shillings. He spent Ksh. 75000 on hotel accommodation and Ksh. 42500 on travel and other expenses. He changed the remaining money into sterling pounds. Calculate how much money in sterling pounds that he remained with using the following rates. (Leave your answer to the nearest $1 £$)

	Buying(Kshs)	Selling(Kshs)
1 US dollar(\$)	78.45	78.95
1 Sterling pound(£)	120.27	121.04

4. Solve for y in the equation $8^{(2 y-1)} \times 32^{y}=16^{(y+1)}$.
5. Solve the equation:

$$
\frac{1(x+3)+x}{x(x+3)}=\frac{11}{28 x}
$$

6. Determine the equation of the normal to the curve $y=3 x^{2}-4 x+1$ at the point $(2,5)$.
7. Given that $\mathbf{A B}=\left[\begin{array}{l}3 \\ 5\end{array}\right)$ and $\mathbf{C D}=\binom{K-1}{15}$ are parallel, find the value of K and hence evaluate $|C D|$
8. Make \mathbf{a} the subject of the formula:

$$
\begin{equation*}
\mathrm{x}=\mathrm{y}+\sqrt{x^{2}+a^{2}} \tag{3marks}
\end{equation*}
$$

9. Find the equation of a straight line which is equidistant from the points $A(2,3)$ and $B(6,1)$. Express your answer in the form $\frac{x}{a}+\frac{y}{b}=1$ where a and b are constant.
(3marks)
10. The GCD and LCM of three numbers are 3 and 1008 respectively. If two of the numbers are 48 and 72 respectively, find the least possible value of the third number.
(3 marks)
11. Kamau salary increased from Ksh 16,800 to 18,00 in the month of April. State the ratio in which it changed. What was the percentage change in his salary? Leave you percentage answer to 4 . s. figures.
(3marks)
12. If $\tan X=4 / 3$, find the value of $\sin ^{2} X+\cos X$ without using tables or calculator.
(3marks)
13. The area of a rhombus is $60 \mathrm{~cm}^{2}$. Given that one of its diagonal is 15 cm long. Calculate the perimeter of the rhombus.
14. If x is a positive integer find all the integral values of x given that:
$-3<2 x+4<-3 x+9$
15. Solve for x in $\log _{3}(4+3 x)+3 \log _{3} 3-2=\log _{3}(x+6)$
(3marks)
16. The figure below shows triangle $A B C$ and its image $A^{1} B^{1} C^{1}$ after the transformation. Describe the transformation fully.
(3 marks)

SECTION II

17. Consider points $A\left(50^{\circ} \mathrm{N}, 30^{\circ} \mathrm{E}\right)$ and $\mathrm{B}\left(50^{\circ} \mathrm{N}, 150^{\circ} \mathrm{W}\right)$ (Take $\left.\pi=22 / 7\right)$ and radius of the earth $\mathrm{R}=6370 \mathrm{~km}$. Find:
(a) The distance between A and B along a parallel of latitude in:
(i) Kilometres (km)
(3 marks)
(ii) Nautical miles (nm)
(b) The shortest distance from A to B in nautical miles.
(3 marks)
(c) An aircraft takes 54 hours to fly between the two towns A and B along the great circle. Calculate its speed in knots correct to 2 significant figures.
18. A curve whose equation is $2 y=6-12 x+9 x^{2}-2 x^{3}$ turns at points A and B.
a) Find the coordinates of a and b
b) Determine the nature of points A and B
c) Sketch the curve
19. Income tax is charged on annual income at the rate shown below.

Taxable income K£p.a	Rate Ksh/£.
$1-2300$	2
$2301-4600$	3
$4601-6900$	5
$6901-9200$	7
$9201-11500$	9
11501 and over	10

Mr. Kipsoroi earn a basic salary of Ksh.15,000 per month and lives in a company house for which he pays nominal rent of Ksh. 1250 per month. He enjoys personal relief of Ksh. 1056 per month and insurance relief of Ksh. 270 per month. Calculate;
(a) His taxable income in K£.p.a.
(b) The amount of tax he pays per month in Kenya shillings.
(c) His net monthly salary in shillings.
20. The frequency distribution table below shows the marks scored by 117 form four candidates of Sanga High School.

Marks	$10-19$	$20-29$	$30-39$	$40-49$	$50-59$	$60-69$	$70-79$
No. of students	13	14	18	20	23	17	12

(a) Draw a cumulative frequency curve of the distribution.
(5marks)
(b) Use you graph to determine:
(i) The median
(2 marks)
(ii) Quartile deviation
(3 marks)
21. In the figure below $O F$ is the radius of the circle centre O chords EDC and $C B$ are extend to meet at A and $O E$ is perpendicular to DF at $\mathrm{E} . \mathrm{OF}=61 \mathrm{~cm}, \mathrm{AB}=30 \mathrm{~cm}, \mathrm{BC}=50 \mathrm{~cm}, \mathrm{AD}=40 \mathrm{~cm}$.

i) DF
ii) OE
b) Calculate correct to 1 dp
i) Size of angle EOF
(2marks)
ii) The length of the minor arc DF
(3marks)
22. ABCDE is a right pyramid on a horizontal square base of side 10 cm . The slant edges are all 8 cm long. Calculate;

(a) The height of the pyramid
(b) The angle between;
(i) A slant face and the base (2 marks)
(ii) A slant edge and the base
(c) The angle between the planes ABE and DCE
23. In the figure below $\mathbf{O E}=\mathbf{a}, \mathrm{OB}=\mathrm{b}, \mathrm{OA}: \mathrm{AE}=2: 3$
(a) Express $A C$ and $B E$ in terms of \mathbf{a} and \mathbf{b}.
(b) $D C$ and $k A C$ and $B D=m B E$. Determine the values of k and m by expressing DC in two ways.
(c) Find the ratio of $A D$: $D C$. 6 marks)

24. A theatre has seating capacity of 250 people. The charges are shs. 100 for ordinary seat and shs 160 for special seat. It cost shs 16000 to stage a show and the theatre must make a profit. There are never more than 200 ordinary seats and for a show to take place, at least 50 ordinary seats must be occupied; the number of special seats is always less than twice the number of ordinary seats.
(a) Taking X to be number of ordinary seats and y to be the number of special seats, write down all the inequalities representing the above information
(b) On the grid provided, draw a graph to show the inequalities in (a) above
(c) Determine the number of seats of each type that should be booked in order to maximize the profit
(2 marks)
(d) Calculate this maximum profit
(2marks)

KASSU JOINT EVALUATION TEST (J.E.T)
Kenya Certificate of Secondary Education (K.C.S.E)
121/2
Mathematics
Paper 2
$21 / 2$ Hours
June 2015

SECTION A

1. Evaluate using logarithm
$\sqrt{\frac{4.283 x(0.009478)^{2}}{\log 9.814}}$
2. Calculate the density of the material used to make a concrete culvert of mass 1 million grams, internal diameter 0.72 m , thickness 70 mm and length $2 \times 10^{-3} \mathrm{~km}$ (giving the answer in kgm^{-3} and in standard form)
(3 marks)
3. Simplify $\frac{3}{\sqrt{5}-2}+\frac{1}{\sqrt{5}}$ leaving the answer in the form $a+b \sqrt{c}$, where a, b and c are rational numbers (3 marks)
4. The figure below shows a circle center 0 , radius 10 cm . The chord $P Q=16 \mathrm{~cm}$. Calculate the area of the unshaded region.

5. Solve the equation $3 x^{2}+x-4=0$ by the method of completing the square.
(3 marks)
6. Two towns A and B are 200 m apart. From the top of A, the angle of elevation of the top of B is 15^{0}. From the top of B, the angle of depression of the bottom of A is 40°. Find the height of A .
(3 marks)
7. The first, the third and the seventh term of an increasing arithmetic progression are three consecutive terms of a geometric progression. If the first term of the arithmetic progression is 10 , find the common difference of the arithmetic progression
(3 marks)
8. Peter operates a printing firm and the cost of printing a book is partly constant and partly varies as the number as pages. If a book has 200 pages, the cost in sh 400 and if it has 100 pages, the cost is sh 240 . Find the cost of printing a book with 400 pages.
(3 marks)
9. A and B are two matrices. If $A=\left(\begin{array}{ll}1 & 2 \\ 4 & 3\end{array}\right)$ find B given that
$A^{2}=A+B$
(3 marks)
10. Find the constant term in the expansion $\left(3 x-\frac{1}{2 x}\right)^{8}$. Hence state it's value
11. Given that $\mathrm{x}=31.01, \mathrm{y}=12.9$ and $\mathrm{w}=0.0023$. Calculate the percentage error of $\frac{y}{x w}$, give your answer to 4 dp .
12. Evaluate $\quad \int_{-1}^{3}(2 x+3) d x$
(3 marks)
(3 marks)
13. A merchant blends 350 kg of tea costing Sh. 84 kg with 140 kg of tea costing Sh. 105 per kg. At what price must he sell the mixture to gain 25%
(3 marks)
14. Solve for x given that; $3 \sin \left(3 x-20^{\circ}\right)=-2$ for $0^{0} \leq x \leq 180^{\circ}$
(4 marks)
15. $4 x^{2}-10 x+4 y^{2}+12 y-1=0$ represents a circle centre $C(a, b)$ and of radius K. Find the values of a, b and K. (3 marks)
16. $A B C$ is an equilateral triangle. P is a variable point on the same side of $A B$ as C, and on the same plane such that angle $\mathrm{APB}=60^{\circ}$. Use a ruler and a pair of compasses only to construct the locus of P. Describe the locus of P fully. (3 marks)

SECTION B

17. Four buildings A, B, C and D stand on a level ground such that B is 240 m on a bearing of 60° from A. C is south east of B and east of A. D is 320 m from C on a bearing of 150° from A.
a) i) Use scales of 1 cm rep 40 m draw accurately the points ABCD.
ii) Use the drawing to find the direction of B and D.
b) The height of building A is 200 m and that of B is 80 m . Determine the angle of depression of the top of building B from the top of building A.
c) Enter the layout of Kamau's plot shown below in a surveyor's book. (Unit in metres)

18. The table shows the marks obtained by 40 candidates in an examination

Marks	$5-14$	$15-29$	$30-34$	$35-44$	$45-49$
Frequency	2	12	7	15	x

(a) Find the value of x
(b) On the grid provided below draw a histogram to represent the data
(c) By drawing a straight line on the graph above determine the median mark
19. The diagram below shows a bucket with top diameter 30 cm and bottom diameter 20 cm . The height of the bucket is 28 cm .

Find;
(a) The capacity of the bucket in litres.
(b) The area of the metal sheet required to make 100 such buckets, taking 10% extra overlapping and wastage.
20. (a)

Giving reasons, determine the size of:
a) Angle CBD
b) Angle ODB
c) Angle BAD
d) Angle ABC
e) Angle ODA
21. A car leaves town X for town $Y 120 \mathrm{~km}$ away at an average speed of $80 \mathrm{~km} / \mathrm{hr}$ at $8.30 \mathrm{a} . \mathrm{m}$. At the same time a bus leaves town Y for town X at an average speed of $60 \mathrm{~km} / \mathrm{hr}$. At 8.45 a.m., a cyclist leaves town Y for town X at an average speed of $30 \mathrm{~km} / \mathrm{hr}$.
(a) Calculate the time when the bus meets the car to the nearest minute.
(b) Calculate the distance between the car and the bus by the time the cyclist meets the car.
(c) If the bus upon reaching town X stops for 10 minutes then starts its journey back to Y , Calculate how far from X the bus meets the cyclist.
22. Two bags A and B contain identical balls except for the colours. Bag A contains 4 red balls and 2 yellow balls. Bag B contains 2 red balls and 3 yellow balls.
a) If a ball is drawn at random from each bag, find the probability that both balls are of the same colour. (4 marks)
b) If two balls are drawn at random from each bag, one at a time without replacement, find the probability that:
i) The two balls drawn from bag A or bag B are red
ii) All the four balls drawn are red
23. The figure below shows a cross-section of a tunnel.
0

Determine the difference in area of the cross section if trapeziums rule rather than mid ordinate rule was used using six strips to estimate the area.
24. (a) Draw the graph of the function below on the grid provided
$y=2 x^{2}-7 x-2$ for the values of $-1 \leq X \leq 6$
(b) From your graph determine the roots of the function. $2 x^{2}-7 x-2=0$.
(c) By drawing a suitable graph of function $y=2 x-7$ on the same axis, solve the simultaneous equations $y=2 x^{2}-7 x-2$ and $y=2 x-7$.
(4 marks)

KASSU JET

MATHS PAPER 1
MARKING SCHEME
PAPER 1

KASSU JET

MATHS PAPER 2

MARKING SCHEME

PAPER 2

1.	No Log 4.283 0.6317 0.009478 3.9767×2 5.9534 0.99184 .5851 - 1.9964 - $4.5887 \div 2$ - $1.97 \times 10^{-2} 2.2944$ - 0.0197		7	$\begin{aligned} & \hline \hline a, a+2 d, a+b d \\ & \frac{a+2 d=a+b d}{a a+2 d} \\ & (a+2 d) 2=a(a+b d) \\ & a 2+4 a d+4 d 2=a 2+b a d \\ & 4 d 2-2 a s=0 \\ & 2 d(d-a)=0 \\ & 2 d=0 \text { or } 2 d-a=0 \\ & d=\frac{a}{2} \\ & \text { Thus } d=\frac{10}{2}=5 \end{aligned}$
2	$\begin{aligned} & \text { Density }=\frac{\text { mass }}{\text { volume }} \\ & \text { density }=\frac{1 \times 10^{6} \times 10^{-3}}{0.3475} \\ & \text { Volume }=\mathrm{Al}=\pi\left(R^{2}-r^{2}\right) l \\ & =2.878 \times 10^{3} \mathrm{kgm}^{-3} \checkmark \\ & =\pi(R+r)(R-r) l \\ & =2 \pi(0.43+0.36)(0.43-0.36) \checkmark \\ & =2 \pi(0.79)(0.07) \\ & =0.347460147 \approx 0.3475 \mathrm{~m}^{3} \checkmark \end{aligned}$		8	$\begin{aligned} & \hline 400=a+200 b \\ & 240=a+100 b \\ & 160=100 b \\ & 1.6=b \\ & 400=a+200(1.6) \\ & 400+a+320 \\ & a=80 \\ & C=80+400 \\ & C=720 \end{aligned}$
			9	
3 4	$\begin{aligned} 16^{2} & =10^{2}+10^{2}-2 \times 10 \times 10 \cos \Theta \\ 256 & =200-200 \cos \Theta \\ 56 & =-2 \cos \Theta \\ \Theta & =\cos ^{-1}(-0.28) \\ & =180^{0}-73.74^{0} \\ & =106.26^{0} \end{aligned}$ Area of shaded region $\begin{aligned} & =\frac{106.26 \pi r^{2}-1 \underline{r}^{2} \sin 106.26^{0}}{360} 22 \\ & =100 \frac{(106.26 \times 3.142-1 \underline{\sin } 306.26)}{360} 2 \\ & =100(0.9274-0.48) \\ & =100 \times 0.4474=44.74 \mathrm{~cm}^{2} \end{aligned}$	\bigcirc	10	$\begin{aligned} & 1(3 \mathrm{x}) 8(1 / 2 \mathrm{x})^{0}+8(3 \mathrm{x})^{7}(-1 / 2 \mathrm{x})^{1}+28(3 \mathrm{x})^{6} \\ & (-1 / 2 \mathrm{x}) 2+56(3 \mathrm{x})^{5}(-1 / 2 \mathrm{x})^{3}+70(3 \mathrm{x})^{4}(-1 / 2 \mathrm{x}) 4 \\ & +\ldots \ldots . \\ & \text { Constant term is } 5^{\text {th }} \text { term } \\ & \quad=\frac{70 \times 8 \sqrt{x^{4}}}{16 \mathrm{x}^{4}} \\ & \quad=\frac{70 \mathrm{x} 81}{16} \\ & \quad=354.375 \\ & \hline \end{aligned}$
			11.	$\frac{12.9}{31.01 \times 0.0023}$
5				12.9 12.85 12.95
6	$\begin{aligned} & \mathrm{x}=200 \tan 15 \\ &=53.59 \mathrm{~cm} \\ & \mathrm{Y}=200 \tan 40=167.8 \mathrm{~cm} \\ & 167.8-53.59=114.21 \mathrm{~cm} \end{aligned}$			

MWINGI CENTRAL SUB-COUNTY JOINT EVALUATION EXAMS 2014
121/1
MATHEMATICS 'ALTA'
PAPER 1
TIME: $21 / 2$ HOURS
JULY/AUGUST 2015
Answer All the questions in this section in the spaces provided.

1. Evaluate without using a calculator

$$
\frac{2 / 3 \times\left(1^{3} / 7-5 / 8\right)}{3 / 4+1^{5} / 7 \div 4 / 7 \text { of } 2^{1} / 3}
$$

2. Calculate the perimeter of the figure below, given that $\mathrm{AB}=\mathrm{BC}=\mathrm{BE}=3.3 \mathrm{~cm}$

3. The ratio of Mueni's earnings to Kilonzo's earning is $5: 3$. If Mueni's earnings is increased by 17% her new figure becomes Kshs. 18,000. Find the corresponding percentage change in Kilonzi's earnings if the sum of their new earnings is Kshs. 24,600.
4. A square room is covered by a number of whole rectangular slabs of sides 60 cm by 42 cm . Calculate the least possible area of the room in square metres
5. The size of an interior angle of a regular polygon is 14 times that of its exterior angle. Determine the number of sides of the polygon
6. Simplify the expression

$$
\frac{a^{2}-b^{2}}{a^{2}+a b-a-b}
$$

7. A rectangular locker top cover has dimensions 62 cm by 28 cm . Find the volume traced by the top cover of the locker when its moved 60° about its fixed point and horizontal position
(3marks)
8. Factorise completely the expression.
(3marks) $3 x^{2} y^{2}-8 x y-51$
9. Below is a circle centre 0 and a point x is on the circumference. Construct a tangent to the circle through x. A point B lies along the tangent and is 2.8 cm from the point x. Join point 0 to B and measure the angle $<B o x$ and the length of $\overline{\mathrm{OB}}$
(4marks)

10. A Biology class collected seed pods and weighted them to the nearest gramme. The frequency distribution table is given below.

Mass (g)	No. of seed pods
$10-13$	20
$14-17$	26
$18-21$	32
$22-25$	40
$26-29$	35
$30-33$	24
$34-37$	23

Calculate the Mean Mass
(4marks)
11. A trader bought 360 trays of eggs at shs. 120 per tray. He later discovered that 8% of the eggs were bad and could not be sold. If he has to make a profit of 25%, how much should he sell the good eggs per tray.
12. On the diagram below, the line whose equation is $7 y-3 x+30=0$ passes through the points A and B . Point A is on the x-axis while point B is equidistant from x - and y-axes.

Calculate the co-ordinates of the point A and B
(3marks)
13. In June, Kioko donated $1 / 6^{\text {th }}$ of his salary to a children's' home while Mutethya donated $1 / 5^{\text {th }}$ of her salary to the same children's home. Their total donation for June was Kshs. 14,820 . In July Kioko donated $1 / 8^{\text {th }}$ of his salary to the children's home. Their total donation for July was Kshs. 8,675. Calculate Kioko's monthly salary
(4marks)
14. A Kenyan company received US Dollars 150,000 . The money was converted into Kenya shillings in a bank which buys and sells foreign currencies as follows:

	Buying (In Kenya shillings)	Selling (In Kenya shillings)
I US Dollar	77.24	77.44
I Sterling pound	121.93	122.27

a) Calculate the amount of money, in Kenya shillings, the company received
(1mark)
b) The company exchanged the Kenya shillings calculated in (a) above, into sterling pounds to buy a car from Britain. Calculate the cost of the car to the nearest sterling pound
15. Y is due East of another point X, a third point Z lies to the North side of $X Y$. A scout stands at Z which is 7 km from X and 8 km from Y. If $X Y=9 \mathrm{~km}$ find by scale drawing the bearing of X and Y from the scout at Z.
(3marks)
16. Simplify: $\frac{3}{\sqrt{5-2}}+\frac{1}{\sqrt{5}}$ leaving the answer leaving the answer in the form $\mathrm{a}+\mathrm{b} \sqrt{\mathrm{c}}$.

Where a, b and c are rational number
(3marks)

SECTION II (50 MARKS)

Attempt any five questions in this section
17. The distance between towns M and N is 280 km . A car and a lorry travel from M to N .

The average speed of the lorry is $20 \mathrm{~km} / \mathrm{h}$ less than that of the car. The lorry takes 1 h 10 min more than the car to travel from M to N .
a) If the speed of the lorry is $x \mathrm{~km} / \mathrm{h}$, find X
(6marks)
b) The lorry left town M at 8.15 am . The car left town M later and overtook the lorry at 12.15 pm . Calculate the time the car left town M
(4marks)
18. The diagram below shows a cross-section of a bottle. The lower part ABC is a hemisphere of radius 5.2 cm and the upper part is a frustrum of a cone. The top radius of the frustrum is one third of the radius of the hemisphere. The hemisphere part is completely filled with water as shown in the diagram.

(a) Determine the height of the frustrum part
(b) Find the surface area of the frustrum part of the bottle
19. (a) The product of the matrices.

$$
\left(\begin{array}{cc}
2 & -9 \\
-1 & y
\end{array}\right) \quad \text { and }\left(\begin{array}{cc}
6 & 17 \\
3 & y-2
\end{array}\right)
$$

Is a singular matrix. Find the value of y
(b) In a certain week, a businessman bought 18 bicycles and 16 radios for a total of Kshs. 113,640. In the following week, he bought 14 bicycles and 12 radius for a total of Kshs. 87,480 . Using matrix method, find the price of each bicycle and each radio that he bought.
(3marks)
(c) In the third week, the price of each bicycle was reduced by 10% while the price of each radio was raised by 10%. The businessman bought as many bicycles and as many radios as he had bought in the first two weeks. Find by matrix method, the total cost of the bicycles and radios that the businessman bought in the third week.
20. In triangle $\mathrm{ABC}, \mathrm{BC}=3.2 \mathrm{~cm}, \mathrm{AC}=4.8 \mathrm{~cm}$ and angle $\mathrm{ABC}=120^{\circ}$.
(a) Construct the triangle and a circumscribed circle and measure its radius
(b) If BC is the base of the triangle, calculate correct to one decimal place.
(i) The perpendicular height of the triangle
(ii) The area of the minor segment substended by the Chord AC
(iii) The size of angle ABC
21. (a) Using the trapezium rule with intervals of 0.5 of a unit, estimate the area of the region bounded by the curve $\mathrm{y}=4 x^{3}+2 x^{2}-5$, the lines $y=0, x=1$ and $x=3$
(b) Calculate:
(i) The area of the region in (a) above by integration
(c) Express the error in (a) above as a percentage of the area obtained in (b) above
22. The displacement, S metres, of a moving particle after t seconds is given by $S=40 t^{3}-t^{2}+3 t+3$. Determine:
(a) The velocity of the particle when $t=3$ seconds
(b) The value of t when the velocity of the particle is $4 \mathrm{MS}^{-1}$
(c) The displacement when the particle velocity is $4 \mathrm{MS}^{-1}$
(d) The acceleration of the particle when $t=3$ seconds
23. In the figure below $\mathrm{OY}=20 \mathrm{~B}, \mathrm{OX}=5 / 2 \mathrm{OA}, \mathrm{OA}=\mathrm{a}$ and $\mathrm{OB}=\mathrm{b}$

a) Express the following in terms of a and b
(i) AB
(ii) $X Y$
(b) Given that $\mathrm{AC}=6 \mathrm{AB}$, express $\mathrm{OC} \& \mathrm{XC}$ interms of a and b
(c) Show the points X, Y and C are collinear
(d) State the ratio in which C divides XY
24. The frequency table shows masses, to the nearest kilogramme of fish caught by a fisherman in a day.

Mass (Kg)	$5-9$	$10-14$	$15-19$	$20-24$	$25-29$	$30-34$	$35-39$	$40-44$
No. of fish	6	20	12	10	5	6	2	1

(a) Draw a histogram to represent the above information
(b)
(i) State the class in which the median mass lies
(ii) Draw a vertical line in the histogram, showing where the median mass lies
(iii) Calculate the median mass in kilogrammes of the fish caught

MWINGI CENTRAL JOINT EXAMINATION

Kenya Certificate of Secondary Education
121/2

MATHEMATICS

PAPER 2

TIME: 2112 HOURS
JULY/AUGUST 2015
Answer All the questions in this section in the spaces provided.

1. Use logarithms to evaluate, correct to 4 decimal places.
(4marks)
$4 \frac{\sqrt{3.45+2.62}}{786 \times 0.0007}$
2. Tap P can fill a tank in 2 hours and tap Q can fill the same tank in 4 hours. Tap R can empty the tank is 3 hours.
a) If tap R is closed, how long would it take taps P and Q to fill the tank?
b) Calculate how long it would take to fill the tank when the three taps P, Q and R are left running.
(2marks)
3. Make P the subject of the formula $\frac{1}{\mathrm{R}}=\frac{1}{\mathrm{P}}+\frac{1}{\mathrm{Q}}$
(3marks)
4. Solve the inequality $2 x+3>5 x-3>-8$ and represent your answer on the number line
5. In the figure below, 0 is the centre of the circle. Find $<$ AOB

6. Two dice are tossed together.
a) Draw a probability space to show all the possible outcomes
(2marks)
b) Find the probability that the sum of the two upper faces will be 9
(1mark)
7. The image of $P(0,2)$, under an enlargement with a scale factor 3 is $P^{\prime}(4,6)$. Find the centre of enlargement (3mark
8. Simplify the expression $\sqrt{3}-\sqrt{2}$, giving your answer in the form $a+b \sqrt{c}$

$$
\sqrt{3}-\sqrt{2}
$$

9. Find the relative error in the difference between 26.0 cm and 14.2 cm
10. In the figure below, AT is a tangent to the circle at A . Angle $\mathrm{ATB}=48^{0}, \mathrm{BC}=5 \mathrm{~cm}$ and $\mathrm{CT}=4 \mathrm{~cm}$. Calculate the length AT.

11. (a) Expand (1-x) ${ }^{5}$ up to the term in x^{3}
(b) Use the expansion in (a) to approximate the value of $(0.98)^{5}$ correct to 3 decimal places
12. (a) Draw a regular pentagon of side 4 cm
(b) On the diagram drawn, construct a circle which touches all the sides of the pentagon
13. Point T is the mid-point of a straight line AB. Given that the position vectors of A and T are $i-j+k$ and $2 i+1 \frac{1}{2} k$ respectively, find the position vector of B in terms of i, j and k.
14. If the local time of town $A\left(52^{\circ} \mathrm{N}, 0^{\circ}\right)$ is 12.00 noon. Find the local time of town $B\left(1^{0} S, 37^{\circ} \mathrm{E}\right)$
15. Line $A B$ is the diameter such that the coordinates of A and B are $(-1,1)$ and $(5,1)$ respectively. Find the equation of the circle.
(3marks)
16. Solve for $\mathrm{x}: 4 \sin (\mathrm{x}+20)^{0}=3$ for $0^{0} \leq \mathrm{x} \leq 360^{\circ}$
(3marks)

SECTION II (50 MARKS)
Answer only five (5) questions in the section in the spaces provided
17. The table below shows income tax rates for a certain year.

Monthly income in Kenya Shillings (Kshs.)	Tax rate in each shilling
$0-10164$	10%
$10165-19740$	15%
$19741-29316$	20%
$29317-38892$	25%
Over 38892	30%

A tax relief of Kshs. 1162 per month was allowed. In a certain month of the year, an employee's taxable income in the fifth band was Kshs. 2108.
a) Calculate:
i) Employees total taxable income in that month
(2marks)
ii) The tax payable by the employee in that month
b) The employees income includes a house allowance of Kshs. 15,000 per month. The employees contributed 5\% basic salary to a cooperative society. Calculate the employees net pay for that month.
18. Three quantities R, S, T are such that R varies directly as S and inversely as the square of T.
(a) Given that $\mathrm{R}=480$ when $\mathrm{S}=150$ and $\mathrm{T}=5$, write an equation connecting R, S and T
(3marks)
(b) (i) Find the value of R when $\mathrm{S}=360$ and $\mathrm{T}=1.5$
(ii) Find the percentage charge in R if S increases by 5% and T decreases by 20%
19. (a) Solve the equation $\frac{x-1}{1}=\frac{1}{2 x-3}$
(b) The length of a floor of a rectangular hall is 9 m more than its width. The area of the floor is $136 \mathrm{~m}^{2}$.
(i) Calculate the perimeter of the floor
(ii) A rectangular carpet is placed on the hall leaving an area of $64 \mathrm{~cm}^{2}$. If the length of the carpet is twice its width, determine the width of the carpet
(2marks)
20. (a) Complete the table below for the equation
$y=x^{2}+3 x-6$, given $-6 \leq x \leq 4$

X	-6	-5	-4	-3	-2	-1	0	1	2	3	4
Y	12			-6			-6				22

(b) Using a scale of 1 cm to represent 1 unit in the x -axis and 2 units in the y-axis, draw the graph of $y=x 2+3 x-6$
(c) Use your graph to solve the quadratic equation.
i) $x^{2}+3 x-6=0$
(4marks)
ii) $x^{2}+3 x-2=0$
(1mark)
21. The product of the first three terms of a geometric progression is 64. If the first term is a and the common ratio is r,
a) Express r in terms of a
(3marks)
b) Given that the sum of the three terms is 14 ;
i) Calculate the values of a and r and hence write down two possible sequences each up to the 4th term (5marks)
ii) Find the product of the $50^{\text {th }}$ terms of the two sequences
(2marks)
22. A square S has vertices at $A(0,01, B(2,0), C(2,2)$ and $D(0,2)$
a) On a graph paper, draw the square S and its image 5 under a transformation whose matrix is;
$A=\quad\left(\begin{array}{ll}2 & -1 \\ 1 & 2\end{array}\right)$
(b) $\mathrm{S}^{\prime \prime}$ is the image of S under a transformation whose matrix is $\mathrm{B}=$

$$
\left(\begin{array}{ll}
2 & -1 \\
1 & 2
\end{array}\right)
$$

Describe fully the transformation which would map S to S"
(4marks)
(c) Draw the image $S^{\prime \prime \prime \prime}$ of S under a transformation whose matrix is AB. Hence describe a single transformation which maps S to $S^{\prime \prime \prime}$
(3marks)
23. The diagram below shows a right pyramid with a horizontal rectangular base $A B C D$ and vetex V. The area of the base is $60 \mathrm{~cm}^{2}$ and the volume of the pyramid is $280 \mathrm{~cm}^{3}$.
(a) The period of $y=\sin 2 x$

(a) Calculate the height of the pyramid
(b) Given that the ratio of the sides AB : BC is $3: 5$, find the length of:
i) AB
ii) $B C$
(c) Find the length of the slanting height
(d) Calculate the angle between the planes VCB and ABCD (2mks)
24. Mr. Joses has two lorries A and B used to transport atleast 42 tonnes of potatoes to the market. Lorry A carries 4 tonnes of potatoes per trip while lorry B carries 6 tonnes of potatoes per trip. Lorry A uses 2 litres of fuel per trip while lorry uses 4 litres of fuel per trip. The two lorries are to less than 32 litres of fuel. The number of trips made by lorry A should be less than the number of trips made by lorry B. Lorry A should make more than 4 trips.
a) Taking X to represent the number of trips made by lorry A and Y to represent the number of trips made by lorry B, write the inequalities to represent the above information
(4marks)
b) On the grid provided, draw the inequalities and shade the unwanted regions
(4marks)
c) Use the graph drawn in (b) above to determine the number of trips made by lorry A and by lorry B to deliver the greatest number of potatoes
(2marks)

MWINGI CENTRAL SUB-COUNTY JOINT EVALUATION EXAMS 2015
121/1
MATHEMATICS 'ALTA'
PAPER 1
TIME: $2 ½$ HOURS
JULY/AUGUST 2015

1.	$\begin{aligned} & \left.\hline \frac{\frac{2}{3} \times\left(\frac{10}{7}\right.}{\frac{-5}{8}}\right) \\ & \frac{3}{4}+\frac{12}{7} \div\left(\begin{array}{ll} \frac{4}{7} & \times \frac{7}{3} \end{array}\right) \\ & \frac{2}{3} \times \frac{45}{56} \\ & \frac{3}{4}+\left(\frac{12}{7} \times \frac{3}{4}\right) \\ & \left.\frac{(\underline{15}}{28}\right) \\ & \frac{3}{4}+\underline{9} \\ & \frac{15}{28} \div \underline{57} \\ & \frac{15}{28} \times \frac{28}{57} \\ & =\underline{15} \\ & =\frac{5}{57} \\ & \hline \end{aligned}$	7.	$\begin{array}{rlrl} \hline \hline \text { Volume } & \frac{22}{7} \times 28 \times 28 \times 62 \times \frac{60}{360} & \sqrt{1} \\ & \sqrt{ } 1 & 25461.3 \mathrm{~cm}^{3} & \sqrt{ } 1 \\ \hline \hline \end{array}$			
		8.	$\begin{array}{ll} \hline 3 x^{2} y^{2}+8 x y-51 & \\ 3 x^{2} y^{2}-9 x y+17 x y-51 & \sqrt{ } 1 \\ 3 x y(x y-3)+17(x y-3) & \sqrt{ } 1 \\ (x y-3)(3 x y+17) & \sqrt{ } 1 \\ \hline \end{array}$			
		10.	Mass	X	No. of seedpods	Fx
			10-13	11.5	20	230
			14-17	15.5	26	403
			18-21	19.5	32	624
			22-25	23.5	40	940
			26-29	27.5	35	962.5
			30-33	31.5	24	756
			34-37	35.5	23	816.5
				Total	200	4732
			$\begin{array}{rlr} \text { Mean } \bar{X} & =\underline{4732} \\ \bar{X} & =23.66 \quad \sqrt{1} \\ \hline \end{array}$			
		11.	New price $1.25 \times 360 \times 120=$ Shs. 54000 $\sqrt{ } 1$ Good trays $\underline{92} \times 360=331.2$ $\sqrt{ } 1$			
2.	Perimeter$\begin{array}{ll} 3.14 \times 8.4 \times 1 / 2=13.2 \mathrm{~cm} & \\ 3.14 \times 4 \times 1 / 2=6.28 \mathrm{~cm} & \sqrt{ } 1 \\ 90 \times 3.14 \times 4.4=3.45 \mathrm{~cm} & \sqrt{ } 1 \\ 360 & \sqrt{ } 1 \\ 2.2 \times 2=4.4 \mathrm{~cm} & \sqrt{ } 1 \end{array}$		$\text { Price }=\frac{54000}{331.2}=\text { Kshs. } 163.0$			$\sqrt{1}$
		12.	$\begin{aligned} & \text { Ty-3x+30=0 } \\ & \text { Point A, } 7(0)-3 x+30=0 \\ & X=10 \\ & A(10,0) \end{aligned}$			
3.	M:K = 5:3 Initially Mueni $\frac{5}{8} \times 24600=$ Kshs. 15375		$\begin{aligned} & \log =-30 \\ & y=-3 \\ & B(3,-3) \\ & \hline \end{aligned}$			
	$\begin{aligned} \text { Kilonzo } 24600-15375 & =\text { Kshs. } 9225 \\ 24600-18000 & =\text { Kshs. 6,600 } \\ 6600-9225 & =-2625 \\ \text { Percentage change }-2625 & \times 100 \%=-28.5 \% \\ 9225 & \sqrt{1} \sqrt{1} \quad \sqrt{1} \end{aligned}$	13				
4.	$\begin{aligned} & 60=2 \times 2 \times 3 \times 5 \\ & 42=2 \times 3 \times 7 \\ & \text { LCM }=2^{2} \times 3 \times 5 \times 7 \\ & \text { LCM }=420 \mathrm{~cm} \\ & \text { In metre } \frac{420}{100 \times 100}=420 \times 420=17.6 \mathrm{~m}^{2} \end{aligned}$		$\begin{aligned} & 20 x+24 y=1778400 \\ & 36 x+24 y=2498400 \\ & 16 x=720000 \\ & X=45000(\text { Kioko }) \\ & \frac{1}{6}(45000)+\frac{1}{5} y=14820 \\ & \frac{1}{5} y=7320 \\ & y=36600.00 \text { (Mutethya) } \end{aligned}$			
5.	$\begin{array}{cc} \hline \hline \mathrm{X}+14 \mathrm{x}=180 & \\ \mathrm{X}=12^{0} & \checkmark 1 \\ \text { Sides } \frac{360}{12}=30 \text { sides } & \checkmark 1 \end{array}$					
6.	$\begin{array}{ll} \hline \hline \frac{(a+b)(a-b)}{a(a-1)+b(a-1)} & \sqrt{ } 1 \\ \frac{(a+b)(a-b)}{(a-1)(a+b)} & \sqrt{ } 1 \\ =\underline{a-b} & \\ \hline a-1 & \sqrt{ } 1 \\ \hline \hline \end{array}$	14.	a) $150000 \times 77.24=$ Kshs. $11,586000 \quad \checkmark 1$			
			$\text { b) } \begin{array}{rlr} \frac{11586000}{122.27} & =94757.5 \quad \checkmark 1 \\ & =£ 94758 \quad \checkmark 1 \end{array}$			

15.		a)	$\begin{aligned} & \text { Volume of core large } \frac{1}{3} \pi R^{2}(h+x) \\ & \text { Volume of core small } \frac{1}{3} \pi\left(R^{2}(h+x)-r^{2} h\right) \\ & \text { Volume of frustrum }=\text { Volume of hemisphere } \\ & \frac{2}{3} \pi R^{3}=\frac{2}{3} \times 3.14 \times 5.2^{3}=294.3 \\ & \frac{\mathrm{~h}+\mathrm{x}}{\mathrm{~h}}=\frac{5.2}{1 / 3(5.2)}=\frac{3}{1} \text {, So } \mathrm{x}=2 \mathrm{~h} \\ & \mathrm{~h}=\frac{294.3}{3.14\left(3 \times 5.2^{3}-\left(\frac{8.2}{3}\right) 2\right.} \\ & \mathrm{h}=3.6 \mathrm{~cm} \end{aligned}$
16.	$\begin{aligned} & \frac{3}{\sqrt{5-2}}+\frac{1}{\sqrt{5}} \\ & \frac{3}{\sqrt{5-2}} \times \frac{\sqrt{5}+2}{\sqrt{5}+2} \\ & \frac{3 \sqrt{5}+6}{1} \\ & =6+3 \sqrt{5}+\frac{1}{\sqrt{5}} \\ & =6+\sqrt{5}\left(3+\frac{1}{5}\right) \\ & =6+\frac{16}{5} \sqrt{5} \\ & A=6, b=\frac{16}{5} \quad C=5 \end{aligned}$	\| 4 b)	Surface area of fustrum $\pi R \pi-\pi r l$ $\begin{aligned} & \mathrm{L}=\sqrt{10.8^{2}+52.22}= \\ & \mathrm{L} 1 \sqrt{116.64+27.04}=11.99 \\ & \mathrm{~L} 2=\sqrt{ }\left(1.733^{2}+3.6\right)^{2}=3.99 \\ & \mathrm{~S} . \mathrm{A}=3.14(5.2 \times 12-12-1.733 \times 4)=174.3 \mathrm{~cm}^{2} \end{aligned}$
			$\left[\begin{array}{l} \left(\begin{array}{cc} 2 & -9 \\ -1 & y \end{array}\right]\left[\begin{array}{cc} 6 & 17 \\ 3 & y-2 \end{array}\right] \\ =\left[\begin{array}{cc} -15 & 52-9 y \\ 3 y-6 & y 2-2 y-17 \end{array}\right] \\ 12 y^{2}-180 y+567=0 \\ 4 y^{2}-60 y+189=0 \\ x=\frac{60+\sqrt{3600-3024}}{8} \\ x=\frac{84}{8} \text { or } \frac{36}{8}=10.5 \text { or } 4.5 \end{array}\right.$
17		b)	$\begin{aligned} & 18 \mathrm{~b}+16 \mathrm{r}=113640 \\ & 14 \mathrm{~b}+12 \mathrm{r}=87480 \\ & \left(\begin{array}{ll} 18 & 16 \\ 14 & 12 \end{array}\right) \quad\binom{\mathrm{b}}{\mathrm{r}} \quad\binom{113640}{87480} \\ & \text { Det } 216-224=-8 \\ & \left(\begin{array}{l} -12 / 8+16 / 8 \\ +14 / 8 \\ -18 / 8 \end{array}\right) \quad\binom{113640}{87480} \\ & \begin{array}{l} 170460+174960=4500 \\ \begin{array}{l} \text { Bicycle shs. } 4,500=2040 \quad \checkmark 1 \\ \text { Radio shs. } 2040 \end{array} \\ \hline \end{array} \\ & \hline \end{aligned}$
	b)Time taken $\frac{280}{60}=4 \mathrm{hr}, 40 \mathrm{~min}$ Arrival time 8.15am for the lorry $4.40 \quad \checkmark 1$ 12.55 pm During overtaking distance travelled $\quad \checkmark 1$	C.	
	$\begin{aligned} & 60 \times 4=240 \mathrm{~km} \\ & 280-240=40 \mathrm{~km} \\ & \text { For car } \underline{40}=30 \mathrm{mins} \\ & \text { Time } 12.15 \mathrm{pm}-3 \text { hours } \\ & \quad=9.15 \mathrm{am} \end{aligned} \quad \checkmark 12$	20	a)
18			$\begin{aligned} & \text { Radius }=\underline{4.8}=2 R=5.54 \\ & \operatorname{Sin} 120 \\ & R=2.8 \mathrm{~cm} \end{aligned}$

Mathematics papers $1 \& 2$

24

MWINGI CENTRAL SUB-COUNTY JOINT EVALUATION EXAMS 2015
121/1
MATHEMATICS 'ALTA'
PAPER 1
TIME: $21 ⁄ 2$ HOURS
JULY/AUGUST 2015

\begin{tabular}{|c|c|c|c|c|c|}
\hline 11. \& \[
\begin{aligned}
\& \text { a) }(1-x)^{5} \\
\& \begin{array}{llll}
1 \& 5 \quad 10 \quad 10 \& 5 \& 1 \\
I-5 x+10 x^{2}-10 x^{3}+. . \& x=0.02 \\
1-5(0.02)+10(0.02)^{2}-10(0.02)^{3}+. . \\
1-0.1 \quad+0.004-0.00008+. . \\
=0.90392 \\
=0.904(3 d p)
\end{array} \\
\& \hline
\end{aligned}
\] \& \& \multirow[t]{2}{*}{17.} \& \multicolumn{2}{|l|}{\begin{tabular}{l}
(a) \\
(i) Taxable income \(=38892+2108=\) shs. 41,000 \\
(ii) \(10164 \times \frac{10}{100}=1016.40\)
\[
\begin{aligned}
\& 9576 \times \underline{15}=1436.40 \\
\& 9576 \times \underline{100}=1915.20+ \\
\& 100
\end{aligned}
\]
\end{tabular}} \\
\hline 12 \& \& \& \& \& \\
\hline 13 \& \& \begin{tabular}{l}
B1 \\
M1 \\
A1
\end{tabular} \& 18. \& \[
\begin{aligned}
\& \mathrm{R} \alpha \underline{\mathrm{~S}} \\
\& \mathrm{~T} \mathrm{~T}^{2} \\
\& \mathrm{R}=\underline{\mathrm{KS}} \mathrm{~T}^{2} \\
\& 480=\underline{150 \mathrm{k}} \\
\& \mathrm{~K}=\frac{480 \times 25}{150} \\
\& =80 \mathrm{~K}=80 \\
\& \mathrm{R}=\frac{80 \mathrm{~S}}{\mathrm{~T}^{2}}
\end{aligned}
\] \& B1
M1

A1
B1

\hline 14 \& | Diff. in longitude is $\left(37^{0}+0^{0}\right)=37^{0}$ |
| :--- |
| Diff. in time is $4 \times 37=148 \mathrm{~min} 2 \mathrm{~h} 28 \mathrm{~min}$ |
| Local time of B is 2 h 28 min a lead of that of A |
| From noon add 2 h 28 min to get $12.00+2 \mathrm{~h}$ |
| 28min $=2.28 \mathrm{pm}$ | \& | M1 |
| :--- |
| M1 |
| A1 | \& b) \& \[

$$
\begin{aligned}
& \text { (i) } \mathrm{R}= \frac{80 \times 360}{2.25} \\
&=12,800 \\
& \text { (ii) } \mathrm{R}_{0}=\underline{\mathrm{Ks} 0} \\
& \mathrm{~T}_{0}{ }^{2} \\
& \mathrm{R}_{1}=\underline{\mathrm{Ks}_{1}}
\end{aligned}
$$
\] \& M1

\hline 15 \& Centre is the mid-point of AB i.e.

\[
$$
\begin{aligned}
& \frac{-1+5}{2}, \frac{1+1}{2} \\
& =(2,1) \\
& \text { Radius }=\sqrt{ }(5-2)^{2}+(1-1)^{2} \\
& \sqrt{3} 3^{2} \\
& =3 \text { units }
\end{aligned}
$$

\] \& | M1 |
| :--- |
| M1 | \& \& \[

$$
\begin{aligned}
\mathrm{R}_{1} & =\underline{\mathrm{KS}_{1}} \mathrm{~T}_{1}{ }^{2} \\
\mathrm{~S}_{1} & =\underline{1.05} \text { So, } \mathrm{T} 1=0.8 \mathrm{~T}_{0} \\
\mathrm{R} 1 & =\underline{\mathrm{K} 05 \mathrm{kS} 0} \\
0.64 \mathrm{To}^{2} & \underline{1.6401 \mathrm{Ro}-\mathrm{Ro} \times 100} \\
\mathrm{R}_{1}=1.6406 \mathrm{R}_{0} & =64.06 \%
\end{aligned}
$$
\] \& M1

M1

A1

\hline \& $$
\begin{aligned}
& \text { Equation of circle }(x-2) 2+(y-1)=32 \\
& =(x-2)^{2}+(y-1)^{2}=9
\end{aligned}
$$ \& A1 \& \& (i) x \&

\hline 16 \& $$
\begin{aligned}
& 4 \sin (x+20)^{0}=3 \\
& \operatorname{Sin}(x+20) 3 / 4 \\
& X+20=48.59^{0}, 131.41^{0} \\
& X=28.59^{0}, 111.41^{0}
\end{aligned}
$$ \& \[

$$
\begin{aligned}
& \text { M1 } \\
& \text { M1 } \\
& \text { A1 }
\end{aligned}
$$

\] \& \& | $\begin{aligned} & x(x+9)=136 \\ & x 2+9 x-136=0 \\ & \frac{-9+\sqrt{81+4(136)}}{2} \\ & x_{1} 2=\frac{-9 \pm 25}{2} \\ & X=8 \text { or } x=-17 \end{aligned}$ |
| :--- |
| Width $=8$ Length 17 $P=2(8+17)=50 \mathrm{~m}$ | \&

\hline
\end{tabular}

KAMDARA JET- 2015
121/1
MATHEMATICS

PAPER 1

JULY/AUGUST 2015
TIME: $21 ⁄ 2$ HOURS

SECTION I (50 MARKS)

Answer all questions

1. Without using tables or calculator, evaluate
$\frac{\sqrt{7056}}{7 \times 15 \div 3-(9+14)}$
2. The price of foodstuff generally increased by 20% at the beginning of a drought season and reduced by 30% during harvest season. Express the new price as a ratio of the original price in its lowest form
3. Use reciprocal and square root tables to evaluate $\frac{\sqrt[3]{0.27}+12}{0.126}$
4. The exterior angle of a regular polygon is 24^{0}. Determine the sum of the interior angles.
5. Solve $4 x-3 \leq 6 x-1<3 x+16$ and represent your answer in a number line
6. The figure below represents a right-angled triangular plot of land $P Q R$. $P S$ is perpendicular to $B C$. If angle $P Q R=30^{\circ}$ and $P S=6.5 \mathrm{~cm}$, find the area of the plot.

7. Solve for x in the equation $3^{x+1}+3^{x}+3^{0}=109$
(3mks)
8. Using a ruler and a pair of compasses only, construct a trapezium $P Q R S$ in which $P Q=6 \mathrm{~cm}$ and angle $P Q R=105^{0}, Q R$ $=4 \mathrm{~cm}, R S=5 \mathrm{~cm}$ and $R S$ is parallel to $P Q$, hence locate point A on line $P Q$ such that angle $P A S=90^{\circ} . \quad$ (4mks)
9. Simplify $\frac{3 t^{2}-12}{3-(1+t)}$ (3mks)
10. A straight line through the points $A(2,1)$ and $B(4, m)$ is perpendicular to the line whose equation is $3 y=5-2 x$. Determine the value of m .
11. A liquid spray of mass 384 g is packed in a cylindrical container of internal radius 3.2 cm . Given that the density of the liquid is $0.6 \mathrm{~g} / \mathrm{cm}^{3}$, calculate to 2 decimal places the liquid in the container
12. If $\sin x=\sqrt{2}-1$ where x is an acute angle, find in the form $a+b \sqrt{c}$,
a) $\cos (90-x)$
b) $\tan x$
13. If $x: y=9: 11$, find the ratio of $(5 x-3 y):(2 x+3 y)$.
14. Timmons sold a TV set costing Ksh. 47,000 at a profit of 20%. He earned a commission of $22 \frac{1}{2} \%$ on the profit. Find the commission he earned.
15. A car uses 1 litre of petrol for every 8 kilometres. The car was to travel 480 kilometres and had 15 litre of petrol at the beginning of the journey. Each litre of petrol cost sh. 112.00. How much did it cost for the extra petrol added?
(3mks)
16. An enlargement with centre $(-2,3)$ maps $(1,0)$ onto $(4,-3)$. What is the image of $(-3,-6)$ with the same centre of enlargement

SECTION II (50MKS)

Answer any five questions from this section in the spaces provided.

17 The height of a wooden solid cone is 45 cm and its curved surface area is four times the area of the base. Calculate:
a) The radius of of the base
b) The total surface area of the cone.
c) The volume of the cone
18. A trader sold his article at sh. 4800 after allowing his customers 20% discount on marked price of the article. In so doing he made a profit of 20%. After selling three - quarters of his stock, a new product entered the market and therefore he sold the remaining stock at 10% loss.
Calculate:
a) The marked price of the article
b) The price at which the trader bought the article
c) The percentage profit if he sold the article without allowing discount.
d) The percentage profit he made from the total sales.
19. a) Draw on graph paper triangle $A B C$, whose vertices are $A(0,12), B(6,0)$ and $C(12,18)$. Draw the line of symmetry for triangle ABC and write down its equation
b) Draw $A^{\prime} B^{\prime} C^{\prime}$, the image of $A B C$, under reflection in the line $y-x=0$
c) Write down the coordinates of the two points which are invariant under this transformation
d) Determine the centre of rotation which maps $A^{\prime} B^{\prime} C^{\prime}$ onto $A C B$
20. In the figure below, $\boldsymbol{D E}=\frac{1}{2} \boldsymbol{A B}$ and $\boldsymbol{B C}=\frac{2}{3} \boldsymbol{B} \boldsymbol{D}$ and the coordinates of A, B and D are $(5,4),(9,6)$ and $(12,0)$ respectively.

A $(5,4)$
D $(12,0)$
a) Find the column vectors:
i) BD
ii) BC
iii) $C D$
iv) AC
b) Given that $\mathrm{AC}=\mathrm{kCE}$, where k is a scalar,

Find:
i) The value of k
ii) The ratio in which C divides AE
21. Kamdara and Jet are two towns 320 kilometres apart. A bus left A at 8.00 am travelling at $60 \mathrm{~km} / \mathrm{h}$ for town B. After forty minutes, a saloon car left A travelling in the same direction as the bus at a speed of $80 \mathrm{~km} / \mathrm{h}$.
a) How far from B did the saloon car catch up with the bus?
b) At what time did it catch up with the bus?
c) When the saloon caught up with the bus it got a break - down and had to be repaired before proceeding to B at the same speed. If they both reached at B at the same time, find how long it took to repair the saloon?
(4mks)
22. Three people Kariuki, Juma and Mulure are having their homes situated within the town. Mulure's home is 9 km away from Juma's home on a bearing of 150°. Kariuki's home is on a bearing $\mathrm{N} 30^{\circ} \mathrm{E}$ from Mulure's home and on a bearing of 135° from Juma's home.
a) Draw a sketch to show the relative position of the three homes
b) Use your sketch to calculate the:
i) Distance of Kariuki's home from Juma's home
ii) Distance of Mulure's home from Kariuki'e home
iii) Bearing of Juma's home from Kariuki's home
23. The diagram below shows a histogram representing marks obtained in maths test by form one of St. Teresa Boys

a) Develop a frequency distribution table for the data
(4mks)
b) State the modal frequency.
c) Estimate the mean using and assumed mean of 33
24. Matrix T is given by $\left(\begin{array}{ll}4 & 7 \\ 5 & 5\end{array}\right)$
a) Find T^{-1}
b) Aquinas High School purchased 8 bags of rice and 14 bags of sugar for sh. 106,000.Buru Buru Girls High school purchased 10 bags of rice and 10 bags of sugar for sh. 95,000 . Each bag of rice cost Sh.R and a bag of sugar coat sh. S.
i) Form matrix equation to represent the information above
(1mk)
ii) Use the matrix T^{-1} to find the prices of one bag of each item.
c) The price of beans later went up by 5% and that of sugar remained constant. Buru Buru Girls bought the same quantity of rice but spent total amount of sh. 87,250 on the two items. State the new ratio of rice to sugar.
(3mks)

KAMDARA JET- 2015
121/2
MATHEMATICS
PAPER 2
July/August 2015
$21 / 2 \mathrm{hrs}$
Answer all the questions in this section in the spaces provided

1. Use logarithms in all steps to evaluate: $\frac{2.53^{2} \times 83.45}{\sqrt{0.4562}}$
2. Find the range of value of $\frac{76.8 \times 16}{40.18 \div 20.6}$
3. A quantity T is partly constant and partly varies as the square root of S .
a) Using constants a and b write down an equation connecting T and S
(1 mk)
b) If $\mathrm{S}=16$ when $\mathrm{T}=24$ and $\mathrm{S}=36$ when $\mathrm{T}=32$, Find the values of the constants a and b
4. Given that $A=\pi(R-r)(R+r)$, Make R the subject of the formula
5. Without using tables or calculator, solve for x .
$\frac{1}{2} \log _{3} 729-2 \log _{3} x+1=0$
(3mks)
6. In the diagram below, X is the point of intersection of the chords AC and BD of the circle such that $\mathrm{AX}=8 \mathrm{~cm}, \mathrm{XC}=4 \mathrm{~cm}$ and $\mathrm{XD}=6 \mathrm{~cm}$.

(a) Find the length of $X B$.
(b) Given that the area of triangle $A X D=6 \mathrm{~cm}^{2}$. Find the area of triangle BXC.
(2mks)
7. Two grades of Kenyan coffee costing sh. 200 and sh. 250 per kg respectively are mixed in the ratio $3: 5$ by weight. The mixture is then sold at ksh. 240 per kg. Find the percentage profit on the cost.
(3mks)
8. A shear parallel to the x-axis maps point $(1,2)$ onto a point $(5,2)$. Determine the shear factors and hence state the shear matrix (invariant line is $y=0$)
9. a) Expand and simplify the binominal expression $(2+2 y)^{5}$ in ascending powers of y
b) Use the expansion up to the fourth term to evaluate (2.02) ${ }^{5}$ correct to 4 decimal places.
10. Without using a calculator or mathematical tables, express $\frac{\cos 30^{\circ}}{\tan 45^{\circ}+\sqrt{3}}$ in surd form and simplify

Leaving your answer in the form $\mathrm{a}+\mathrm{b} \sqrt{ } \mathrm{c}$ where a, b, and c are rational numbers
11. Find the equation of the normal of the curve. $y=x^{5}+3 x^{2}+5 x$ at the point $(1,3)$
12. Give that $x^{2}+6 x+y^{2}-8 y-11=0$ is the equation of a circle, find the centre and the radius of the circle. (3mks)
13. If $\mathbf{r}=3 \mathbf{i}-\mathbf{j}+\mathbf{k}$ and $\mathbf{t}=\mathbf{j}+2 \mathbf{k}$. $\mathrm{P}=\mathbf{r}-2 \mathbf{t}$ find $|\mathrm{P}|$ to 4 s.f.
14. Solve for x in the equation $3 \cos ^{2} x+\sin x+1=0$
$0 \leq x \leq 360^{\circ}$ (4mks)
15. An object of an area $4 \mathrm{~cm}^{2}$ is mapped onto an area $64 \mathrm{~cm}^{2}$ under the transformation of matrix $\left(\begin{array}{cc}n & 7 \\ -1 & n\end{array}\right)$. Find the possible values of n.
16. In the figure below, $P Q R S T$ right pyramid on a rectangular base. Point O is vertically below $P, Q R=24 \mathrm{~cm}, R S=10 \mathrm{~cm}$ and $\mathrm{RP}=26 \mathrm{~cm}$. Calculate the angle the plane RSP makes with the base.

Section II (50 marks)

Answer any five questions in this section
17. Two tanks of equal volume are connected in such a way that one tank can be filled by pipe A in 1 hour 20 minutes. Pipe B can drain one tank in 3hours 36 minutes but pipe C alone can drain both tanks in 9 hours. Calculate:
(a) The fraction of one tank that can be filled by pipe A in one hour.
(b) The fraction of one tank that can be drained by both pipes B and C in one hour.
(c) Pipe A closes automatically once both tanks are filled. Assuming that initially both tanks are empty and all pipes opened at once, calculate how long it takes before pipe A closes.
(4mks)
18. The first three terms of a geometric series are $2 x, x-8$ and $2 x+5$ respectively.
a) Find the possible values of x.
b) For the value of x being an integer, find:
i) The value of the eleventh term
ii) The sum of the first 15 terms
19. A man sold a plot of land for sh. 160,000 and invested the money in a bank which pays 12% p.a. compounded semiannually. After 2 years, he withdrew sh. 100,000 and the left the rest for a further 3 years.
a) How much did she leave in the bank at the end of 2 years?
(4mks)
b) How much did he have in the bank at the end of 5 years?
c) Calculate the total interest made for the whole period.
20. a) Complete the table below for the functions $y=3 \sin \left(2 x-30^{\circ}\right)$ and $y=\cos \left(x+60^{\circ}\right)$ for $-180^{\circ} \leq x \leq 180^{\circ}(2 \mathrm{mks})$

X	-180	-150	-120	-90	-60	-30	0	30	60	90	120	150	180
$3 \sin \left(2 \mathrm{x}-30^{\circ}\right)$	-1.50	1.50	3.00			-3.00		1.50	3.00	1.50	-1.50		
$\operatorname{Cos}\left(\mathrm{x}+60^{\circ}\right)$		0.00		0.87	1.00	0.87	0.50	0.00			-1.00		

(b) Draw the graph of the functions on the same axes on the grid provided.
(5mks)
(c) Use your graph to solve
(i) $3 \sin \left(2 x-30^{\circ}\right)=0.8$
(ii) $3 \sin \left(2 x-30^{\circ}\right)-\cos \left(x+60^{\circ}\right)=0$
(iii) $\operatorname{Cos}\left(x+60^{\circ}\right)=-0.2$
21. Every evening before the end of preps, Eunice either reads a novel or solves a mathematical problem. The probability that she reads a novel is $\frac{4}{5}$. If she read a novel, there is a probability of $\frac{3}{4}$ that she will fall asleep. If he solves a mathematical problem, there is a probability of $\frac{1}{4}$ that she will fall asleep. Sometimes the teacher on duty enters Eunice's classroom. When Eunice is asked whether she had been asleep, there is a probability of only $\frac{1}{5}$ that she will admit that she had been asleep and a probability of $\frac{3}{5}$ that she will claim to have been asleep when she had not been asleep
By use of a tree diagram, find the probability that
a) She sleeps and admits
(4 mks)
b) She sleeps and does not admit
(2 mks)
i. She does not sleep but claims that she had been asleep
(2 mks)
ii. She does not sleep and says that she has not been asleep
22. a) Complete the table of the functions $y=1+x-2 x^{2}$

x	-3	-2	-1	0	1	2	3
$-2 \mathrm{x}^{2}$	-18			0	-2		
3	3	3	3	3	3	3	3
y	-18	-7			0		

b) Draw the graph of the function $y=3+x-2 x^{2}$ on the graph paper provided.
(3mks)
c) Use your graph to find the value for x in the equation $3+x-2 x^{2}=0$
d) By drawing a suitable line graph on the same graph find the value for \mathbf{x} which satisfies the equation $2+2 x-2 x^{2}=0$
(3mks)
23. A particle P moves in a straight line so that its velocity, $V m / s$ at time $t \geq 0$ seconds t is given by $V=28+t-2 t^{2}$. Find
a) The time when p is momentarily at rest.
(3mks)
b) The speed of \mathbf{P} at the instant when the acceleration of the particles is zero.
c) Given that \mathbf{P} passes through the point \mathbf{O} of the line when $t=0$, find the distance of \mathbf{P} from \mathbf{O} when \mathbf{P} is momentarily at rest.
(3mks)
24. An aircraft leaves town $P\left(30^{\circ} \mathrm{S}, 17^{\circ} \mathrm{E}\right)$ and moves directly northwards to $Q\left(60^{\circ} \mathrm{N}, 17^{\circ} \mathrm{E}\right)$. It then moved at an average speed of 300 knots for 8 hours westwards to town R. Determine;
a) The distance $P Q$ in nautical miles.
b) The position of town R.
c) The local time at R if local time at Q is $3.12 \mathrm{p} . \mathrm{m}$
d) The total distance moved from P to R in kilometers. Take 1 nautical; $=1.853$ kilometres.

KAMDARA JET- 2015
121/1
MATHEMATICS
PAPER 1
JULY/AUGUST 2015
TIME: $21 ⁄ 2$ HOURS

Qs	SOLUTIONS		
1 	$\begin{aligned} & \frac{\sqrt{7056}}{7 \times 15 \div 3-(9+14)} \\ & \frac{\sqrt{2 \times 2 \times 2 \times 2 \times 3 \times 3 \times 7 \times 7}}{7 \times 15 \div 3-23} \\ & \frac{\sqrt{2^{4} \times 3^{2} \times 7^{2}}}{7 \times 5-23} \\ & \frac{2^{2} \times 3 \times 7}{35-23} \\ & \frac{2^{2} \times 3 \times 7}{12}=7 \end{aligned}$ New price $=120 \%$ Old price	10	$\begin{aligned} & y=5 / 3-2 / 3 x \\ & \text { gradient }(m 1)=-2 / 3 \\ & \text { gradient } m 2=3 / 2 \\ & 1-m=3 \\ & 2-4=2 \\ & 2-2 m=-6 \\ & 2 m=8 \\ & m=4 \\ & y-1=3 \\ & x-2=2 \\ & 2 y-2=3 x-6 \\ & 2 y=3 x-4 \\ & y=3 / 2 x-2 \end{aligned}$
2	$\begin{aligned} & \text { New }=70 \% \text { of }(120 \% \text { of old price } \\ & \text { New }=0.7 \times 1.2=0.84 O P \\ & N P=0.84 O P \\ & N P: O P=0.84: 1=21: 25 \end{aligned}$	11	$\begin{aligned} & \text { Volume }=\frac{384}{0.6}=640 \\ & \frac{22}{7} \times 3.2 \times 3.2 \times h=640 \\ & h=640 \times \frac{7}{22} \div 3.2 \div 3.2 \\ & =19.89 \mathrm{~cm} \end{aligned}$
3	$\sqrt[3]{270} \times \sqrt[3]{10^{-3}}=$		
4	No of sides $=\frac{360}{24}=15$ No of tiangles $=15-2=13$ Sum of angle $=13 \times 180=2,340^{\circ}$		
		12	
5	$\begin{array}{cc} \hline 4 x-3 \geq 6 x-1 & 6 x-1<3 x+16 \\ 4 x-6 x \geq-1+3 & 6 x-3 x<16+1 \\ 2 x \geq 2 & 3 x<17 \\ x \geq 1 & x<17 / 3 \\ & x<52 / 3 \\ 1 \geq x \text { 52/3 } & \\ \text { Integral solutions } \\ 1,2,3,4,5 & \\ \hline \hline \end{array}$	13	$\begin{aligned} & \frac{x}{y}=\frac{9}{11} \rightarrow x=9 k \text { and } y=11 k \\ & \{5(9 k)-3(11 k)\}:\{2(9 k)+3(11 k)\} \\ & (45 k-33 k):(18 k+33 k) \\ & 12 k: 51 k \\ & =4: 17 \end{aligned}$
		14	$\text { Profit }=\frac{20}{100} \times 47,000=\text { Sh. } 9,400$
6	$\begin{aligned} & Q S=\frac{6.5}{\tan 30}=112.58 \mathrm{~m} \\ & S R=\frac{65}{\tan 60}=37.53 \\ & Q R=112.58+37.53=150.11 \mathrm{~m} \\ & \quad \text { Area }=\frac{1}{2} \times 150.11 \times 65=4878.575 \mathrm{~m}^{2} \end{aligned}$		$\text { Commission }=\frac{45}{200} \times 9,400=\text { Sh. } 2,115$
		15	$\begin{aligned} & \text { Total Litres Required }=\frac{480}{8}=60 \text { litres. } \\ & \text { Extra Required litres }=60-15=45 \mathrm{~km} \\ & \text { Cost of fuel }=45 \times 112=\text { Sh. } 5,040 \end{aligned}$
7	$\begin{aligned} & 3\left(3^{x}\right)+3^{x}+1=109 \\ & 4\left(3^{x}\right)=108 \\ & 3^{x}=27=3^{3} \\ & x=3 \end{aligned}$	16	$\begin{aligned} & k=\frac{4--2}{1--2}=\frac{6}{3}=2 \\ & \frac{x--2}{-3--2}=2 \end{aligned}$
8.			$x+2=-2 \quad x=-4$
9	$\begin{aligned} & \frac{3\left(t^{2}-2^{2}\right)}{3-1-t} \\ & \frac{3(t+2)(t-2)}{2-t} \\ & \frac{-3(t+2)(2-t)}{(2-t)} \\ & =-3(t+2) \\ & \hline \end{aligned}$		$\begin{aligned} & \frac{y-0}{-6-3}=2 \\ & y-3=-18 \quad y=-15 \\ & \text { Image }=(-4,-15) \end{aligned}$

KAMDARA JET- 2015

121/2
MATHEMATICS

PAPER 2

JULY/AUGUST 2015
TIME: $21 / 2$ HOURS

22		
23	$\begin{gathered} 2 t^{2}-t-28=0 \\ 2 t^{2}-8 t+7 t-28=0 \\ 2 t(t-4)+7(t-4)=0 \\ (2 t+7)(t-4)=0 \\ t=4 \mathrm{sec} \\ \frac{d y}{d x}=1-4 t \\ 4 t=1 \\ t=\frac{1}{4} \mathrm{sec} \\ V=28+\frac{1}{4}-2\left(\frac{1}{4}\right) 28 \frac{1}{8} \mathrm{~m} / \mathrm{s} \\ S=-\frac{2}{3} t^{3}+\frac{1}{2} t^{2}+28 t+0 \\ A t t=4 \\ S=28 \times 4+\frac{1}{2} \times 16-\frac{2}{3} \times 64=77 \frac{1}{3} \text { metres } \end{gathered}$	M1 M1 A1 M1 A1 M1 A1 M1 M1 A1
24	$\begin{gathered} \hline \hline \text { lat diff }=60-30=30 \\ \text { distance }=30 \times 60=1800 \mathrm{~nm} \\ \text { Distance }=8 \times 300=2400 \mathrm{~nm} \\ (x+17) 60 \cos 60=2400 \\ x+17=\frac{2400}{30}=80 \\ x=63^{0} \\ \text { Position of } R\left(60^{\circ} \mathrm{N}, 63^{0}\right) \\ \text { Lang Diff }=17+63=80 \\ \text { Time Diff }=80 \times \frac{4}{15}=5 \mathrm{hrs} 20 \mathrm{~min} \\ \text { Local Time }=15 \mathrm{hr} 20 \mathrm{~min}-5 \mathrm{hr} 20 \mathrm{~min} \\ 9.52 \mathrm{a} . \mathrm{m} \\ \text { Distance }=1800+2400=4200 \\ 4,200 \times 1.853=7,782.6 \mathrm{~km} \end{gathered}$	M1 A1 M1 M1 A1 B1 M1 A1 M1 A1

MERU FORM 4 JOINT EVALUATION TEST

121/1
MATHEMATICS
PAPER 1
JULY/AUGUST 2015
TIME: $21 / 2$ HOURS
SECTION 1 (50 MARKS)
Answer ALL the questions in this section.

1. Evaluate using logarithms
(4 Marks)
$\sqrt[5]{\frac{6.231}{242.7}}$
2. Use the prime factors of 3136 and 2744 to evaluate:
(3 Marks)
$\frac{\sqrt{3136}}{\sqrt[3]{2744}}$
3. A rectangular slab of glass measures 8 cm by 3 cm by 2 cm and has a mass of 5.5 kg . Calculate the density of glass in $\mathrm{g} / \mathrm{cm}^{3}$.
4. The figure below shows a net of a solid which is not drawn to scale.

(a) Sketch the solid ABCDEF with ABCD as the base.
(2 Marks)
(b) Calculate its volume.
(2 Marks)
5. A trader at Chuka town sells a school shirt at Sh. 725 and makes 45% profit. During clearance sale he reduced the price of the shirt by 20%. What percentage profit did he make.
6. Fine the value of x in the equation:
$27^{x}+33^{x-1}=108$
7. The figure below shows a sector of a circle of radius 15 cm . Calculate the area of the sector given than angle $\theta=2.4$ radians.

8. Simplify the expression completely:
(3 Marks)
$\frac{12 x^{2}-6 x y+4 y^{2}}{18 x^{2}-2 y^{2}}$
9. A ship sails from harbour P on an bearing 030° for 900 km until it reaches harbour Q . It then alters its direction to a bearing of $340+$ and sails from 1200 km to harbour R. Calculate the distance between harbours P and R. (3 Marks)
10. A regular polygon has the sum of its interior angles as 1800°.
(i) How many sides are there in the polygon?
(2 Marks)
(ii) How many triangles can be made by joining one of its vertices with all other vertices with straight lines.
11. Without using a calculator evaluate $\frac{-8 \div 11-2}{4 \div 16 \text { of } 2 \times 51 \div 33}$ giving your answer as a mixed fraction.
12. Solve the inequality $3-\mathrm{x}<\mathrm{x} \leq \frac{2 x+5}{3}$ and state the integral values satisfying the solution.
13. The figure below shows the section of a wedge. $\mathrm{AB}=4 \mathrm{~cm}, \mathrm{BC}=13 \mathrm{~cm}, \mathrm{CD}=12 \mathrm{Ccm}, \mathrm{AD}=3 \mathrm{~cm}$ and $\mathrm{BD}=5 \mathrm{~cm}$.

Given that angle $\mathrm{ADC}=90^{\circ}$, find the volume of the solid and the length of AC .
(4 Marks)
14. Using reciprocal tables only evaluate $\frac{30}{0.01492}+\frac{12}{16.58}$ correct to 4 S.F
15. The cost per kg of Sony Sugar is KSh. 60 and the cost per kg of Imported Sugar is KSh. 80. The two brands of Sugar are mixed and sold at a profit of 30% above the cost. If 1 kg of the mixture was sold at KSh. 84.50 , determine the ratio in which the two brands were mixed.
(3 Marks)
16. The points $P^{1}(5,4)$ and $Q^{1}(6,1)$ are the images of P and Q respectively under translation. Given that the co-ordinates of P and (2,3), find the co-ordinates of Q.

SECTION II - 50 MARKS

Answer only FIVE questions from this section.

17. The figure below is a right rectangular based pyramid $V A B C D$ where $A B=5 \mathrm{~cm}, B C=7 \mathrm{~cm}, V C=13 \mathrm{~cm}$ and 0 is a point on the base of the pyramid vertically below V .

Calculate
(a) AC
(b) VO, the height of the pyramid.
(c) the angle between the edge VB and the plane ABCD.
(d) the angle between the planes VBC and ABCD.
18. The table below shows the distribution of marks of 100 form three students in a mathematics examination.

Marks	$1-10$	$11-20$	$21-30$	$31-40$	$41-50$	$51-60$	$61-70$	$71-80$	$81-90$	$91-100$
No. of students	2	8	15	18	17	14	10	8	6	2

(a) Using the scale of 1 cm represent 10 marks and 1 cm to represent 5 students draw a cumulative frequency curve to represent the above information on the provided grid.
(b) Using your graph, estimate the
(i) Median
(ii) Semi-interquartile range
(iii) number of students who passed if pass mark was 43%
19. (a) A lamp shade is in the form of a frustum of a cone of diameter 21 cm and 28 cm . Its height is 10 cm . Calculate the volume of the lampshade.
(c) Two circles each of radius 5 cm intersects such that the distance between their centres is 6 cm . The length of the common chord joining the two points of intersection is 8 cm . Calculate the area of intersection.
(5 Marks)
20. Use a ruler and a pair of compasses only for all construction in this question.
(a) Construct qualilateral $P Q R S$ such that $P Q=5 \mathrm{~cm}, \mathrm{PS}=5 \mathrm{~cm}$ and $\mathrm{SR}=4.5 \mathrm{~cm}$, angle $\mathrm{SPQ}=750^{\circ}$ and angle $\mathrm{PSR}=$ 90°.
(b) Drop a perpendicular from S to meet line $P Q$ at N. Measure $S N$ and calculate the area of the triangle SPN.
(3 Marks)
(c) Construct a circle passing through vertices P, Q and R of quadrilateral PQRS. Measure the radius of the circle.
21. In the figure below, O is the centre of the circle. Angle $\mathrm{AEB}=50^{\circ}$, angle $\mathrm{EBC}=80^{\circ}$ and angle $\mathrm{ECD}=30^{\circ}$. Giving reasons calculate:
(a) Angle CDE

(b) Angle DFE
(c) Obtuse angle COE
(d) Angle ADE
22. The length and the width of a rectangular are $(6 x-1)$ and $(x-2)$ respectively. If the length and width are each increased by 4 cm the new area is thrice that of the initial rectangle.
(a) Find the dimension of the initial rectangle.
(b) By what percentage does the area of the rectangle increase after the change.
(c) What is the difference in size between the length and the width of the initial rectangle.
23. A,B,C and D are four schools where B is 84 km north of A an C is on a bearing of $N 65^{\circ} W$ from A at a distance of 60 km . D is on a bearing of $\mathrm{N} 20^{\circ} \mathrm{W}$ from C and at a distance of 30 km .
Use a scale drawing to show relative positions of A, B, C and D using a scale of 1 cm to represent 10 km .
Find;
(a) the distance and bearing of B from C .
(b) the bearing and distance of D from B.
(c) the bearing of A and D .
24. The velocity of a particle after t seconds is given by $V=t 2-4 t+4 m / s$. Determine the;
(a) initial velocity of the particle.
(b) time taken the particle is momentarily at rest.
(c) acceleration of the particle at $t=4$.
(d) displacement of the between $t=1$ seconds and $t=13$ seconds.

MERU FORM 4 JOINT EVALUATION TEST

121/2
MATHEMATICS

PAPER 2

JULY/AUGUST 2015
TIME: $21 / 2$ HOURS

SECTION I (50 MARKS)

Answer ALL questions in this section.

1. The seventh term of an arithmetic progression is 15 while twice the third is 94 . Calculate the first term and the common difference of the progression.
(3 Marks)
2. The sides of a triangle were measured to 1 dp as $6.4 \mathrm{~cm}, 7.3 \mathrm{~cm}$ and 8.2 cm respectively. Calculate the percentage error in its perimeter.
(3 Marks)
3. In the figure below $A B$ is the diameter, $C D$ is a tangent to the circle at B and angle $C B E$ is 200 . Calculate the angles labelled x, y and z .

4. Simplify the fraction.
$\frac{(2 \sqrt{3}-\sqrt{6})^{2}}{3-2 \sqrt{2}}$
5. The table below shows masses of marbles in a certain lab.

Mass (g)	Number of marbles
$20.0-20.4$	5
$20.5-20-9$	7
$21.0-21.4$	16
$21.5-21.9$	10
$22.0-22.4$	14
$22.5-22.9$	13

Estimate the median using calculation.
(4 Marks)
6. Given that $\operatorname{Sin} \theta=\frac{5}{13^{\prime}}$, determine the value of $\tan (90-\theta)$ without using a calculator or mathematical tables.
(2 Marks)
7. Points $P(2,3)$ and $Q(4,5)$ are mapped into $P^{1}(12,14)$ and $Q^{1}(22,24)$ respectively by a transformation matrix T. Find the matrix T .
8. Expand and simplify $(2-y)^{5}$ and use the first four terms to find the approximate value of $(1.8)^{5}$ to 2 decimal places. (4 Marks)
9. AB is a diameter of a circle. Given that the coordinates of A and B are $(-2,2)$ and $(-2,6)$ respectively, find the equation of the circle in the form $a x^{2}+b y^{2}+c x+d y+e=0$
10. Solve for x in the equation.
$2 \log _{10} \mathrm{X}+\log _{10} 5=1+2 \log _{10} 4$.
11. Given that $\left(\begin{array}{cc}2 x & 2 \\ -7 x & (x-4)\end{array}\right)$ is a singular matrix find the possible values of x .
12. A fire engine left the fire station at 9.15 a.m and travelled with an average speed of $64 \mathrm{~km} / \mathrm{h}$. At 10.10 a.m, an ambulance left the fire station and caught up with fire engine at 11.40 am . Find the average speed of ambulance to the nearest whole number.
13. Find the length $N X$ in the figure below that $P Q=9 \mathrm{~cm}, P X=12 \mathrm{~cm}$ and $M X=15 \mathrm{~cm}$.

14. In August 2014, a tourist visited Mombasa with 240 sterling pounds which she changed to Kenya Shillings at the rate of KSh. 112.00 per sterling pound. She spent KSh. 1000.00 on accommodation and a half of what remained on entertainment. The balance she converted to Sterling pounds at the rate of KSh. 113.50 per pound. How many Sterling pounds did she have left?
(4 Marks)
15. Jane bought five Physics books and six Mathematics books for a total of Sh. 2440 . Her friend Gakii bought two Physics books and three Mathematics books more than Jane and spent Sh. 3560.00.
Calculate the cost of each Mathematics book.
16. Give that $\mathbf{a}=6 \mathbf{i}, \mathbf{b}=5 \mathbf{i}-3 \mathbf{j}$ and $\mathbf{c}=3 \mathbf{i}+\mathbf{j}$, find scalars h and k such that $\mathrm{ha}+\mathrm{kb}=\mathrm{c}$

SECTION II - 50 MARKS
Answer only FIVE questions from this section.
17. (a) The $\mathrm{n}^{\text {th }}$ term of a series is given by $6-4 \mathrm{n}$.
(i) Write down the first four terms of the series.
(2 Marks)
(ii) Find the sum of the first 16 terms of the series.
(iii) Find the $25^{\text {th }}$ term.
(b) A colony of bees was found to have 100 bees at the beginning. Thereafter, the number doubled every two days. How many bees will be in the colony after 14 days?
18. Weather records indicate that the probability of rain falling in Chuka town in March, July and September are $\frac{9}{10}, \frac{4}{10}$ and $\frac{1}{20}$ respectively. Calculate the probability that in a certain year:
(i) There will no rain in March, July and Sepemmber.
(ii) There will be rain in March, July and September.
(iii) There will be rain in at least 2 of the 3 months i.e. March, July and September.
(iv) There will be rain in at most 2 of the 3 months i.e. March, July and September.
19. (a) In a certain year income tax was charged at the rates shown below.

Income (K£p.a)	Rate of tax KSh. per K£
$1-5808$	2
$5809-11280$	3
$11281-16752$	4
$16753-22224$	5
Above 2224	6

Mrs. Munene earns a basic salary of KSh. 15000.00, a house allowance of KSh. 8,000.00 and a commuter allowance of KSh. $2,000.00$ per month. She pays a health insurance scheme at Sh. 320 per month and she is entitled to a personal relief of Sh. 1156.00 per month.
Determine
(i) Her annual taxable income in $\mathrm{K} £$
(2 Marks)
(ii) The income tax she pays per year after relief.
(b) A taxi businessman borrows Sh. 650,000.00 from a bank to buy a taxi valued at the same amount. The bank charges interest at 24% p.a. compounded quarterly. Calculate the compound interest paid to the bank after 1 $1 / 2$ years rounded to the nearest shilling.
(4 Marks)
20. In the diagram below $\mathbf{O X}=\mathrm{x}$ and $\mathrm{OY}=\mathrm{y}, \mathrm{M}$ and N are points on OY and XY respectively where $\mathrm{OM}=\frac{1}{3} \mathrm{OY}$ and $\mathrm{XN}=$ $\frac{2}{5} \mathrm{XY}$. Lines XM and ON interest at P such that $\mathrm{OP}=\frac{5}{9} \mathrm{ON}$.

(a) Express in terms of vector x and y .
(i) XY
(1 Mark)
(ii) ON
(iii) XM
(b) Express XP and PM in terms of \mathbf{x} and \mathbf{y}
21. (a) Complete the table below by filling the blank spaces.

X^{0}	0^{0}	15^{0}	30^{0}	45^{0}	60^{0}	75^{0}	90^{0}	105^{0}	120^{0}	135^{0}	150^{0}	165^{0}	180^{0}
$\operatorname{Sin} \theta$	3			0			-3		-1.5				3
$\operatorname{Cos} \theta$			1.73		2				1		0		

(b) On the grid provided draw on the same axis the graph of $y=3 \operatorname{Cos} 2 x$ and $y=2 \operatorname{Sin}(x+30)^{0}$ for $0^{0} \leq x \leq 180^{0}$. Use a scale 1 cm to represent 1500 on the x -axis and 2 cm to represent 1 unit on the y - axis.
(4 Marks)
(c) Use your graph to
(i) Solve for x when $2 \operatorname{Sin}(x+30)^{0}-3 \operatorname{Cos} 2 x^{0}=0$
(2 Marks)
(ii) Estimate the range of x when $2 \operatorname{Sin}(x+30)^{0} \geq 3 \operatorname{Cos} 2 x$ giving your answer to the nearest degree.
22. Two variables P and T are related by the formula $P=y T^{x}$ where x and y are constants. The table below gives some values of the independent variable T and the corresponding values of the dependent variable P.

T	2	3	4	5	7
P	44.9	118.7	236.8	404.5	907

(a) Complete the table below correct to 2 decimal places for $\log \mathrm{T}$ and $\log \mathrm{P}$.
(2 Marks)

Log T	0.30				
Log P	1.65				

(b) Given that the two variables P and T satisfy the linear equation in the form of $\log =p \log y+x \operatorname{logT}, p \operatorname{lot} \log p$ against T in the grid provided. Hence draw a line of best fit.
(Use a scale of 2cm:0.1 units in the axis and $2 \mathrm{~cm}: 0.5$ units in the y axis)
(c) Use your linear graph to obtain, correct to $1 \mathrm{~d} . \mathrm{p}$
(i) Constants x and y
(3 Marks)
(ii) P when $\mathrm{T}=6$
23. (a) Complete the table given below for $y=x 3-4 x 2+x+6$ for $-2<x<4$.

x	-2	-1	0	1	2	3	4
x^{3}		-1	0			27	64
$-4 x^{2}$	-16	-4	0		-8		-64
x		-1	0	1			4
6	6	6	6	6	6	6	6
y		0	6				10

(b) On the grid provided draw the graph of $y=x^{3}-4 x^{2}+x+6$ for $-2<x<4$. Use of a scale of 2 cm to represent 1 unit on the x -axis and 1 cm to represent 2 units on the y axis.
(3 Marks)
(c) Use your graph to solve the equation $\mathrm{x}^{3}-4 \mathrm{x}^{2}+\mathrm{x}=6$
(1 Mark)
(d) By drawing a suitable straight the line estimate the roots of the equation.
(3 Marks)
24. (a) X is directly proportional to the square y. What is the percentage change in x if y increases by 25%. (5 Marks)
(b) The mass of a solid metal ball varies jointly as a specific variable S and the cube of its diameter.

When the diameter is $6 \mathrm{~cm} S=7.5$ and the mass is 850 g . Find the mass of the ball of $S=10.5$ and diameter 8 cm giving your answer to the nearest whole number.
(5 Marks)

MERU FORM 4 JOINT EVALUATION TEST

121/1

MATHEMATICS

PAPER 1

JULY/AUGUST 2015
TIME: $21 / 2$ HOURS

1. 0.4807 $=\overline{\overline{1}} .6819$	8	$\begin{aligned} & \hline \hline \mathrm{N}=12 \mathrm{x}^{2}-12 x y-4 x y+4 \mathrm{y}^{2} \\ &=(12 \mathrm{x}-4 \mathrm{y})(\mathrm{x}-\mathrm{y}) \\ &=4(3 \mathrm{x}-\mathrm{y})(\mathrm{x}-\mathrm{y}) \\ & \mathrm{D}=2(9 \mathrm{x} 2-\mathrm{y} 2)=2(3 \mathrm{x}+\mathrm{y})(3 \mathrm{x}-\mathrm{y}) \\ & \quad \begin{array}{l} 4(3 x-y)(x-y) \\ 2(3 x+y)(3 x-y) \end{array} \frac{2(x-y)}{3 x+y} \end{aligned}$
$\text { 2. } \begin{array}{ll} \hline \hline \sqrt{3136} \\ \left.\begin{array}{l} \sqrt[3]{2744} \\ \\ \\ 2136=2^{6} \times 7^{2} \\ \\ \\ \Rightarrow \frac{\sqrt{2^{6} \times 7^{2}}}{\sqrt[3]{2^{3}-7^{3}}} \times 7^{3} \end{array}\right\} \\ \quad=\frac{2^{3} \times 7}{2 \times 7}=2^{2} \\ =4 \end{array}$	9	$\begin{aligned} & (\mathrm{PR})^{2}=900^{2}+1200^{2}-2(900)\left(120^{\circ}\right) \operatorname{Cos} 130 \\ & =2250000+1388421.2 \\ & =3638421.4 \\ & \mathrm{PR}=1907.4646 \mathrm{~km} \\ & \quad=1907.46 \end{aligned}$
3. Volume $=8 \times 3 \times 2 \mathrm{~cm} 2$ $\begin{aligned} & \mathrm{D}=\frac{M}{V} \\ & =\frac{5.5 \times 1000 \mathrm{~g} / \mathrm{cm}^{3}}{8 \times 3 \times 2} \\ & =114.5833 \mathrm{~g} / \mathrm{cm}^{3} \end{aligned}$		
4. (a)		
(b) Volume $=\frac{1}{2} \times 3 \times 3 \times 3$	10	
5. x is buying price		(b) $\frac{1800}{180}=10$ triangles
$\begin{aligned} & \frac{170}{100}=725 \\ & x=\frac{725 \times 100}{145}=\text { Sh } 500 \\ & \text { Selling price } \frac{80}{100} \times 725 \\ & =\text { Sh. } 580 \\ & \% \text { profit }=\frac{80}{500} \times 100=16 \% \end{aligned}$	11	$\begin{aligned} & \mathrm{N}=\frac{-8-2}{11}=\frac{-8-22}{11}=\frac{-30}{11} \\ & \mathrm{D}=\frac{4}{-32} \times \frac{51}{33}=\frac{-1}{8} \times \frac{51}{33} \\ &=\frac{-1}{8} \times \frac{17}{11}=\frac{-17}{88} \\ &=\frac{-30}{11} \times \frac{-88}{17}=\frac{240}{17} \\ &=14 \frac{2}{17} \\ & \hline \end{aligned}$
6. $\begin{aligned} & 3^{3 \mathrm{x}}+3^{3 \mathrm{x}-1} 108 \text { Let } \mathrm{t}=3^{3 \mathrm{x}} \\ & \mathrm{t}=\frac{t}{3}=108 \\ & 3 \mathrm{t}+\mathrm{t}=324 \\ & \mathrm{t}=81=3^{3 \mathrm{x}} \\ & 3^{3 \mathrm{x}}=3^{4} \\ & 3 \mathrm{x}=4 \\ & \mathrm{x}=\frac{4}{3} \\ & =1 \frac{1}{3} \text { or } 1.333 \\ & \hline \end{aligned}$	12	$\begin{aligned} & 3-\mathrm{x}<\mathrm{x} \\ & 3<2 \mathrm{x} \\ & 1 \frac{1}{2}<2 \mathrm{x} \\ & \mathrm{x} \leq \frac{2 x+5}{3} \\ & \mathrm{x} \leq 5 \\ & 1.5<\mathrm{x} \leq 5 \\ & \mathrm{x}=2,3,4 \text { and } 5 \text { (integral values) } \end{aligned}$
$\text { 7. } \begin{aligned} \mathrm{A} & =\frac{1}{2} \times 2.4 \times 15 \times 15 \\ & =270 \mathrm{~cm}^{2} \end{aligned}$		

	19	$\begin{aligned} & \text { (a) } \mathrm{h}=\frac{h+10}{14} \\ & 14 \mathrm{~h}=10.5 \mathrm{~h}+105 \\ & 3.5 \mathrm{~h}=105 \\ & \mathrm{~h}=30 \end{aligned}$
14. Reciprocal of $0.0192=100 \times 0.6701$ $\begin{aligned} & \frac{1}{16.58}=\frac{1}{10} \times 0.6031 \\ & 30 \times 100 \times 0.6701+12 \times \frac{1}{10} \times 0.6031 \\ & 2010.3+0.7231^{0}=2011.02 \\ & =2011 \end{aligned}$		(b) $\frac{1}{3} \times \bar{X} \times 142 \times 40-\frac{1}{3} \times \times 10.5^{2} \times 30$
15. Let mass of Sony sugar be xkg @ Sh. 60 Let mass of imported sugar be ykg @ Sh. 80 $\begin{aligned} & \frac{60 x+80 y}{x+y}=84.5 \mathrm{x} \frac{100}{130} \\ & 60 \mathrm{x}+80 \mathrm{y}=65(\mathrm{x}+\mathrm{y}) \\ & 15 \mathrm{y}=15 \mathrm{x} \\ & \frac{x}{y}=\frac{15}{3}=\frac{3}{1} \\ & \therefore \mathrm{x}: \mathrm{y}=3: 1 \end{aligned}$		$\begin{aligned} & =8210-3463.6 \\ & =4746.4 \end{aligned}$ (c) $\operatorname{Sin} \theta=\frac{4}{5}$ $\theta=53.13$
$\begin{aligned} & \text { 16. }\binom{2}{3}+\binom{x}{y}=\binom{5}{4} \\ & \binom{x}{y}=\left(\begin{array}{ll} 5 & -2 \\ 4 & -3 \end{array}\right)=\binom{3}{1} \\ & \therefore O Q \text { is }\binom{3}{0} \\ & \Rightarrow Q(3,0) \end{aligned}$		$\begin{aligned} \text { Area } & =2\left(\frac{106.26}{360} \times \times 5^{2}-\frac{1}{2} \times 5^{2} \operatorname{Sin} 106.26\right) \\ & =2(23.18-12.00) \\ & =22.36 \end{aligned}$
SECTION II 17. (a) $\mathrm{AC}=\sqrt{5^{2}+7^{2}}$ (b) $\begin{aligned} \mathrm{VO} & =\sqrt{13^{2}-4.301^{2}} \\ & =12.27\end{aligned}$ $\text { (c) } \begin{aligned} \mathrm{BD} & =\mathrm{AC}=8.602 \\ \mathrm{BO} & =\frac{1}{2} \mathrm{x} 8.602=4301 \\ \angle \mathrm{VBO} & =\theta \end{aligned}$ $\operatorname{Cos} \theta=\frac{4.301}{13}=0.3308$ $\theta=\operatorname{Cos}^{-}(0.3308)=70.68$ $\begin{aligned} & \text { (d) } V M=\sqrt{M O^{2}-V O^{2}}=\sqrt{2.5^{2}+12.27^{2}} \\ & =\sqrt{156.8029} \\ & =12.52 \\ & \angle \mathrm{VMO}=\mathrm{d} \\ & \operatorname{Cos} \mathrm{~d}=\frac{2.5}{12.52}=0.1997 \\ & \mathrm{~d}=\operatorname{Cos}-1(0.1997)=78.48^{\circ} \end{aligned}$	20	(b) $\begin{aligned} \mathrm{SN} & =4.8 \pm 0.1 \\ \text { Area } & =\frac{1}{2} \times 5 \times 4.8 \operatorname{Sin} 15 \\ & =3.106 \mathrm{~cm} 2 \end{aligned}$ Radius 3.5 ± 0.1
18. (a) (a) Cumulative frequency $2,10,25,43,60,74,84,92,98,100$ On Graph (b) (i) Median $=44$ Marks (ii) $\mathrm{Q} 3-\mathrm{Q} 1=61-30.5=30.5$ Semi-inter quartile range $=\frac{30.5}{2}$ $=15.25$ (c) $43 \% \rightarrow 48^{\text {th }}$ student 100-48 passed $=52 \pm 2$	21	(a) $\angle \mathrm{CDE}=180^{\circ}-80^{\circ}$ (Opposite angles of a cyclic quad) $\begin{aligned} & \text { (b) } \angle \mathrm{ABE}=900-500=400(\mathrm{BAE} \text { is right } \angle \prime \mathrm{d}) \\ & \angle \mathrm{ABC}=40+80=120 \\ & \angle \mathrm{CEF}=120^{\circ}(\text { opp ext } \angle \text { of cyclic quad. }) \\ & \therefore \angle \mathrm{DFE}=180-(30+120)=30^{\circ} \\ & \text { (c) } \angle \mathrm{OBC}=\mathrm{BCO}(\text { base } \angle \mathrm{s})=80^{\circ} \\ & \angle \mathrm{BUC}=180-(80+80)=20^{\circ} \\ & \angle \mathrm{CDE}=180-20 \\ & =1600(\angle \text { 's in a str. Line }) \end{aligned}$ (c) $\mathrm{CDE}=180-80(\mathrm{opp} \angle$'s in cyclic quad $)=100^{\circ}$ CED $=180-(30+100)$ $=50^{\circ}(\angle$ 'S in a $\Delta)$ $=\angle \mathrm{AED}=50+10+50=110^{\circ}$ $\therefore \angle \mathrm{ADE}=180-(30+110)=40^{\circ}$

22	$\begin{aligned} & \hline \text { (a) New length }=6 \mathrm{x}+3 \text {, New width }=\mathrm{x}+2 \\ & \text { Initial area }=(6 \mathrm{x}-1)(\mathrm{x}-2) \\ & =6 \mathrm{x}^{2}-13 \mathrm{x}+2 \\ & \text { Final area }=(6 \mathrm{x}+3)(\mathrm{x}+2) \\ & 6 \mathrm{x}^{2}+15 \mathrm{x}+6 \\ & \therefore 6 \mathrm{x}^{2}+15 \mathrm{x}+6=3\left(6 \mathrm{x}^{2}-13 \mathrm{x}+2\right) \\ & 6 \mathrm{x}^{2}+15 \mathrm{x}+6=18 \mathrm{x}^{2}-39 \mathrm{x}+6 \\ & 12 \mathrm{x}^{2}-54 \mathrm{x}=0 \\ & 6 \mathrm{x}(2 \mathrm{x}-9)=0 \\ & \therefore 6 \mathrm{x}=0 \mathrm{x}=0 \\ & \text { OR } 2 \mathrm{x}-9=0 \\ & \mathrm{x}=4.5 \mathrm{~cm} \\ & \therefore \text { Length }=6 \mathrm{x} 4.5-1 \\ & =26 \mathrm{~cm} \\ & \text { Width }=4.5-2=2.5 \mathrm{~cm} \\ & \text { (b) } \frac{195-65}{65} \mathrm{x} 100=200 \% \\ & \text { (c) }(6 \mathrm{x} 4.5-1)-(4.5-2) \\ & =26-2.5 \\ & =23.5 \mathrm{~cm} \\ & \hline \end{aligned}$	24	$\begin{aligned} \hline \hline \text { (a) } \mathrm{V} & =\mathrm{t} 2-4 \mathrm{t}+4 \text { when } \mathrm{t}=0 \\ & =0^{2}+-2(0)+4 \\ & =4 \mathrm{~m} / \mathrm{s} \end{aligned}$ (b) $\mathrm{v}=0$ $\begin{aligned} & \mathrm{t}^{2}-4 \mathrm{t}+4=0 \\ & \mathrm{t}^{2}-2 \mathrm{t}-2 \mathrm{t}+4=0 \\ & (\mathrm{t}-2)(\mathrm{t}-2)=0 \\ & \mathrm{t}=2 \sec \end{aligned}$ (c) $\begin{aligned} & \mathrm{a}=\frac{d v}{d t}=2 \mathrm{t}-4 \\ & \mathrm{t}=4 \\ & 2(4)-4=4 \mathrm{~m} / \mathrm{s} \end{aligned}$ d) $\begin{aligned} \int_{1}^{13}(& \left.t^{2}-4 t+4\right) d t \\ & =\int \frac{t^{3}}{3}-\frac{4}{2} t^{2}+4 t \int_{1}^{13} \\ & =\left(\frac{13^{3}}{3}-2(13)^{2}+4(13)\right)-\left(\frac{1}{3}-2+4\right) \\ & =446 \frac{1}{3}-2 \frac{1}{3} \\ & =444 \mathrm{~m} \end{aligned}$
23	 (a) $\mathrm{BC}=8.0 \pm 0.1 \times 10=80 \pm 1 \mathrm{~km}$ Bearing of B from C $\cong N 43 \pm 10 E$ (b) $\mathrm{DB}=7.1 \pm 0.1 \times 10=71 \pm 1 \mathrm{~km}$ Bearing of D from $565^{\circ} \pm W$ A from D $550 \pm 1^{\circ} \mathrm{E}$		

MERU FORM 4 JOINT EVALUATION TEST

121/2

MATHEMATICS

PAPER 2

JULY/AUGUST 2015
TIME: $21 / 2$ HOURS

1. $\begin{aligned} & \hline \hline \mathrm{T}_{2}=\mathrm{a}+2 \mathrm{~d}=15 \\ & 2 \mathrm{~T} 23=2(\mathrm{a}+22 \mathrm{~d})=94 \\ & \mathrm{a}+22 \mathrm{~d}=47 \\ & \mathrm{a}+6 \mathrm{~d}=15 \\ & 16 \mathrm{~d}=32 \\ & \mathrm{~d}=2 ; \\ & \mathrm{a}+6 \times 2=15 \\ & \mathrm{a}=3 \\ & \hline \hline \end{aligned}$	9.	$\begin{aligned} & \hline \hline \text { Centre }=\left(\frac{-2 \pm 2}{2}, \frac{2+6}{2}\right) \\ &=(-2,4) \\ & \text { Radius }=\sqrt{(-2-2)^{2}+(6-2)^{2}} \\ &=4 \\ & \text { Eqn }(x+2)^{2}+(y-4)^{2}=4^{2} \\ & x^{2}+y^{2}+4 x-8 y+4=0 \end{aligned}$
$\begin{array}{ll} \text { 2. } & \text { Error } \pm 0.05 \\ \text { Perimeter }=6.4+7.3+8.2=21.9 \\ \text { Max peri }=6.45+7.35+7.25 \\ =22.05 \end{array}$	10	$\begin{aligned} & \log _{10}\left(5 x^{2}\right)=\log _{10}\left(10 \times 4^{2}\right) \\ & 5 x^{2}=10 \times 16 \\ & x^{2}=32 \\ & x=4 \sqrt{2} \\ & \hline \end{aligned}$
$\begin{aligned} & \text { Min peri }=6.35+7.25+8.15 \\ & =21.75 \\ & \text { Absolute error }=\frac{(22.05-21.75)}{2} \\ & =0.15 \\ & \begin{array}{l} \% \text { error }= \\ \quad \frac{0.15}{21.9} \times 100 \% \\ \quad=0.6849 \% \end{array} \end{aligned}$	11	$\begin{aligned} & 2 x(x-4)-2(-7 x)=0 \\ & 2 x^{2}-8 x+14 x=0 \\ & 2 x^{2}+6 x=0 \\ & 2 x(x+3)=0 \\ & 2 x=0 \rightarrow 0 \\ & x+3=0 \rightarrow x=-3 \quad \therefore=0 \text { or }-3 \end{aligned}$
$\text { 3. } \begin{aligned} \angle \mathrm{z} & =\angle \mathrm{CBE}=20^{\circ} \\ \angle \mathrm{y} & =90^{\circ} \\ \angle \mathrm{x} & =180-(90+20) \\ & =70^{\circ} \end{aligned}$	12	$\begin{aligned} \hline \hline \text { Dst by fire engine } & =64(11.40-9.15) \\ & =64 \times 2 \mathrm{~h} 25 \mathrm{~min} \\ & =64 \times 2 \frac{22}{60} \\ & =154.67 \end{aligned}$
$\text { 4. } \begin{array}{ll} \hline \hline \frac{18-12 \sqrt{2}}{3-2 \sqrt{2}} \\ & =\frac{(18-12 \sqrt{2})(3+2 \sqrt{2})}{(3-2 \sqrt{2}(3+2 \sqrt{2})} \\ & =\frac{24+36 \sqrt{2}-24(2)}{9-4(2)} \\ \hline \hline \end{array}$		$\begin{aligned} \text { Speed of amb } & =\frac{154.67}{11.40-10.10} \\ & =\frac{154.67}{1.5} \quad=103 \mathrm{~km} / \mathrm{h} \end{aligned}$
$\begin{array}{ll} \hline \text { 5. } & \text { Cf 5,12,28,38,52,65 } \\ & \text { Median 21.5-21-9 } \\ & \text { Median }=21.45+\left(\frac{32.5-28}{10}\right) \times 0.5 \\ & =21.45+0.225 \\ & =21.675 \\ \hline \end{array}$	13	$\begin{aligned} \text { Let } \mathrm{NX} & =\mathrm{y} \\ 12 \times 3 & =15 \times \mathrm{y} \\ \mathrm{y} & =\frac{12 \times 3}{15} \\ & =2.4 \end{aligned}$
6. $\begin{aligned} \mathrm{Adj} & =\sqrt{13^{2}-5^{2}} \\ = & 12 \\ \text { Tan }(90-\theta) & =\frac{12}{5} \\ & =2.4 \end{aligned}$	14	$\begin{aligned} & £ 240 \times 112=\text { KSh } 26880 \\ & \text { KSh. } 26880-\text { Ksh. } 1000=25,880 \\ & \frac{1}{2} \times 25880=12,940 \\ & \underline{12940} \end{aligned}$
7. $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)\left(\begin{array}{ll}2 & 4 \\ 3 & 5\end{array}\right)=\left(\begin{array}{cc}2 & 22 \\ 14 & 24\end{array}\right)$		$\begin{aligned} & \begin{array}{l} 113.50 \\ =£ 114.01 \end{array} \end{aligned}$
$\begin{aligned} & \left.\begin{array}{ll} \left(\begin{array}{ll} 2 a+3 b & 4 a+5 b \\ 2 c+3 d & 4 c+5 d \end{array}\right)=\left(\begin{array}{ll} 12 & 22 \\ 14 & 24 \end{array}\right) \\ 2 \mathrm{a}+3 \mathrm{~b}=12 \\ 4 \mathrm{a}+5 \mathrm{~b}=12 \\ 2 \mathrm{c}+3 \mathrm{~d}=14 \\ 4 \mathrm{c}+5 \mathrm{~d}=24 \end{array}\right\} \Rightarrow \mathrm{a}=3, \mathrm{~b}=2 \\ & \end{aligned}$	15	$\begin{gathered} 5 x+6 y=2440 \\ 2 x+3 y=1120 \\ 10 x+15 y=5600 \\ \left.\begin{array}{c} 10 x+12 y=4880 \\ \hline 3 y=720 \\ y=240 \\ \hline \end{array}\right\} \\ \hline \end{gathered}$
$\therefore \mathrm{T}=\left(\begin{array}{ll} 3 & 2 \\ 1 & 4 \end{array}\right)$	16	$\begin{aligned} & \mathrm{h}\binom{6}{-5}+\mathrm{k}\binom{5}{-3}=\binom{3}{1} \\ & 6 \mathrm{~h}+5 \mathrm{k}=3 \end{aligned}$
8. $\begin{aligned} & \hline(2-y)^{5}=25-5\left(2^{4}\right) y+10\left(2^{3}\right) y^{2}-5(2) y^{3}+5(2) y^{4}+y^{5} \\ & =32-80 y+80 y 2-40 y 3+10 y 4-y 5 \\ & 1.85=32-80(0.2)+80(0.2)^{2}-40(0.2)^{3} \\ & =32-16+3.2-0.32 \end{aligned}$		$\begin{aligned} & -5 \mathrm{~h}-3 \mathrm{k}=1 \\ & 25 \mathrm{~h}+15 \mathrm{k}=-5 \\ & 18 \mathrm{~h}+15 \mathrm{k}=9 \\ & 7 \mathrm{~h} \quad=-14 \\ & \mathrm{~h}=-2, \mathrm{k}=3 \\ & \hline \end{aligned}$

SECTION II

17. (a) (i) $\mathrm{Tn}=6-4 \mathrm{n}$

2,-2, -10
(ii) $\mathrm{S}_{16}=\frac{16}{2}(4+15(-4)$
(iii) $\mathrm{T}_{25}=2+(25-1)(-4)$
(b) $\mathrm{S}_{8}=\frac{\left(2^{8-1}\right)}{2-1}$

$$
=100 \times 2^{7}
$$

$$
=12800
$$

18.

(i) $\frac{1}{10} \times \frac{6}{10} \times \frac{19}{20}=\frac{114}{2000}=\frac{57}{1000}$
(ii) $\frac{9}{10} \times \frac{4}{10} \times \frac{1}{20} \times \frac{36}{2000}=\frac{9}{1000}$
(iii) $\left(\frac{9}{10} \times \frac{4}{10} \times \frac{1}{20}\right)+\left(\frac{9}{10} \times \frac{4}{10} \times \frac{19}{20}\right)+\left(\frac{9}{10} \times \frac{6}{10} \times \frac{1}{20}\right)$

$$
\begin{aligned}
& =\frac{36}{2000}+\frac{684}{200}+\frac{34}{2000}+\frac{4}{2000} \\
& =\frac{778}{2000}=\frac{389}{1000}
\end{aligned}
$$

(iv) $1-\left(\frac{9}{10} \times \frac{4}{10} \times \frac{1}{20}\right)$

$$
\begin{aligned}
& 1-\frac{36}{2000} \\
& =\frac{1964}{2000}=\frac{491}{500}
\end{aligned}
$$

21.

x^{0}													
$3 \operatorname{Cos} 2 \mathrm{x}^{0}$		2.6	1.5		-1.5	-2.6		-2.6		0	1.5	2.6	
$2 \operatorname{Sin}(\mathrm{x}+30)^{0}$	1	1.41		1.93		1.93	1.73	1.41		0.52		-0.52	-1

(c) (i) For $\operatorname{Sin}(x+30)^{0}=3 \operatorname{Cos} 2 x$ $\mathrm{x}=28.5^{0}$ and $138^{0} \pm 2^{0}$
(ii) $28.5^{\circ} \leq x \leq 138^{0}$
23.

x						
x^{3}	-8			1	8	
$-4 x^{2}$				-4		-36
x	-2					
6						
y	-20			4	0	0

(c) $x=-1$ or 3
(d) $\left(y=x^{3}-4 x^{2}+x+6\right) 3$

$$
\begin{aligned}
3 y & =18 x-3 \\
y & =6 x-1 \\
x & =-1.7 \text { or } 0.9
\end{aligned}
$$

24. (a) $x=k y 2$

$$
\begin{equation*}
\mathrm{X}=\mathrm{k}\left(\frac{125}{100} y\right)^{2} \tag{i}
\end{equation*}
$$

$\therefore \mathrm{X}=\mathrm{k}(1.25 \mathrm{y})^{2}$
$\frac{X}{x}=\frac{k(1.25 y) 2}{k y^{2}}$
$\frac{x}{x}=1.25^{2}$
$\mathrm{X}=1.5625 \mathrm{x}=\frac{156.25 \mathrm{x}}{100}$
Hence \% increase = 56.25\%
(b) $\mathrm{M}=\mathrm{KSD} 3$

$$
850=\mathrm{k} \times 7.5 \times 6^{3}
$$

$$
\mathrm{K}=\frac{850}{7.56^{3}}=\frac{85}{162}
$$

$\therefore \mathrm{m}=\frac{85}{162} S D^{3}$
$\mathrm{m}=\frac{85}{162} \times 10.5 \times 8^{3}$
$=2820.74$
$\approx 2821 \mathrm{~g}$

GEM SUB-COUNTY JOINT EVALUATION EXAMS 2015
Kenya Certificate of Secondary Education (K.C.S.E)
121/1
MATHEMATICS
Paper 1
$21 / 2$ Hours

1. Without using mathematical table or calculator, evaluate:
$\sqrt{\frac{0.0032+0.0608}{1.44 \times 0.4}}$
2. The diagonal of a rectangular garden measures $11 \frac{1}{4}$ while its width measures $6 \frac{3}{4}$. Calculate the perimeter of the garden.
3. The figure below shows a right pyramid with square base of side 3 cm and a slant edge of 5 cm . Draw its net.
(3 Marks)

4. Simplify the following quadratic expression.
$\frac{8 b^{2}-50 a^{2}}{(2 b+5 a)^{2}}$
5. The sum of interior angles of two regular polygons of sides; n and $n+2$ are in the ratio $3: 4$. Calculate the sum of interior angles of the polygon with n sides.
6. The figure below represents an opened collar cloth, find the distance round it. (Take $\pi=\frac{22}{7}$)

7. Without using log tables or calculator; simplify
(3 Marks)
$\frac{\log \frac{1}{4}+\log 64}{\log 32-\log \frac{1}{8}}$
8. Use square roots, reciprocals and square tables to evaluate to 4 significant figures the expressions:
$(0.06458)^{\frac{1}{2}}+\left(\frac{2}{0.4327}\right)^{2}$
9. Determine the inverse of the matrix $T=\left(\begin{array}{cc}1 & 2 \\ 1 & -2\end{array}\right)$, hence find the coordinates of the point at which the two lines $x+2 y$ $=7$ and $x-2 y=-1$ intersect.
10. Find all the integral values of x which satisfy the inequality.
11. Given that θ is an acute angle and $\operatorname{Sin} \theta=\frac{2 \sqrt{3}}{5}$, without using mathematical tables or calculator find $\tan \left(90^{0}-\theta\right)$, leave your answer in surd form.
(2 Marks)
12. Three quantities A, B and C are such that A varies directly as the square of B and inversely as the cube root of C.
(a) Given that $\mathrm{A}=20$ when $\mathrm{B}=5$ and $\mathrm{C}=27$. Write the equation connecting A, B and C .
(3 Marks)
(b) Find the value of A when $\mathrm{B}=7$ and $\mathrm{C}=125$.
13. The curved surface area of a cylindrical container is $1980 \mathrm{~cm}^{2}$. If the radius of the container is 21 cm , calculate to one decimal place the capacity of the container in litres. (Take $\pi=\frac{22}{7}$)
14. Pipes A and B can fill a tank in 20 minutes and 30 minutes respectively. Pipe C can empty the full tank in 40 minutes. Starting with an empty tank, calculate the length of time it will take to fill the tank when;
(a) All the three pipes are turned on at the same time.
(b) All the three pipes are turned on at the same time then pipe B is closed after 10 minutes.
15. Madam Akinyi earns a basic salary of KSh. 24,000 per month. In addition she is paid a commission of 5% for sales above KSh. 30,000. In the month of February she sold goods worth KSh. 300,000 at a discount of 6%. Calculate her total earning that month.
16. Find the quartile Deviation for the data below.

24,32,29,11,21,22,15,18

SECTION II - 50 MARKS

Answer only FIVE questions from this section

17. Four schools: Lihanda, Kagilo, Bar-Sauri and Ndori are such that Lihanda is 16 km from Kagilo on a bearing of 1588^{0}, Bar-Sauri is to the west of Kagilo and 20km away while Ndori is to the South of Bar-Sauri on a bearing of 240° from Lihanda.
(a) Using a scale of 1:400,000 draw a scale diagram showing the relative positions of the four schools.
(b) Using your diagram determine the distance and bearing of Ndori from Kagilo.
(c) A mast is to be erected so that it is equidistant from Kagilo and Bar-Sauri and 20 km from Ndori. On the same diagram show the position of the mast and find its distance from Lihanda.
18. The figure below shows the outline of the land owned by Rera - Yala community sugarcane Farm drawn to scale.

(a) Given that $\mathrm{AF}=600 \mathrm{~m}$, determine the scale used.
(b) By showing all your workings enter the details of the farm in a survey field book.
(c) Given that this land is currently valued at KSh. 250,000 per hectare, calculate its value.
19. The figure below shows a model of a pillar to be constructed at the Canterbury. The model consists of a circular base of diameter and a uniform pentagon stand of side 6 cm and height 20 cm .

(a) Calculate the cross-sectional area of the pentagon to 2 decimal places.
(b) Calculate the total volume of the model to 2 dp .
(c) If the height of the real pillar is 52 m and the constructor uses two bags of cement for every 500 m 3 of the construction, calculate the least number of bags of cement required.
(4 Marks)
20. The diagram below shows a triangle $O P Q$ in which $Q N: N P=1: 2, O T: T N=3: 2$ and M is the midpoint of $O Q$.

(a) Given that $\overrightarrow{O P}=\mathbf{p}$ and $\overrightarrow{O Q}=\mathbf{q}$. Express the following vectors in terms of \mathbf{p} and \mathbf{q}.
(i) $\stackrel{\rightharpoonup}{P}$ $\overrightarrow{\mathrm{PQ}}$
$\overrightarrow{\mathrm{ON}}$
$\overrightarrow{\mathrm{P}}$
iii
(iv) $\overrightarrow{\mathrm{PM}}$
(b) (i) Show that points P, T and M are collinear.
(ii) Determine the ratio MT:TP
21. (a) Fill in the table below for the function.
$y=2 x 2+5 x-12$ for $-8 \leq x \leq 4$

x	-7	-7	-6	-5	-4	-3	-2	-1	0	1	2	3	4
$2 \mathrm{x}^{2}$	128	98	72		32	18		2	0	2		18	32
5 x	-40		-30			-15		-5	0	5			20
-12	-12	-12	-12	-12	-12	-12	-12	-12	-12	-12	-12	-12	-12
y	76		30			-9		-15		-5			40

(b) Using the table, draw the graph of the function $\mathrm{y}=2 \mathrm{x}^{2}+5 \mathrm{x}-12$.
(4 Marks)
(c) Use the drawn above to solve the following equations.
(i) $2 x^{2}+5 x-12=0$
(ii) $3-7 x-2 x^{2}=0$
22. The diagram below shows a circle $A B C$ with $A B=12 \mathrm{~cm}, B C=15 \mathrm{~cm}$ and $A C=14 \mathrm{~cm}$.

Calculate to 4 significant figures.

(a) The angle ACB
(b) The radius of the circle
(c) The area of the shaded region.
23. If Nick gives a quarter of the money he owns to Tom, Tom will have twice as much as Nick. If Tom gives q shillings to Nick, then Nick will have thrice as much as Tom. Taking the initial amount owned by Nick and Tom to be x and y respectively;
(a) Express y and q in terms of x.
(b) Given that Nick's initial amount was KSh. 40,000. Calculate;
(i) the value of q
(ii) the initial amount by Tom
24. The data below shows the marks scored by students in a Chemistry test.

Marks	Frequency
$25-34$	3
$35-44$	6
$45-54$	16
$55-64$	12
$65-74$	8
$75-84$	4
$85-94$	1

(a) Calculate the median mark.
(4 Marks)
(b) Calculate the standard deviation using an assumed mean of 49.5.

GEM SUB-COUNTY JOINT EVALUATION EXAMS 2015
Kenya Certificate of Secondary Education (K.C.S.E)
121/2
MATHEMATICS
Paper 2
$21 / 2$ Hours

SECTION I (50 MARKS)

Answer ALL questions in this section.

1. A radius of a circle as 2.8 cm to 2 significant figures. By taking π to be 3.142 , find to 4 significant figures, the limits between the area of the circle lie.
(3 Marks)
2. Kamau sells a packet of type A of sugar for KSh. 63 and that of type B of Sugar for KSh. 36. He mixed the two types of sugar in the ratio 3:2. Find the price per packet of the mixture for which he will make the same profit as before
3. Solve $2 \operatorname{SSin}^{2} y+3 \operatorname{Cos} y=3$ for $0^{0} \leq 360^{\circ}$.
4. Use logarithm tables to evaluate:
$\left(\frac{1.67 \times 23.8}{45.9 \div 73.26}\right)^{\frac{2}{3}}$
5. By expressing $\tan 30^{\circ}$ as $\frac{1}{\sqrt{a}}$, simply the expression $\frac{\tan 30}{2-\sqrt{2}}$, leaving your answer with a rationalized denominator.
6. In the figure below $D C$ is a tangent to the circle at point D. Given that $A B C$ is a straight line where $A B=7 \mathrm{~cm}$ and $A C=$ 16.5 cm , find the length of DC .

7. Make P the subject of the formula in:-
$\mathrm{L}=\frac{2}{3} \sqrt{\frac{x^{2}-P T}{y}}$
8. Given that $\log 3=1.585$ while $\log _{2} \frac{36 \sqrt{5}}{5}$ without using mathematical tables or a calculator.
9. Write down the equation of a circle $(0,2)$ and radius 3 units, leaving your answer in the form $a^{2}+b y 2+c x+d y+e=0$
10. A man invests KSh. 10,000 in an account which pays 16% interests p.a compounded quarterly. Fid the amount in the account after $1 \frac{1}{2}$ years.
11. (a) Expand and simplify $(1-5 x)^{4}$
(b) Use the expansion in (a) above to estimate the value of 0.9^{4} to 4 significant figures.
12. On the same side of $A B$ as C, in the triangle below, construct the locus of points P such that triangle $A B P$ has an areas of $24 \mathrm{~cm}^{2}$.
(3 Marks)

13. The position vectors of points P and Q are $\mathbf{p}=2 \mathbf{i}+3 \mathbf{j}-\mathbf{k}$ and $\mathbf{q}=3 \mathbf{i}-2 \mathbf{j}+2 \mathbf{k}$ respectively. Find the magnitude of $P Q$ correct to 4 significant figures.
14. A two digit number is such that the sum of the digits is 11 . When the digits are interchanged the new number formed is 45 less than the original number. Determine the original number
15. An unbiased coin with faces, head (H) and tail (T) and a fair die with faces marked $1,2,3,4,5,6$ are each tossed once.
(a) Show all the possible outcomes.
(b) Calculate the probability that a 4 of the die and a head (H) of the coin shows up.
(1 Mark)
16. Evaluate $\int_{-1}^{3}(-2 x+7) d x$
(3 Marks)

SECTION II (50 MARKS)

Answer only FIVE questions from this section.

17. A ship sailing at a speed of 200 knots left harbour $A\left(30^{\circ} \mathrm{S}, 32^{\circ} \mathrm{E}\right)$ and sailed due north to harbour $B\left(30^{\circ} \mathrm{N}, 32^{\circ} \mathrm{E}\right)$
(a) Calculate the distance it covered in nautical miles.
(2 Marks)
(b) After a 15 minutes stop over at B the ship due west to harbour C $\left(30^{\circ} \mathrm{N}, 15^{\circ} \mathrm{E}\right)$ at the same speed.
(i) Calculate the total time taken by the ship from A to C through B.
(5 Marks)
18. A triangle $P Q R$ has co-ordinates $P(-6,5), Q(-4,1)$ and $R(3,2)$ and is mapped onto $P^{1} Q^{1} R^{1}$ by a shear x-axis invariant where P1 is $(-6,-4)$
(a) On the grid provided draw both $P Q R$ and its image $P^{1} Q^{1} R^{1}$ under the shear.
(3 Marks)
(b) Determine the matrix representing the shear.
(c) Triangle $\mathrm{P}^{1} \mathrm{Q}^{1} \mathrm{R}^{1}$ is mapped onto $\mathrm{P}^{\text {II }} \mathrm{Q}^{\text {II }} \mathrm{R}^{\text {II }}$ by the matrix $\left(\begin{array}{cc}-1 & 0 \\ -1.5 & -1\end{array}\right)$
(i) Draw $P^{\text {II }} Q^{\text {II }} \mathrm{R}^{\text {II }}$ on the same grid above.
(3 Marks)
(ii) Describe a single transformation that maps $P^{\mu I} Q^{\prime \prime} R^{I I}$ onto $P Q R$.
(1 Mark)
(iii) State the single matrix of transformation that maps PIIQIIRII onto PQR.
(1 Mark)
19. The electricity bill E of school is partly fixed and partly varies inversely as the total number of students T.
(a) Write down an expression of E in terms of T .
(1 Mark)
(b) When the school had 100 students the bill was KSh. 174 per student while for 35 students the bill was KSh. 200 per student. Calculate the fixed charge.
(4 Marks)
(c) Find the appropriate number of students for which the two parts of electricity bill are equal.
(3 Marks)
(d) Find the electricity bill E when the students population is 1000 .
20. A right pyramid VABCD below has a square base $A B C D$ of side 4 m . The slant edges $V A, V B, V C$ and $V D$ are 6 m long.

Calculate
(i) the height of the pyramid.
(ii) the angle between the plane VAB and the base ABCD.
21. (a) The first term of an arithmetic progression is 3 and the sum of its 8 terms is 164.
(i) Find the common difference of the arithmetic progression.
(ii) Given that the sum of the first terms of AP is 570 , find n.
(c) The first, the fifth and the seventh terms of another Arithmetic sequence forms a decreasing geometric progression. If the first terms of the geometric progression is 64 .
(i) find the values of the common differenced of AP.
(ii) find the first sum of the first ten terms of the G.P.
22. (a) Complete the table given below by filling in the values correct to 2 decimal place.

x^{0}	0^{0}	30^{0}	60^{0}	90^{0}	120^{0}	150^{0}	180^{0}	210^{0}
$3 \operatorname{Sin} \mathrm{x}^{0}-1$	-1.00	0.50						
$\operatorname{Cos} x^{0}$	1.00	0.87	0.50	0.00		-0.87	-1.00	

(b) On the same axes draw the graph of $y-3 \operatorname{Sin} x^{0}-1 \quad$ and $y=\operatorname{Cos} x^{0}$ on the grid.
(c) Use your graph to solve the equation, $3 \operatorname{Sin} x^{0}-\operatorname{Cos} x^{0}=1$
(d) Find the range of values of x for which $3 \operatorname{Sin} \mathrm{x} 0-1>\operatorname{Cos} \mathrm{x} 0$
23. In the figure below QT is a diameter of a circle centre 0 . Chord PT produced and RS produced intersect externally at point $\mathrm{U} . \angle \mathrm{PTQ}=360^{\circ}, \angle \mathrm{RQT}=780^{\circ}$ and $\angle \mathrm{SRT}=42^{\circ}$.

Giving reasons, calculate the size of
(a) $\angle \mathrm{RST}$
(b) $\angle \mathrm{TUS}$
(c) \angle Reflex \angle ROT
(d) $\angle \mathrm{PQT}$
24. An electronics dealer wishes to purchase wishes to purchase radios and TV's sets. He can buy atmost 30 of both items. On average, a radio and a TV set cost KSh. 12,000 respectively and he has KSh. 240,000 to spend. The number of T.V sets should be at most twice the number of radios. He must more than five T.V sets.
(a) Form all the inequalities to represent the above information (Take the number of radios and TV sets to be x and y respectively)
(4 Marks)
(b) Graph the inequalities in (a) above on the grid below.

If the dealer makes a profit of KSh. 600 and KSh. 1000 per radio and T.V sets respectively, find the maximum profit he will make.

GEM SUB-COUNTY JOINT EVALUATION EXAMS 2015
Kenya Certificate of Secondary Education (K.C.S.E)
121/1
MATHEMATICS
Paper 1
$21 / 2$ Hours

1. $\begin{aligned} & \hline \sqrt{\left(\frac{0.0032+0.06608}{1.44 \times 0.4}\right)}=\sqrt{\left(\frac{0.064 \times 1000}{1.44 \times 0.4 \times 1000}\right)} \\ & =\sqrt{\left(\frac{64}{144 \times 4}\right)} \\ & =\frac{8}{12 \times 2} \\ & =\frac{1}{3} \\ & \hline \hline \end{aligned}$	8.	$\begin{aligned} & (0.6458)^{\frac{1}{2}}=\left(6.458 \times 10^{-2}\right)^{\frac{1}{2}} \\ & =2.5413 \times 10^{-1} \\ & =0.25413 \\ & \frac{2}{0.4327}=2\left(\frac{1}{4.327 \times 10-1}\right) \\ & =2 \times 10 \mathrm{reci} 4.327 \\ & =20 \times 0.2311 \end{aligned}$
2.$\begin{aligned} \mathrm{L}^{2} & =\left(11 \frac{1}{4}\right)^{2}-\left(6 \frac{3}{4}\right)^{2} \\ & =\left(\frac{45}{4}\right)^{2}-\left(\frac{22}{4}\right)^{2} \\ & =\frac{2025-729}{16} \\ & =\frac{1296}{16} \\ \mathrm{~L} & =\frac{36}{4} \\ = & 9 \mathrm{~m} \\ \mathrm{P} & =2(9+6.75) \\ = & 31.5 \mathrm{~m} \end{aligned}$		$\begin{aligned} & =4.622 \\ & \left(\frac{2}{0.4327}\right)^{2}=(4.622)^{2} \\ & =21.363 \\ & \text { Hence }(0.06458)^{\frac{1}{2}}+\left(\frac{2}{0.4327}\right)^{2} \\ & =0.25413+21.363 \\ & =21.61713 \\ & =21.62(4 \mathrm{sf}) \end{aligned}$
	9	$\begin{aligned} & \text { Det } \mathrm{T}=-2-2=-4 \\ & \mathrm{~T}^{-1}=-\frac{1}{4}\left(\begin{array}{cc} -2 & -2 \\ -1 & 1 \end{array}\right) \\ & \text { Hence }\binom{x}{y}=-\frac{1}{4}\left(\begin{array}{cc} -2 & -2 \\ -1 & 1 \end{array}\right)\binom{7}{-1} \\ & =-\frac{1}{4}\binom{-16}{-8} \\ & =\binom{4}{2} \\ & \quad \text { They intersect at } \mathrm{Q}(4,2) \end{aligned}$
3.	10	$\begin{aligned} & 3(1+x \leq 5 x-11 \leq x+45 \\ & 3(1+x) \leq 5 x-11 \\ & 3+11 \leq 5 x-5 x \\ & 14 \leq 2 x \\ & 7 \leq x \\ & 5 x-11 \leq x+45 \end{aligned}$ $4 x \leq 45+11$
$\text { 4. } \begin{aligned} & \frac{8 b^{2}-50 a^{2}}{(2 b+5)^{2}}=\frac{2\left(4 b^{2}-25 a^{2}\right)}{(2 b+5 a)^{2}} \\ &=\frac{2(2 b+5 a)(2 b-5 a)}{(2 b+5 a)^{2}} \\ &=\frac{2(2 b-5 a)}{(2 b+5 a)} \end{aligned}$		$\begin{aligned} & 4 x \leq 56 \\ & x \leq 14 \\ & 7 \leq x \leq 14 \\ & x=\{7,8,9,10,11,12,13,14\} \end{aligned}$
$\text { 5. } \begin{array}{ll} \hline \frac{(2 n-4) 90^{0}}{(2(n+2)-4) 90^{0}}=\frac{3}{4} \\ \frac{(2 n-4)}{2 n}=\frac{3}{4} \\ 4(2 \mathrm{n}-4)=3 \times 2 \mathrm{n} \\ 8 \mathrm{n}-6 \mathrm{n}=16 \\ 2 \mathrm{n}=16 \\ \mathrm{n}=8 \\ \mathrm{Sn}=\{(2 \times 8)-4\} 90^{0} \\ =12 \times 90^{0} \\ =1080^{0} \\ \hline \end{array}$	11.	
$\text { 6. } \begin{aligned} \mathrm{C} & =\frac{22}{7} \times 14 \text { or } \mathrm{C}=\frac{1}{2} \times \frac{22}{7} \times 14 \times 2 \\ & =44 \mathrm{~cm} \\ & \mathrm{P}=44+12+2\left(8^{2}+6^{2}\right)^{\frac{1}{2}} \\ & =76 \mathrm{~cm} \end{aligned}$		$\begin{aligned} & x=\sqrt{5^{2}-(2 \sqrt{3})} \\ & =\sqrt{25}-13 \\ & =\sqrt{13} \\ & \tan \left(90^{\circ}-\theta\right)=\frac{\sqrt{13}}{2 \sqrt{13}}=\text { or } \end{aligned}$
$\text { 7. } \begin{aligned} & \frac{\log \frac{1}{4}+\log 64}{\log 32-\log \frac{1}{8}}=\frac{-2 \log 2+6 \log 2}{5 \log 2+3 \log 2} \\ & =\frac{4 \log 2}{8 \log 2}=\frac{1}{2} \end{aligned}$		$\tan \theta=2 \frac{\sqrt{13}}{\sqrt{13}} \text { but } \tan \theta=\frac{1}{\tan \left(90^{0}-\theta\right)}$

8. (a) $A \alpha \frac{B^{2}}{\sqrt[3]{C}}$
$\mathrm{A}=\frac{K B^{2}}{\sqrt[3]{C}}$
$20=\frac{25 K}{3}$
$K=\frac{12}{5}$
$\therefore \mathrm{A}=\frac{12 B^{2}}{5 \sqrt[3]{C}}$
(b) $\mathrm{A}=\frac{12 \times 49}{5 \times 5}$
$=23.52$
9. $2 \pi \mathrm{rh}=1980$
$\frac{44}{7} \times 21 \times \mathrm{h}=1980$
$\mathrm{h}=\frac{1980 \times 7}{21 \times 44}$
$=15$
$\mathrm{V}=\frac{22}{7} \times \frac{21 \times 21 \times 15}{1000}$
$=\frac{22 \times 63 \times 15}{1000}$
$=20.79$
$=20.8$ litres (1 dp)
10. (a) Fraction of the tank filled in 1 min when the three are on
$\frac{1}{20}+\frac{1}{30}-\frac{1}{40}=\frac{6+4-3}{120}$
$=\frac{7}{120}$
If $\frac{7}{120}$ of the tank is filled 1 min
$\therefore \frac{120}{120}$ of the tank will be filled in
$=\frac{120}{120} \times \frac{120}{7}$
$=17 \frac{1}{7}$ minutes
(b) Fractions of the tank filled after 10 min when A,
B and C are on $=\frac{7}{12}$
Remaining fraction filled by A and $\mathrm{C}=\frac{5}{12}$
Fraction filled when A and C are on 1 min
$=\frac{1}{20}-\frac{1}{40}$
$=\frac{2-1}{40}$
$=\frac{1}{40}$
If $\frac{1}{40}$ of the tank is filled in 1 min
$\therefore \frac{5}{12}$ of the tank will be filled in $\frac{5}{12} \times \frac{40}{1}$
$=16 \frac{2}{3} \mathrm{mins}$
11. Revenue $=\frac{94}{100} \times 300,000$
$=282,000$
Commission received $=\frac{5}{100} \times 282,000$
$=14,100 /=$
Total earning $=24,000+14,100$
$=38,100 /=$

17

(b) Distance $=9 \times 4$

$$
=36 \mathrm{~km}
$$

Bearing $=1800+350$

$$
=215^{0} \pm 1^{0}
$$

(c) Drop a perpendicular bisector of line BK

Measure 5 cm from N
The distance of the mast from Lihanda is 4.8×4 $=19.2 \mathrm{~km}$

18	11. (a) $\mathrm{AF}=7.5 \mathrm{~cm}$

The scale 1 cm rep 80 m
(b) Along the baseline AF

Branch to $B=1.5 \times 80=120 \mathrm{~m}$
Branch to $C=3.5 \times 80=280 \mathrm{~m}$
Branch to $D=5 \times 80=400 \mathrm{~m}$
Branch to $\mathrm{E}=6.5 \times 80=520 \mathrm{~m}$
To the offset
$B=6 \times 80=480 \mathrm{~m}$
C $=3.5 \times 80=280 \mathrm{~m}$
$\mathrm{D}=7 \times 80=560 \mathrm{~m}$
$\mathrm{E}=3 \times 80=240 \mathrm{~m}$
Survey field Book

		F 240 to E 520 480
400	560 to D	
280	280 to C	
120		
A		

(b) Area of the land $=\frac{9}{2}+\frac{3.5 \times 3.5}{2}+\frac{5}{2} \times 9+\frac{10.5 \times 15.5}{2}$
$+\frac{2.5 \times 7}{2}+\frac{3}{2}$
$=4.5+6.125+22.5+7.875+8.75+1.5=51.25$
Actual area $=51.25 \times 80 \times 80$
$=3288000 \mathrm{~m}^{2}$
Value of the land $=32.8 \times 250,000$
$=8,200,000$ KShs
13. $11,15,18,21,22,24,29,32$

Upper quartile $=\frac{24+29}{2}$
$=26.5$
Lower quartile $=\frac{15+16}{2}$
$=15.5$
Interquartile Range $=26.5-15.5$
$=11$
Quartile Deviation $=\frac{11}{2}=5$
19. (a) The angle at the centre $=\frac{360^{0}}{5}=72^{0}$

$=\frac{180^{0}-72^{0}}{2}$
$=540$
Cross sectional area $=5 \times \frac{1}{2} \times 6 \times 3 \tan 540$
$=45 \tan 540$
$=61.9372 \mathrm{~cm}^{2}$
$=61.94 \mathrm{~cm}^{2}(2 \mathrm{dp})$
(b) Volume of the model $=61.94 \times 20+\frac{22}{7} \times 10.5^{2} \times 6$

$$
=1238.8+2079
$$

$=3317.80 \mathrm{~cm}^{3}(\mathrm{dp})$
(c) L.S.F $=\frac{5200}{26}=200$
V.S.F $=8,000,000$

Volume of the pillar $=\frac{(8,000,000 \times 3317.8}{1000000} \mathrm{~m}^{3}$
$=26542.4 \mathrm{~m}^{3}$
If $500 \mathrm{~m}^{3}=2$ bags
$\therefore 26542.4=\frac{26542 \times 2}{500}$
$=106.1696$
Least No. of bags $=107$ bags
20. (a) (i) $\overrightarrow{P Q}=\overrightarrow{P O}+\overrightarrow{O Q}$

$$
\begin{aligned}
& \quad=-\mathbf{p}+\mathbf{q} \\
& \text { (ii) } \overrightarrow{O N}=\overrightarrow{O Q}+\overrightarrow{Q N} \\
& =\mathbf{q}+\frac{1}{3} \mathbf{p}+\frac{2}{5}(\mathbf{p}-\mathbf{q}) \\
& =-\frac{4}{5} \mathbf{p}-\frac{2}{5} \mathbf{q}
\end{aligned}
$$

(iii) $\overrightarrow{\mathrm{PT}}=\overrightarrow{\mathrm{PO}}+\overrightarrow{\mathrm{OT}}$

$$
\begin{aligned}
& =-\mathbf{p}+\frac{3}{5}\left(\frac{1}{3} p-\frac{2}{3} \mathbf{q}\right) \\
& =-\frac{4}{5} \mathbf{p}-\frac{1}{2} \mathbf{q}
\end{aligned}
$$

(b) $\overrightarrow{\mathrm{TM}}=\overrightarrow{\mathrm{TO}}+\overrightarrow{\mathrm{OM}}$
$={ }_{5}^{1} \mathbf{p}-\frac{2}{5} \boldsymbol{q}+\frac{1}{2} \mathbf{q}$
$={ }_{5}^{1} p+\frac{1}{10} \mathbf{q}$
$\overrightarrow{\mathrm{PT}}=\overrightarrow{\lambda \mathrm{TM}}$
$-{ }_{5}^{4} \mathbf{p}-{ }_{5}^{2} \mathbf{q}=\lambda\left({ }_{5}^{1} \mathbf{p}+\frac{1}{10} \mathbf{q}\right)$
$-4\left({ }_{5}^{1} \mathbf{p}+\frac{\mathbf{1}}{\mathbf{1 0}} \mathbf{q}\right)=\lambda\left({ }_{5}^{1} \mathbf{p}+\frac{1}{10} \mathbf{q}\right)$
$\lambda=-4$

22
(a) $\mathrm{a} 2+\mathrm{b} 2-2 \mathrm{ab} \operatorname{Cos} \mathrm{C}=\mathrm{c} 2$
$15^{2}+14^{2}-2 \times 14 \times 15 \operatorname{Cos} \mathrm{C}=12^{2}$
$\frac{15^{2}+14^{2}-12^{2}}{2 \times 14 \times 15} \operatorname{Cos} \mathrm{C}$
$\mathrm{C}=\operatorname{Cos}^{-1}(0.659523809)$
$\mathrm{C}=48.7364$
$=48.74^{0}$
(b) $\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}=2 \mathrm{R}$
$2 \mathrm{R}=\frac{12}{\operatorname{Sin} 48.74^{0}}$
$=7.9816$
$=7.982 \mathrm{~cm}$
(c) Area of the sector $=\frac{97.48^{0} x}{360^{0}} \times 3.142 \times 7.982^{\circ}$
$=54.2054$
$=54.21 \mathrm{~cm}^{2}$
Area of $\triangle \mathrm{ABC}=\frac{1}{2} \times 7.982^{2} \operatorname{Sin} 97.48^{\circ}$
$=31.59 \mathrm{~cm}^{2}$
Area of the shaded part $=(54.21-31.59)$
$=22.62 \mathrm{~cm}^{2}$
$\overrightarrow{\mathrm{PT}}=-4 \overrightarrow{\mathrm{TM}}$ hence $\overrightarrow{\mathrm{PT}} / / \overrightarrow{\mathrm{TM}}$
$\overrightarrow{\mathrm{PT}}$ and $\overrightarrow{\mathrm{TM}}$ have a common T and $\overrightarrow{\mathrm{PT}} / / \overrightarrow{\mathrm{TM}}$ then P .
T and M are collinear
21. (a) $y=2 x^{2}+5 x-12$

x	-8	-7	-6	-5	-4	-3	-2	-1	0	01	2	3	4
2 x 2	128	98	72	50	32	18	8	2	0	2	8	18	32
5 x	-40	-35	-30	-25	-20	-15	-10	-5	0	5	10	15	20
-12	-12	-12	-12	-12	-12	-12	-12	-12	-12	-12	-12	-12	-12
y	76	51	30	13	0	-9	-14	-15	-12	-5	6	21	40

GEM SUB-COUNTY JOINT EVALUATION EXAMS 2015
Kenya Certificate of Secondary Education (K.C.S.E)
121/2
MATHEMATICS
Paper 2
$21 / 2$ Hours

GATUNDU NORTH 2015 MOCK

Kenya Certificate of Secondary Education (K.C.S.E)

121/1
MATHEMATICS
PAPER 1
JULY / AUGUST 2015
$21 / 2$ HOURS

Section 1 (50 mks)

Answer all questions in this section in the spaces provided.

1. Simplify completely (3 mks)
$\underline{2 x^{2}+x-3}$
$4 x^{2}-9$
2. Find the area in hectares of a field book measurement recorded in metres as follows.

To E 50
To F 80

D				
170				
140				
110				
100				
30				
A		$	$	
:---	$\quad 50$ to C			

3. The diagram below represents a circular flower bed surrounded by a path of uniform width. Given that
$R=14 \mathrm{~m}$ and $\mathrm{r}=12.6 \mathrm{~m}$, calculate to the nearest whole number the area of the path. (Take $\mathrm{p}=22 / 7$) (3 mks)

4. The figure below shows triangle $P Q R$ in which $P R=12 \mathrm{~cm}$. T is a point on $P R$ such that $T R=4 \mathrm{~cm}$. Line $S T$ is parallel to OR. If the area of $P Q R$ is $336 \mathrm{~cm}^{2}$. Find the area of the quadrilateral QSTR.

5. A number \mathbf{n} is such that when divided by $3,7,11$ or 13 , the remainder is always one. Find the number \mathbf{n}. (3 mks)
6. Solve the simultaneous equation.
$3^{\mathrm{X}} \times 3^{\mathrm{y}}=1$
$2^{(2 x-y)}=64$
7. Use tables of square, cuberoots and reciprocal to find the value of \mathbf{x} if (4 mks)
$x=\sqrt{\frac{1}{0.2365}+\frac{2}{(2.6228)^{2}}}$
8. The total age of a group of parents is 342 yrs. A new parent aged 48 yrs joins the group, their average age rises by 1. Find the original number of parents given that they were more than 30 .
(4 mks)
9. The size of interior angle of a regular polygon is $3 x$ while its exterior angle is $(x-20)$. Find the number of sides of the polygon. (3 mks)
10. Solve the simultaneous inequality below and list the integral values that satisfy it.
(3 mks)
$2 \mathrm{x}+21>15-2 \mathrm{x} \geq \mathrm{x}+6$
11. The price of an article is marked as $12,000 /=$ Mr. Omanga sold the article at a discount of 10% and still made a profit of 8%. Calculate the cost of the article.
(3 mks)
12. A train 20 m long is moving at $52 \mathrm{~km} / \mathrm{h}$. Another train 30 m long is moving in the opposite direction at $48 \mathrm{~km} / \mathrm{h}$. How long do the train take to completely pass each other. Give your answer in seconds.
(3 mks)
13. An American tourist arrives in Kenya with 1000 US\$ and converted the whole amount into Kenyan shilling. He spend sh. 40000 and changed the balance to Sterling pounds before leaving for United Kingdom. A Kenyan bank buys and sells foreign currencies as shown.

Buying (in Kshs)	Selling (in ksh)
84.2083	84.3806
134.7941	135.1294

1 Sterling pound $\quad 134.7941 \quad 135.1294$
Calculate the amount he received to the nearest sterling pound.
(3 mks)
14. Work out the following.
$2 / 5 \div 1 / 2$ of $4 / 9-1 / 10$
15. Evaluate the following
(2 mks)
$\{-78 \div(-6)\}+\{26 \mathrm{x}-2\}$
16. Given that $\operatorname{Sin} \theta=2 / 3$ and θ is an acute angle, find without tables, $\tan ^{2} \theta+\cos ^{2} \theta$ leaving your answer a a mixed fraction.

Section 2

17. The length and breadth of a rectangle are given as $(6 x-1)$ and $(x-2)$ metres respectively. If the length and breadth are each increased by 4 metres, the new area is three times that of the original triangle.
a) Form an equation in \mathbf{x} and solve it. (4 mks)
b) Find the dimension of the original rectangle.
c) Express the increase in area as a percentage of the original area.
18. Three hundred and sixty litres of a homogenous paint is made by mixing three paints A, B and C. The ratio by volume of paints A to paint B is $3: 2$ and paint B to paint C is $1: 2$. Paint A costs sh. 180 per litre, paint B sh. 240 per litre and paint C sh. 127.50 per litre. Determine:
a) The volume of each type of paint in the mixture.
b) The amount of money spent in making one litre of the mixture.
c) The percentage profit made by selling the mixture at sh. 221 per litre.
19. The figure below shows triangle $O A B$ in which $\overrightarrow{O A}=$ a and $\overrightarrow{O B}=\underset{\sim}{b} . M$ and N are points on $\overrightarrow{O B}$ and $\overrightarrow{A B}$ respectively such that $\overrightarrow{\mathrm{OM}}=1 / 3 \overrightarrow{\mathrm{OB}}$ and $\mathrm{AN}=2 / 5 \overrightarrow{\mathrm{AB}}$. Line AM and ON meet at P such that $\overrightarrow{\mathrm{OP}}=5 / 9 \overrightarrow{\mathrm{ON}}$.

a) Express the following vectors in terms of a and b
i) $\mathrm{AB} \quad$ (1 mk)
ii) ON (2 mks)
iii) AM
(1 mk)
b) Express AP and PM in terms of $\underset{\sim}{a}$ and $\underset{\sim}{b}$ and hence show that the points A, P and M are collinear.
20. Four towns P, Q, R and S are such that town Q is 120 km due east of town P. Town R is 160 km due north of town Q. Town S is on a bearing of 330^{0} from P and on a bearing of 300^{0} from R.
a) Using a ruler and a compasses only, show the relative positions of towns P, Q, R and S.

Take a scale of 1 cm rep 50 km .
b) Determine
i) The distance $S P$ in km
ii) The bearing of S from Q.
iii) How far North, s is, from line QP produced.
21. The diagram below represents a solid consisting of a hemispherical bottom and a conical frustrum at the top.

a) Determine the value of \mathbf{x} hence the height of the cone.
b) Calculate;
i) The surface area of the solid.
ii) The volume of the solid.
22. The table below shows Kenya's tax rates in a certain year.

Income (K£ p.a) Tax rates (Ksh per $£$)
1-5220 2
5221-10440 3
10441-15660 4
15661-20880 5
20881 and above 6
In that year Mr. Mwangi earned a basic salary of Kshs. 16000 per month. He is entitled to a house allowance of ksh. 12000 per month and a medical allowance of ksh. 2000 per month.
Calculate:
a) i) His taxable income per year in pounds.
ii) His monthly gross tax.
iii) The monthly net tax if he is given a relief of ksh. 1056 per month.
b) Other deductions per month are as follows
N.H.I.F sh. 320, cooperative loan sh. 5600,

WCPS sh 488, coop shares sh 2000
Find his monthly net pay.
23. A bus left town A at 11.45 a.m and travelled towards town B at average speed of $60 \mathrm{~km} / \mathrm{h}$. A car left town B at $1.15 \mathrm{p} . \mathrm{m}$ on the same day and travelled towards town A along the same road at an average speed of $90 \mathrm{~km} / \mathrm{h}$. The distance between the two towns is 540 km . Determine
a) The time of day when the two vehicles met.
b) How far from A they met.
c) How far outside town B the bus was when the car reached town A.
24. The distance S metres from a fixed point, covered by a particle t seconds is given by the equation.
$s=t^{3}-6 t^{2}+9 t+5$
a) Calculate the gradient of the curve at $\mathrm{t}=0.5$ seconds.
b) Determine the value of \mathbf{s} at the maximum turning point of the curve.
c) On the space provided, sketch the curve of $s=t^{3}-6 t^{2}+9 t+5$

GATUNDU NORTH 2015 MOCK
 Kenya Certificate of Secondary Education (K.C.S.E)

121/2
MATHEMATICS
PAPER 2
JULY / AUGUST 2015
$21 / 2$ HOURS

Section 1 (50 mks)

Answer all questions in this section in the spaces provided.

1. Use logarithms to evaluate.
$\left(\frac{0.9823 \times(528.4)}{(965.3)} 1 / 3\right)^{1 / 4}$
2. Make y the subject of the formula.
$\mathrm{k}=\underset{\mathrm{g}}{\mathrm{1}}\binom{\mathrm{m}+\mathrm{y}^{2}}{1-\mathrm{y}^{2}}$
3. Without using mathematical tables evaluate,
$6 \log _{10} 2-3 \log _{10} 2+3 \log _{10} 5$
4. In the figure below $X Y$ is a tangent to a circle at $Y Z . V Z$ is a chord which produced to meet $X Y$ at Y. Given that $X Y=9 \mathrm{~cm}$ and $\mathrm{YZ}=6 \mathrm{~cm}$. Calculate the length of VZ .

5. The equation of a circle is $x^{2}-8 x+y^{2}+12 y=12$. Determine the centre and its radius of the circle. (3 mks)
6. Two values X and Y are such that
$3.5<\mathrm{x}<4.9$
$0.03 \leq \mathrm{x} \leq 0.27$
What is the greatest possible value of \underline{x}^{2}
y
7. a) Expand and simplified the first four terms of the binomial expression $(2-3 x)^{6}$.
b) Use the simplified expression in (a) above to estimate the value of $(1.97)^{6}$ correct 5 decimal places.
8. Given that $(x-2)$ is a factor of $3 x^{2}+k x-2$ find the value of k and hence the other factor.
9. The vectors $a=(2 x-4) i+(x-3) j+(x-2) k$ and its length of $(a)=7$. Find two possible values of \mathbf{x}.
10. Simplify the following expression as far as possible.
$\frac{x}{y-z}-\frac{x}{y+z}$
Hence or otherwise simplified
$\frac{\sqrt{21}}{\sqrt{6}-\sqrt{2}}{ }^{-} \frac{\sqrt{21}}{\sqrt{6}+\sqrt{2}}$
11. Find the value of x in the equation $10 \operatorname{Cos}^{2} x-7 \sin x+2=0$ for domain $0^{0} \leq x \leq 360^{0}$.
12. Given $\mathrm{A}=\left(\begin{array}{rr}-3 & 4 \\ 0 & 1\end{array}\right)$ and $\mathrm{c}=\left(\begin{array}{rr}9 & 14 \\ 3 & 0\end{array}\right)$

Find a matrix B so that $\mathrm{BA}=\mathrm{c}$
13. Use method of completing of square leaving your answer in a simplified surds $x^{2}=7 x-2$
14. Two quantities A and B are such that B varies directly as square of A. When A is increased by 20%, what percentage increase in B.
15. Mr. Kamau borrowed some money at 8% simple interest p.a. He borrowed the same amount and again repaid at the end of the year. If Kamau paid interest of Ksh. 2500 and ksh. 4000 respectively for each year, calculate
a) The value of r
b) The amount borrowed per year.
16. The figure below shows triangle ABC . On the given figure, construct the locus of P such that $<\mathrm{BPC}$ is always equal to $<B A C$ and that P is always on the same side of B as A.

SECTION B

17. A company is to construct a parking bay whose area is $135 \mathrm{~m}^{2}$. It is to be covered with a concrete slab of uniform thickness of 150 mm . To make the slab, cement, ballast and sand are to be mixed so that their masses are in the ratio 1 :
$4: 4$. The mass of $1 \mathrm{~m}^{3}$ of dry slab is 2500 kg . Calculate
a) i) the volume of the slab.
ii) the mass of the dry slab.
iii) the mass of cement to be used.
b) If one bag of cement is 50 kg , find the number of bags to be purchased.
c) If a lorry carries 7 tonnes of sand, calculate the number of lorries of sand to be purchased.
18. The probability of three dart players Githongo, Mwai and Kanyoro hitting the bulls eye in a competition are $0.4,0.7$ and 0.5 respectively.
a) Draw a probability tree diagrams to show the possible outcomes.
b) Find the probability that
i) all hit the bulls eye. (2 mks)
ii) only one of them hit the bulls eye.
iii) atmost one missed the bulls eye.
19. The first, third and sixth terms of an arithmetic progression (AP) correspond to the first three consecutive terms of a geometric progression (GP). The first term of each progression is 16 , common difference of AP and d and common ratio of the GP is r.
a) i) Write two equations involving \mathbf{d} and \mathbf{r}.
ii) Find the values of \mathbf{d} and \mathbf{r}.
b) Find the sum of the first 20 terms in the
i) Arithmetic progression (AP).
ii) Geometric progression (GP)
20. The diagram below shows a circle centre $0 . A B$ is a tangent to the circle at B. $B D$ is a diameter and $A E C$ is a straight line. Angle $\mathrm{BDE}=50^{0}$ and $\mathrm{DEC}=20^{\circ}$.
Giving reasons find the size of

a) angle CBD	$(2 \mathrm{mks})$
b) angle ACD	$(2 \mathrm{mks})$
c) angle ABC	$(2 \mathrm{mks})$
d) angle BAC	$(2 \mathrm{mks})$
e) angle ABE	$(2 \mathrm{mks})$
a) Complete the table below for $y=2 \sin x+1$ and $y=3 \operatorname{Cos}\left(x+30^{0}\right)$	$(2 \mathrm{mks})$

x	0	30	60	90	120	150	180	210	240
$2 \sin \mathrm{x}+1$	1.0	-	2.7	-	2.7	-	-	0	-0.7
$3 \operatorname{Cos}(\mathrm{x}+30)^{0}$	2.6	-	0	-1.5	-	-3	-2.6	-	-

b) On the same axis, draw the graph of $y=2 \operatorname{Sin} x+1$ and $y=3 \operatorname{Cos}(x+30)^{0}$ for $0^{0} \leq x \leq 240^{0}$.
c) i) Find the values of \mathbf{x} for which $2 \operatorname{Sin} x+1=3 \operatorname{Cos}(x+30)^{0}$
ii) State the period and the amplitude for $y=3 \operatorname{Cos}(x+30)^{0}$
(2 mks)
22. A particle moving along a line passes a point 0 at a velocity of $15 \mathrm{~m} / \mathrm{s}$ and its acceleration t seconds later is given by a $=(2 t-8) \mathrm{m} / \mathrm{s}^{2}$
a) Find the expression of the velocity after passing the point 0 .
b) Find the time when the particle is at rest.
c) Find the distance between the points when the particle is at rest.
23. The position of two towns A and B on earth surface are $\left(36^{0} N, 49^{0} E\right)$ and $\left(36^{0} N, 131^{0} W\right)$ respectively. Take $\mathrm{R}=6370$
a) Find the difference in longitude between the town A and B .
b) Calculate the distance between A and B along the latitude in
i) nautical miles
ii) kilometres
c) i) Another town C is 840 km East of town B and on the same latitude as town A and B. Find the position of town C.
ii) If the local time in B is 7.30 a.m, find the local time in C.
24. Triangle $P Q R$ has the vertices $P(2,0) Q(2,3)$ and $R(5,2) . P_{1} Q_{1} R_{1}$ is the image of $P Q R$ under the translation with the vector $[0] \mathrm{P}_{2} \mathrm{Q}_{2} \mathrm{R}_{2}$ is the image of $\mathrm{P}_{1} \mathrm{Q}_{1} \mathrm{R}_{1}$ under a transformation given by the matrix $\left(\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right)$
a) On the same axis, plot $P Q R, P_{1} Q_{1} R_{1}$ and $P_{2} Q_{2} R_{2}$.
b) Describe the transformation represented by the matrix $\left(\begin{array}{rr}0 & -1 \\ 1 & 0\end{array}\right)$
c) Find a single matrix that maps $P Q R$ onto $P_{2} Q_{2} R_{2}$.

GATUNDU NORTH 2015 MOCK
 Kenya Certificate of Secondary Education (K.C.S.E)

121/1

MATHEMATICS

PAPER 1

JULY / AUGUST 2015
$21 / 2$ HOURS

1.	$\begin{aligned} & \hline(2 x+3) x-2 x+3 \\ & (x-1)(2 x-3) \\ & (2 x-3)(2 x+3) \\ & \frac{x-1}{2 x-3} \end{aligned}$	6	$\text { 6. } \left.\begin{array}{l} 3^{(x+y)}=3^{0} \\ 2^{2 x-y}=2^{6} \end{array}\right\}$	
2			$\begin{aligned} & \frac{2 x-y=6}{3 x=6} \\ & x=2 \\ & x+y=0 \\ & y=-2 \\ & x=2 \\ & y=-2 \end{aligned}$	
	1) $1 / 2 \times 30 \times 50=750$ 2) $1 / 2 \times 80(50+60)=4400$ 3) $1 / 2 \times 60 \times 60=1800$ 4) $1 / 2 \times 30 \times 50=750$ 5) $1 / 2 \times 40(80+50)=2600$ 6) $1 / 2 \times 100 \times 80=400$ $\frac{14,300}{10,000}=1.43 \mathrm{hec}$	7.	$\begin{aligned} & \left(\frac{1}{2.365}+2\left(\frac{1}{2.6228}\right)^{2}\right)^{\frac{1}{3}} \\ & \left(0.4228 \times 10^{1}+2(0.1448)\right)^{\frac{1}{3}} \\ & (4.228+0.2896)^{\frac{1}{3}} \\ & 4.5176^{1} / 3 \\ & =1.65 \end{aligned}$	
	$\begin{aligned} & \mathrm{A}=\pi \mathrm{R}^{2}-\pi \mathrm{r}^{2} \\ & =22 / 7\left(14^{2}-12.6^{2}\right) \\ & =22 / 7(196-158.76) \\ & =22 / 7 \times 37.24 \\ & =117.04 \\ & =117 \mathrm{~m}^{2} \end{aligned}$		$\begin{aligned} & \text { 8. } \frac{342}{x}+1=\frac{342+48}{x+1} \\ & \frac{342+x}{x}=\frac{342+48}{x+1} \\ & (342+x)(x+1)=x(490) \\ & x^{2}-47 x+342=0 \end{aligned}$	M1 M1
4	$\begin{aligned} \text { L.S.F. } & =12 / 8=3 / 2 \\ \text { A.S.F } & =9 / 4 \\ 336 & / x \end{aligned}={ }^{9} / 4$		$\begin{aligned} & x=\frac{47 \pm \sqrt{841}}{2} \\ & x=38 \text { or } x=9 \\ & \therefore x=38 \text { parents } \end{aligned}$	M1 A1
	$\begin{aligned} & \quad x=149^{1} / 3 \\ & \text { Area of quad }=336-149^{1} / 3 \\ & =186^{2} / 3 \mathrm{~cm}^{2} \end{aligned}$		$\text { 9. } \begin{aligned} & 3 \mathrm{x}^{0}+(\mathrm{x}-20)^{0}=180 \\ & 4 \mathrm{x}=200^{0} \\ & . \end{aligned}$	M1 M1
5.	3 3 7 11 13 3 1 7 11 13 7 1 1 11 13		$\begin{aligned} & \therefore \text { No of sides }=360 / 30=12 \text { sides } \\ & =12 \text { sides } \end{aligned}$	A1
	$$		10. $\begin{aligned} & 2 x+21>15-2 x \\ & 4 x / 4>-6 / 4 \\ & x>-1.5 \\ & 15-2 x \geq x+6 \\ & 9 / 3 \geq 3 x \\ & 3 \geq x \end{aligned}$ $\text { Integers }-1,0,1,2,3$	M1 M1 A1

\begin{tabular}{|c|c|c|c|c|c|c|}
\hline 11 \& \[
\begin{aligned}
\& \text { 11. } 90 / 100 \times 12000=10,800 /= \\
\& 108 / 100 \times x=10,800 \\
\& x=10,000 \\
\& \hline \hline
\end{aligned}
\] \& \(\begin{array}{r}\text { M1 } \\ \text { M1 } \\ \text { A1 } \\ \hline\end{array}\) \& \multirow[t]{3}{*}{18.} \& \multicolumn{2}{|l|}{\[
\text { a) } \begin{array}{ll}
\text { A : } \mathrm{B}: \mathrm{C}=3: 2: 4 \\
\& \mathrm{~A}=3 / 9 \times 360=120 \text { litres } \\
\& \mathrm{B}=2 / 9 \times 360=80 \text { litres } \\
\& \mathrm{C}=4 / 9 \times 360=160 \text { litres }
\end{array}
\]} \& M \\
\hline 12 \& \[
\begin{aligned}
\& \hline \hline \text { Dist }=50 \mathrm{~m}(30+20) \\
\& \text { Relative speed }=100 \mathrm{~km} / \mathrm{h}(52+48) \\
\& \text { Time }=50 / 100 \times 3600 / 100 \\
\& =1.8 \mathrm{sec}
\end{aligned}
\] \& \[
\begin{aligned}
\& \text { M1 } \\
\& \text { M1 } \\
\& \text { A1 }
\end{aligned}
\] \& \& \multicolumn{2}{|l|}{\multirow[t]{2}{*}{\begin{tabular}{l}
b)
\[
\begin{gathered}
\frac{(120 \times 180)+(240 \times 80)+(1}{360} \\
=\text { sh. } 170
\end{gathered}
\] \\
c)
\[
\begin{aligned}
\% \text { profit } \& =\left(\frac{210-170}{170}\right) \times 100 \\
\& =23.53 \%
\end{aligned}
\]
\end{tabular}}} \& M \\
\hline 13 \& \[
\begin{aligned}
\& 1000 \times 84.2084 \\
\& =84208.3 \\
\& 84208.3-40000
\end{aligned}
\] \& M1
M1 \& \& \& \& M \\
\hline \& \[
\begin{aligned}
\& =44208.30 \\
\& =\frac{44208}{135.1293} \\
\& =327
\end{aligned}
\] \& A1 \& \multirow[t]{4}{*}{19.} \& \multicolumn{2}{|l|}{a) i)
\[
\begin{aligned}
\& \overrightarrow{\mathrm{AB}}=\underset{\sim}{\mathrm{b}}-\underset{\sim}{a} \\
\& \overrightarrow{\mathrm{aN}}=\overrightarrow{\mathrm{OA}}+\overrightarrow{\mathrm{AN}} \\
\& =\underset{\sim}{a}+{ }^{2} / 5(\underset{\sim}{b}-\vec{a})
\end{aligned}
\]} \& \\
\hline 14 \& \[
\begin{aligned}
\& 1 / 2 \times 4 / 9=2 / 9 \\
\& 2 / 5 \times 9 / 2=9 / 5 \\
\& 9 / 5-11 / 10=7 / 10
\end{aligned}
\] \& M1
A1 \& \& \& \[
\begin{aligned}
\& =\underset{\sim}{a}+2 / 5 \underset{\sim}{b}-2 / 5 \underset{\sim}{a} \\
\& =3 / 5 \underset{\sim}{a}+2 / 5 \underset{\sim}{b}
\end{aligned}
\] \& A1 \\
\hline 15 \& \[
\begin{aligned}
\& \hline(52)+(-52) \\
\& =0
\end{aligned}
\] \& \[
\begin{aligned}
\& \hline \text { M1 } \\
\& \text { A1 }
\end{aligned}
\] \& \& \& \[
\overrightarrow{\mathrm{AM}}=\overrightarrow{\mathrm{AO}}+\overrightarrow{\mathrm{OM}}
\] \& \\
\hline 16 \& \[
\begin{aligned}
\& y=\sqrt{9-4}=\sqrt{5} \\
\& \tan ^{2} \theta+\cos ^{2} \theta \\
\& {\left[\frac{2}{5}\right]^{2}+\left(\frac{\sqrt{5}}{3}\right)^{2}} \\
\& \quad=4 / 5+5 / 9=61 / 45=1^{16} / 45
\end{aligned}
\] \& M1
A1 \& \& \& \[
\begin{aligned}
\& =\underset{\sim}{-a}+1 / 3 \underset{\sim}{b} \\
\& \overrightarrow{\mathrm{AP}}=\overrightarrow{\mathrm{AD}}+\overrightarrow{0 P} \\
\& =\underset{\sim}{a}+5 / 9\left({ }^{3} / 5 \sim_{\sim}^{a}+2 / 5 \underset{\sim}{b}\right) \\
\& =-a+5 / 15 \underset{\sim}{a}+2 / 9 \underset{\sim}{b} \\
\& =2 / 9 \sim_{\sim}^{b}-2 / 3 \underset{\sim}{a} \\
\& =2 / 3(1 / 3 \underset{\sim}{b}-\underset{\sim}{a})
\end{aligned}
\] \& A
M

A

\hline 17 \& | SECTION II |
| :--- |
| a) Dimension of the new rectangle $\begin{aligned} & (6 x+3)(x+2)=6 x^{2}+15 x+6 \\ & 6 x^{2}+15 x+6=18 x^{2}-39 x+6 \\ & 12 x^{2}-54 x=0 \\ & 6 x(2 x-9)=0 \\ & x=4.5 \end{aligned}$ |
| b) Length $=26$ metres Breadth $=2.5$ metres |
| c) Original area $=(26 \times 2.5)=65 \mathrm{~m}^{2}$ |
| New area $=(30 \times 6.5)=195 \mathrm{~m}^{2}$ \% increase $\begin{aligned} & =\left(\frac{195-65}{65}\right) \times 100 \\ & =200 \% \end{aligned}$ | \& \[

$$
\begin{aligned}
& \text { M1 } \\
& \text { M1 } \\
& \text { M1 } \\
& \text { A1 } \\
& \text { M1 } \\
& \text { M1 } \\
& \text { M1 }
\end{aligned}
$$

\] \& \& \& | $\begin{aligned} & \overrightarrow{\mathrm{PM}}=\overrightarrow{\mathrm{PO}}+\overrightarrow{\mathrm{OM}} \\ & =-5 / 9\left({ }^{3} / 5 \underset{\sim}{a}+2 / 5 \underset{\sim}{b}\right)+1 / 3 \underset{\sim}{b} \\ & =-1 / 3^{\mathrm{a}}-2 / 9 \underset{\sim}{b}+1 / 3 \underset{\sim}{b} \\ & =1 / 9 \underset{\sim}{b}-1 / 3 \underset{\sim}{a} \\ & =1 / 3(1 / 3 \underset{\sim}{b}-\underset{\sim}{a}) \\ & \overrightarrow{\mathrm{AP}}=k P \mathrm{PM} \\ & 2 / 3(1 / 3 \underset{\sim}{b}-\underset{\sim}{a})=\mathrm{k}(1 / 3(1 / 3 \underset{\sim}{b}-\underset{\sim}{a}) \\ & 2 / 3=1 / 3^{\mathrm{b}} \\ & \mathrm{k}=2 \end{aligned}$ |
| :--- |
| $\overrightarrow{\mathrm{AP}}=2 \overrightarrow{\mathrm{PM}}$ and they share P thus they are collinear | \& M

\hline
\end{tabular}

GATUNDU NORTH 2015 MOCK
Kenya Certificate of Secondary Education (K.C.S.E)
121/2
MATHEMATICS
PAPER 2
JULY / AUGUST 2015
$21 / 2$ HOURS

18		20	$<\mathrm{CBD}=20^{0}$ angles supported by the same chord CD ACD $\mathrm{DBE}=\mathrm{ACD}=40^{0}$ Angles supported by the same chord DE $\mathrm{ABE}=50^{\circ}=\mathrm{BDE}$ Alternate segment angles $\mathrm{BEA}=110^{0}$ angles on straightline $\mathrm{BAC}=20^{0}$ Angles in a triangle ABE $\mathrm{ABC}=180-20-50=100^{0}$ Angles in a triangle ABC
	$\begin{aligned} &+(0.6 \times 0.3 \times 0.5) \\ &= 0.06+0.21+0.09 \\ &= 0.36 \\ & \mathrm{P}(\mathrm{MHH})+\mathrm{P}(\mathrm{HMH})+\mathrm{P}(\mathrm{HHM})+\mathrm{P}(\mathrm{MMM}) \\ &=(0.6 \times 0.7 \times 0.5)+(0.4 \times 0.3 \times 0.5)+(0.6 \times 0.3 \times \\ &0.5)+(0.4 \times 0.7 \times 0.5) \\ &= 0.21+0.06+0.09+0.14=0.5 \end{aligned}$	21	x 0 30 60 90 120 150 180 210 240 $2 \operatorname{Cosx}+1$ 1.0 2.0 2.7 3.0 2.7 2.0 1.0 0 -0.7 $3 \cos \mathrm{x}+30$ 2.6 1.5 0 -1.5 -2.6 -3 -2.6 -1.5 0 c) $x=22.5^{0}$ and $x=232.5$ Amplitude $=3$ Period $=360^{\circ}$
19.	$\begin{aligned} & \text { Sum (AP } \\ & \text { AP }=>a, a+2 d, a+5 d \quad 20 / 2(2 \times 16+19 \times 4) \\ & G P=>a=a=10(32+76) \\ & a r=a+2 d=10 \times 108 \\ & a^{2}=a+5 d=1080 \\ & r=\frac{a+2 d}{a}=\frac{a+5 d}{a+2 d} \\ & \frac{a+2 d}{a}=\frac{a+5 d}{a+2 d} \\ & a(a+5 d)=(a+2 d)(a+2 d) \\ & a^{2}+5 a d=a^{2}+4 d+4 d^{2} \\ & 4 d^{2}-a d=0 \\ & d(4 d-a)=0 \\ & d=0 \\ & 4 d-a=0 \\ & \begin{array}{l} 4 \times 16)-n=0 \\ a=64 \\ 4 d-16=0 \\ 4 d=16 \\ d=4 \\ r=\frac{a+2 d}{a} \\ =\frac{16+2}{16} \times 4 \\ =\frac{16+8}{16} \quad \end{array} \quad \frac{16(1.520-1)}{1.5-1} \\ & =\frac{24}{16} \quad=16 \times 3324.25673 \\ & =106376.2154 \\ & r=1 \end{aligned}$	22	$\begin{aligned} & \mathrm{a}=2 \mathrm{t}-8 \\ & \mathrm{~V}=\frac{2 \mathrm{t}^{2}-8 \mathrm{t}}{} \\ & \mathrm{C}+\mathrm{C} \\ & \mathrm{~V}=\mathrm{t}^{2}-8 \mathrm{t}+\mathrm{C} \\ & \mathrm{t}=0, \mathrm{~V}=15 \\ & 15=0-0+\mathrm{C} \\ & \mathrm{C}=15 \\ & \mathrm{~V}=\mathrm{t}^{2}-8 \mathrm{t}+15 \\ & \mathrm{~V}=0 \mathrm{at} \text { rest } \\ & \mathrm{t}^{2}-8 \mathrm{t}+15=0 \\ & (\mathrm{t}-3)(\mathrm{t}-5)=0 \\ & \mathrm{t}=3 \mathrm{sec} \\ & \mathrm{t}=5 \text { sec } \end{aligned}$

22	$\begin{aligned} & \text { 22. c) } \int_{3}^{5}\left(\mathrm{t}^{2}-8 \mathrm{t}+15\right) \mathrm{dt} \\ & \left(\frac{\mathrm{t}^{3}}{3}-4 \mathrm{t} 2+15\right)_{3}^{5} \\ & (125 / 3-4 \times 25+15 \times 5)- \\ & (27 / 3-4 \times 9 \times 15 \times 3) \\ & (41.67-100+75)- \\ & (9-36+45) \\ & 16.67-18 \\ & = \\ & 1.33 \text { sq units } \end{aligned}$

23 a) $\left(49 \mathrm{E}^{0}+131^{0} \mathrm{E}\right)$
Long diff $=180^{0} \quad$ A1
b) i) $180 \times 60 \times 60 \operatorname{Cos} 36^{0} \quad$ M1
$=8737.384 \mathrm{~nm} \quad \mathrm{~A} 1$
ii) $180 / 360 \times 2 \times \mathrm{p} \times 6370 \operatorname{Cos} 36^{0} \quad$ B1
$=16,190 \mathrm{~km} \quad \mathrm{~A} 1$
c) i) Longitude diff
$\left(131^{0}-\theta\right) \times 2 \times \mathrm{p} \times 6370 \operatorname{Cos} 36^{\circ}=9.34 \quad$ M1
360
$=840$
$131-\theta=9.34$
M1
$-\theta=-121.66$
Position of C $\theta=121.66^{0}$
$\mathrm{C}=\left(36^{0} \mathrm{~N} \quad 121.66^{0} \mathrm{~N}\right) \quad \mathrm{A} 1$
ii) Longitude diff $=9.34^{0} \quad$ M1
$1^{0}=4 \mathrm{~min}$
$9.340=$?
$=37 \mathrm{mins}$
$4 \times 9.34=37 \mathrm{~min}$
$10.30+37 \mathrm{~min}$
$\mathrm{C}=9.07 \mathrm{a} . \mathrm{m}$
A1

MURANG'A SOUTH MULTILATERAL EXAMINATION
 Kenya Certificate of Secondary Education (K.C.S.E)

121/1
MATHEMATICS
PAPER 1
JULY / AUGUST 2015
$21 / 2$ HOURS

Section 1 (50 mks)

Answer all questions in this section in the spaces provided.

1. Simplify completely
$\frac{9 a^{2} y-16 b^{2} y^{3}}{4 b y^{2}-3 a y}$
2. Simplify the expression.
$\frac{x-1}{x}-\frac{2 x+1}{3 x} \quad$ Hence solve the equation
$\frac{x-1}{x}-2 x+1=\frac{2}{3 x}$
3. If $2 / 3$ is added to the numerator of a certain fraction the fraction will be increased by $1 / 21$ and if $1 / 2$ is deducted from its denominator that fraction becomes $2 / 9$. Find the reciprocal of the fraction.
4. Without using a calculator or mathematical tables, evaluate.
$-2(5+3)-9,3+5$
$-3(-5)+-2(4)$
5. A polygon of \mathbf{n} sides has half of the interior angles 150^{0} each and the rest 170^{0} each. Find the value of \mathbf{n}. (2 mks)
6. Kanyau toured Switzerland from Germany. In Switzerland he bought his wife a present worth 72 Deutsche marks. Find the value of the present in
a) Swiss Francs
b) Kenya shillings correct to the nearest sh, if 1 Swiss Franc $=1.25 \quad$ Deutsche marks
1 Swiss Franc $=48.2 \quad$ Kenya shillings
7. Given that $\operatorname{Sin} x=3 / 4$ find without using tables or calculators.
a) $\operatorname{Cos} x$
b) $\operatorname{Tan}(90-x)$
8. In the figure below, O is the centre of the circle. PQ is parallel to OR and $\mathrm{PQO}=40^{\circ}$, find $\angle P R O$.

9. A colony of insects was found to have 250 insects at the beginning. Thereafter, the number of insects doubled every two days. Find the number of insects after 16 days.
10. The cash price of a music system is kshs. 30,000 . It can be bought under hire purchase terms by paying a deposit of kshs. 10,000 and twelve monthly installments of Kshs. 3,200 per month. Determine the percentage rate of interest per month.
11. A square whose vertices are $P(1,1), Q(2,1), R(2,2)$ and $S(1,2)$ is given an enlargement with centre at $(0,0)$. Find the images of the vertices if the scale factor is 3 .
12. Kairietu is now four times as old as her daughter and six times as old as her son. Twelve years from now, the sum of the ages of her daughter and son will differ from her age by 9 years. What is Kairietu's present age? (3 mks)
13. In the figure below 0 is the centre of the circle diameter $A B . \angle A X P=90^{\circ}, A X=4 \mathrm{~cm}$ and $P X=10 \mathrm{~cm}$. Calculate the radius of the semi-circle.

14. Given that $\mathrm{a}=5 \mathrm{i}+4 \mathrm{j}, \mathrm{b}=3 \mathrm{i}-2 \mathrm{j}$ and $\mathrm{c}=7 \mathrm{i}+10 \mathrm{j}$; find the scalars m and n such that $\underset{\sim}{\operatorname{ma}}+\underset{\sim}{\mathrm{nb}}=\mathrm{c}$
15. Solve the simultaneous inequalities and represent the solution on a number line; 4-2x<8 and 2-3x ≥-7 (3 mks)
16. The figure below is a cone whose base radius is 7 cm and slant height 14 cm . The net of the cone is a sector of a circle.

a) Find the angle substended at the centre of the sector.
b) Draw the net of the solid.

SECTION B (50 MARKS)

Answer any five questions from this section

17. The following data shows the sample of age distribution in years of the people who reside in a certain village in Murang'a.

Age group	Frequency
$1-5$	4
$6-10$	8
$11-20$	8
$21-30$	6
$31-50$	40
$51-55$	3
$56-65$	3

a) Complete the histogram of the given data below.

b) Calculate the mean age of the given sample in the village.
18. a) Copy and complete the following table for $y=2 x^{2}+4 x-5$

x	-4	-3	-2	-1	0	1	2
$2 \mathrm{x}^{2}$	32			2	0		8
4 x	-16			-4	0		8
-5	-5	-5	-5	-5	-5	-5	-5
y	11			-7	-5		11

b) i) Draw the graph of $y=2 x^{2}+4 x-5$
ii) Use the graph of b (i) above to solve the equation $2 x^{2}+4 x-5=0$
(1 mk)
c) To solve the equation $2 x^{2}+x-7=0$ a straight line must be drawn to intersect the curve $y=2 x^{2}+4 x-5$.
i) Find the equation of the line.
ii) Draw the line and hence estimate the roots of the equation $2 \mathrm{x}^{2}+\mathrm{x}-7=0$.
19. The diagram below is a right pyramid on a rectangular base.

Given that the volume of the solid is $280 \mathrm{~m}^{3}$ and its base area is $60 \mathrm{~cm}^{2}$ and that $\mathrm{AB}: \mathrm{BC}=3: 5$, determine
i) The height of the pyramid.
ii) The length and width of the base.
iii) The slant edge of the pyramid.
20. The table below shows measurements, in metres made by surveyor in his field book.

	F	
G 100	420	
	380	D70
	300	C100
H60	220	E40
	140	
	80	B60
	A	

i) Using an appropriate scale draw the region.
ii) Find the area in hectares of the filed.
21. A cross country route has five sections $A B, B C, C D, D E$ and EA. B is 2 km on a bearing of 050^{0} from A. C is 5 km from B. The bearing of B from C is 300°. D is 4 km on a bearing 230° from C. E is 2.5 km on a bearing 025° from D. Use the scale 1 cm for 0.5 km to draw the diagram representing the cross country route.
From the diagram determine.
i) The distance in km of A from E .
ii) The bearing of E from A.
22. A bus travels from Murang'a to Meru a distance of 320 km at a speed of $x \mathrm{~km} / \mathrm{h}$. If the speed is reduced by $20 \mathrm{~km} / \mathrm{h}$ the bus would take 48 minutes more.
a) Form an equation to represent the given information and simplify it.
(4 mks)
b) Find the speed of the bus.
c) Determine the time taken by the bus for the whole journey.
(1 mk)
d) Another car is moving from Meru to Murang'a at a speed of $80 \mathrm{~km} / \mathrm{h}$. Determine their relative speed. (2 mks)
23. a) Construct a triangle ABC in which $\mathrm{AB}=4.3 \mathrm{~cm}, \mathrm{BC}=5.0 \mathrm{~cm}$ and $\mathrm{CA}=6.3 \mathrm{~cm}$ using a pair of compass and ruler only.
b) Construct an escribed circle centre 0 opposite angle CAB and measure radius of the circle.
c) Measure the acute angle subtended by BC at the centre of the circle.
d) Determine the area of triangle OBC.
24. A particle starts from rest and moves with an acceleration, a, given by $a=(10-t) m / s^{2}$. Given that velocity, Vm/s is $2 \mathrm{~m} / \mathrm{s}$; when time; t seconds is 1 sec .
a) Express in terms of \mathbf{t};
i) Its velocity after t seconds.
ii) Its displacement after t seconds.
b) Calculate its velocity when $t=3$ seconds
c) Calculate the maximum velocity attained.

MURANG'A SOUTH MULTILATERAL EXAMINATION
 Kenya Certificate of Secondary Education (K.C.S.E)

121/2
MATHEMATICS
PAPER 2
JULY / AUGUST 2015
$21 / 2$ HOURS

Section 1 (50 mks)

Answer all questions in this section in the spaces provided.

1. Use logarithms correct to 4 significant figures to evaluate.
(4 mks)
$\frac{(93.4)^{2} \times \sqrt{0.00435}}{\log 6.56}$
2. Rono invested a sum of money, sh p at 24% p.a simple interest for 8 years and realised that he got the same amount as Wekesa who invested sh. 2 p for 4 years at compound interest. Calculate the rate of interest p.a
Wekesa enjoyed.
3. The position vectors of A and B are $a=2 i-3 j+4 k$ and $b=-2 i-j+2 k$ respectively. Find to $2 d . p$ the length of vector AB.
4. Make \mathbf{p} the subject of the formula;
$\mathrm{L}=\frac{2}{3} \sqrt{\frac{\mathrm{x}^{2}-\mathrm{Pt}}{\mathrm{y}}}$
(3 mks)
5. Two taps A and B together, can fill water in a tank in 6 minutes. Tap A alone takes 5 minutes longer to fill the tank than the tap B alone. How many minutes does it take tap B alone to fill the tank.
6. Solve for x in the equation.
$2^{2 \mathrm{x}-1}+4^{\mathrm{x}+2}=264$
7. Find the radius and co-ordinates of the centre of a circle whose equation is
$1 / 2 x^{2}+1 / 2 y^{2}-3 x+4 y+6^{3} / 8=0$
8. Find the equation of the tangent at the point $(3,1)$ to the curve.
$y=x^{2}-4 x+4$
(3 mks)
9.

On the figure, find the locus of point P such that P is
i) nearer to A than B .
ii) Less than 5 cm from B.
iii) nearer to $A B$ than to $A C$.
(Shade the unwanted region.)
10. Ketepa tea worth ksh. 40 per kg is mixed with Sasini tea worth sh. 60 per kg in the ratio $3: 1$. In what ratio should this mixture be mixed with Kericho tea worth sh. 50 per kg to produce a mixture worth sh. 47 per kg .
11. Solve for x in the equation
$6 \operatorname{Sin}^{2} x-\operatorname{Cos} x-5=0$ for $0 \leq x \leq 360^{0}$.
12. If $\frac{\sqrt{14}}{\sqrt{7-\sqrt{2}}}-\frac{\sqrt{14}}{\sqrt{7+\sqrt{2}}}=\mathrm{a} \sqrt{7}+\mathrm{b} \sqrt{2}$

Find the values of a and b where and b are rational numbers.
13. Expand $\left(2+{ }^{1} / 4^{x}\right)^{6}$ up to the term containing x^{4}. Hence evaluate $(1.975)^{6}$ to 5 d.p.
14. A quantity y varies partly as x and partly as the inverse of the square of x. If $x=2$ when $y=4$ and $x=4$ when $y=6.25$ find the equation connecting x and y.
15. The eleventh term of an A.P is four times the second term. If the sum of the first seven terms of the A.P is 175 find the first term and the common difference.
16. Find the exact area of the shaded region.

Section II (50 marks)

Answer any five questions from this section

17. In the triangle OAB below, $\underset{\sim}{\mathrm{OA}}=\underset{\sim}{\mathrm{a}}, \underset{\sim}{\mathrm{OB}}=\underset{\sim}{\mathrm{b}}$ and $\mathrm{OC}=3 / 2 \mathrm{OA}$. M divided OB in the ratio 3:2.

a) Express in terms of a and $\underset{\sim}{b}$ only, the vectors
i) BA
ii) $\widetilde{M} C$
b) Givẽn further that $\mathrm{MN}=\mathrm{hMC}$ and $\mathrm{BN}=\mathrm{kBA}$, express vector MN in two different ways and hence, find the value of h and k.
c) Show that the points M, N and C are collinear.
18. In a botanical experiment, the length of 60 leaves of a certain type of a tree were measured correct to the nearest 0.1 cm .

Length (cm)	$3.0-3.4$	$3.5-3.9$	$4.0-4.4$	$4.5-4.9$	$5.0-5.4$	$5.5-5.9$	$6.0-6.4$	$6.5-6.9$	$7.0-7.4$
No of leaves	1	4	9	14	12	10	6	3	1

a) State the modal class.
b) Calculate the median length.
c) Using a working mean of 5.2, find
i) The mean.
(4 mks)
ii) The standard deviation.
(2 mks)
19. The table below shows the income tax rates for a certain year.
Taxable pay per month (sh) Tax rates (\%)

1-9680 10\%
9681-18800 15\%
18801-27920 20\%
27921-27040 25\%
Above 37040 30\%
In that year Maina paid a net tax of ksh. 5512 per month. His total monthly taxable allowances amounted to ksh. 15,220 and he was entitled to a monthly personal relief of ksh. 1162. Every month the following deductions were made

- NHIF Ksh. 320
- Union dues Ksh. 200
- Co-op shares Ksh. 7500
a) Calculate Maina’s monthly basic salary in Ksh.
b) Calculate his monthly net salary

21. A transformation represented by the matrix $\left(\begin{array}{rr}2 & 1 \\ 1 & -2\end{array}\right)$ maps the points $A(0,0), B(2,0), C(2,3)$ and $D(0,3)$ of the quadrilateral $A B C D$ onto $A^{1} B^{1} C^{1} D^{1}$ respectively.
a) Draw the quadrilateral $A B C D$ and it's image $A^{1} B^{1} C^{1} D^{1}$.
b) Hence or otherwise determine the area of $A^{1} B^{1} C^{1} D^{1}$.
c) A transformation represented by the matrix $\left(\begin{array}{cc}0 & -1 \\ -1 & 0\end{array}\right)$ maps $A^{1} B^{1} C^{1} D^{1}$ onto $A^{11} B^{11} C^{11} D^{11}$. Draw the image $A^{11} B^{11} C^{11} D^{11}$
d) Determine the single matrix which maps $A^{11} B^{11} C^{11} D^{11}$ back to $A B C D$.
22. a) In a F4 class there are 22 girls and 18 boys. The probability that a girl completes the secondary education course is $3 / 5$ whereas that of a boy is $2 / 3$. A student is picked at random from the class. Find the probability that the student picked:
i) Is a boy and will complete the course.
ii) Will complete the course. (2 mks)
iii) Is a girl and will not complete the course.
(2 mks)
b) A bag, contains 5 blue balls, 8 red balls and 3 green balls being similar in shape and size. A ball is picked out at random without replacement and it's colour noted. Use a tree diagram to determine the probability that at least one of first two balls picked is green.
(4 mks)
23. a) Complete the table below fro the functions $y=\cos x$ and $y=2 \cos (x+30)$ for $0 \leq x \leq 360^{0}$

x^{0}	0	30	60	90	120	150	180	210	240	270	300	330
$\operatorname{Cos} \mathrm{x}$	1	087	0.5		-0.5		-1.0		-0.5		0.5	
$2 \cos (\mathrm{x}+30)$	1.73			-1.0		-2.0		-1.0		1.0		

b) On the same axes draw the graphs of $y=\cos x$ and $y=2 \cos (x+30)$ for $0 \leq x \leq 360^{0}$.
(2 mks)
c) State the amplitude of each graph.

$$
\begin{aligned}
& y=\cos x \\
& y=2 \cos (x+30)
\end{aligned}
$$

d) Use your graph to solve
i) $\cos x=2 \cos (x+30)$
ii) $2 \operatorname{Cos}(x+30)-1 / 2=0$
23. A plane S flies from a point $\mathrm{P}\left(40^{0} \mathrm{~N}, 45^{0} \mathrm{~W}\right)$ to a point $\mathrm{Q}\left(35^{0} \mathrm{~W}, 45^{0} \mathrm{~W}\right)$ and then onto a point $T\left(35^{0} \mathrm{~N}, 135^{0} \mathrm{E}\right)$.
a) Given that the radius of the earth is 6370 km , find the distance P to Q in $k m$.
(2 mks)
b) Find in nm ;
i) the shortest distance between Q and T.
(2 mks)
ii) the longest distance between Q and T (to the nearest tens).
c) Find the difference in time taken when S flies along the shortest and longest routes if its speed is 420 knots.
24. The headteacher of a secondary school placed an order for x - lockers and y - chairs from a metal works with the following conditions:
i) The number of chairs should be more than the number of lockers.
ii) The total number of lockers and chairs must not exceed 100.
iii) There should be at least 20 chairs and not less than 10 lockers.
iv) The cost of a locker is ksh. 2500 and that of a chair is ksh. 1000 and the headteacher has only ksh. 1500 to spend on lockers and chairs during the ter m.
a) Write down all the inequalities describing the situation above.
b) On the grid provided, draw a graph representing the inequalities.
c) Determine the maximum number of lockers and chairs that can be bought.
(2 mks)

MURANG'A SOUTH MULTILATERAL EXAMINATION
Kenya Certificate of Secondary Education (K.C.S.E)
121/1

MATHEMATICS

PAPER 1
JULY / AUGUST 2015
$21 / 2$ HOURS

1.	$\begin{aligned} & \frac{y\left(3^{2} a^{2}-4^{2} b^{2} y^{2}\right)}{y(4 b y-3 a)} \\ & \frac{(3 a-4 b y)(3 a+4 b y)}{(4 b y-3 a)} \\ & \frac{(3 a-4 b y)(3 a+4 b y)}{-(3 a-4 b y)} \end{aligned}$	M1 M1 M1	5.	$\begin{aligned} & \frac{180^{0}}{180-150}+\frac{180}{180+170} \\ & \frac{180}{30}+\frac{180}{10} \\ & 6+18 \\ & 24 \text { sides } \end{aligned}$	M1 M1 A1
	-3a-4by	A1	6	a) Swiss francs $\frac{72}{1.25}=57.6$ b) Kshs $57.6 \times 48.2=$ Sh. 2776	B1
2.	$\begin{aligned} & \frac{x-1}{3}-\frac{2 x-1}{3 x}=\frac{3 x^{2}-3 x-2 x^{2}-x}{3 x^{2}} \\ & =x^{2}-4 x \end{aligned}$	M1			M1 A1
	$\begin{array}{r} 3 x^{2} \\ =x-4 \\ \hline 3 x \end{array}$ $\frac{x-4}{3 x}=\frac{2}{3}$	B1	7	$\begin{aligned} & \operatorname{Sin} \mathrm{x}=3 / 4 \\ & y=\sqrt{4^{2}-3^{2}}=\sqrt{7} \\ & \operatorname{Cos} x=\sqrt{7} / 4 \\ & \operatorname{Tan}(90-x)=7 / 3 \end{aligned}$	A1 M1A1
	$\begin{gathered} 3(x-4)=2(3 x) \\ 3 x-12=6 x \\ -12=+3 x \\ -4=x \end{gathered}$	M1 A1	8	$\begin{aligned} & \angle \mathrm{OPQ}=40^{0} \quad \text { Base Isosceles } \\ & \angle \mathrm{POQ}=180-(40+40)=100^{0} \\ & \angle \mathrm{QOR}=40 \text { alternate } \\ & \angle \mathrm{POR}=100+40=140^{0} \end{aligned}$	B1
3.	$\begin{gathered} \frac{x+2 / 3}{y}=\frac{x}{y}+\frac{1}{21} \\ x=2 \end{gathered}$			$\begin{aligned} & <\text { PRO }=\frac{180-140}{2} \\ & \text { Base }<\text { of } \\ & \text { Isosceles } \Delta \\ & =20 \end{aligned}$	B1
	$\begin{aligned} & y-1 / 2 \\ & 9 x-2 y=-1 \\ & x+2 / 3=x+1 / 21 y \\ & 21 x+14=21 x+y \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { M1 } \end{aligned}$	9.	$\begin{aligned} & \mathrm{a}=250 \\ & \mathrm{r}=2 \\ & \mathrm{n}=16 / 2+1=9 \\ & \mathrm{Sn}=\mathrm{ar}^{\mathrm{n}}-1 \\ & 250 \times 2^{8}=6400 \\ & \hline \end{aligned}$	$\begin{array}{r} \mathrm{B} 1 \\ \text { B1A1 } \\ \hline \end{array}$
	$\begin{aligned} & x=\frac{2 \times 14-1}{9}=3 \\ & x=3 \\ & x=\frac{3}{y} \\ & y=\frac{14}{3} \\ & x= \end{aligned}$	B1	10	$\begin{aligned} & 3200 \times 12=38400 \\ & 30,000-10,000=20,000 \\ & 38,400=20,000\left({ }^{1}+\mathrm{R}_{/} 100\right)^{12} \\ & 1.92=\left({ }^{1}+{ }^{\mathrm{R}} / 100\right)^{12} \end{aligned}$	M1
4.	$\begin{aligned} & \frac{-2 \times 8-9,3+5}{15+-8} \\ & \frac{-16-3+5}{15-8} \\ & -2 \end{aligned}$	M1 M1 A1		$\begin{aligned} & 1.0559=1+\mathrm{R} / 100 \\ & 0.0559=\mathrm{R} / 100 \\ & \mathrm{R}=5.59 \% \end{aligned}$	M1 A1

MURANG'A SOUTH MULTILATERAL EXAMINATION
Kenya Certificate of Secondary Education (K.C.S.E)
121/2
MATHEMATICS

PAPER 2

JULY / AUGUST 2015
$21 / 2$ HOURS

\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{1.} \& \& 7. \& \multicolumn{2}{|l|}{\[
\begin{aligned}
\& x^{2}-6 x+y^{2}+8 y=-51 / 4 \\
\& x^{2}-6 x+9+y^{2}+8 y+16=-51 / 4+25 \\
\& \text { M1 completely square } \\
\& (x-3)^{2}+(y+4)^{2}=49 / 4 \\
\& \text { Centre }(3,-4) \\
\& \text { Radius } 3.5 \text { units }
\end{aligned}
\]} \\
\hline \& \[
\begin{aligned}
\& 7.0421 \times 10^{2} \longleftarrow \\
\& =704.21
\end{aligned}
\] \& \multirow[t]{2}{*}{8} \& \multicolumn{2}{|l|}{\[
\begin{array}{ll}
\mathrm{dy} / /_{\mathrm{dx}}=2 \mathrm{x}-4 \& \\
\mathrm{x}=3 ; \mathrm{dy} / \mathrm{dx}=2 \& \mathrm{M} 1(\mathrm{dy} / \mathrm{dx})
\end{array}
\]} \\
\hline \multirow[t]{3}{*}{\(\underline{2}\)} \& \multirow[t]{3}{*}{\[
\begin{aligned}
\& \text { Rono : } \mathrm{A}=\mathrm{P}+\mathrm{P} \mathrm{x} 24 / 100 \times 8 \\
\& =1.92 \mathrm{P}+\mathrm{P}=2.92 \mathrm{P} \\
\& \text { Wekesa } \mathrm{A}=2 \mathrm{p}(1+\mathrm{r} / 100)^{4} \\
\& 2.92 \mathrm{P}=2 \mathrm{p}(1+\mathrm{r} / 100)^{4} \\
\& 1.46=(1+\mathrm{r} / 100)^{4} \\
\& 4 \quad 1.46=1+{ }^{\mathrm{r}} / 100 \\
\& \mathrm{r}=9.923 \%
\end{aligned}
\]} \& \& \[
\begin{aligned}
\& y=2 x+C \\
\& 1=6+C \\
\& C=-5 \\
\& y=2 x-5
\end{aligned}
\] \& \begin{tabular}{l}
M1 \\
A1
\end{tabular} \\
\hline \& \& \multirow[t]{2}{*}{} \& \& \\
\hline \& \& \& 1 kg mixture
\[
\begin{aligned}
\& =\frac{40 \times 3+60 \times 1}{4}=\text { sh. } 45 \\
\& \underline{45 \mathrm{x}+50 \mathrm{y}}=47
\end{aligned}
\] \& M1
M1 \\
\hline \multirow[t]{2}{*}{3.} \& \multirow[t]{2}{*}{\[
\begin{aligned}
\& \mathrm{AB}=\left[\begin{array}{c}
-2 \\
-1 \\
2
\end{array}\right]-\left(\begin{array}{r}
2 \\
-3 \\
4
\end{array}\right]=\left[\begin{array}{c}
-4 \\
2 \\
-2
\end{array}\right] \\
\& |A B|=\sqrt{(-4)^{2}+2^{2}+(-2)^{2}}=24 \\
\& |A B|=4.90 \text { units }
\end{aligned}
\]} \& \& \[
\begin{aligned}
\& 45 x+50 y=47 x+47 y \\
\& 3 y=24 \\
\& x / y=3 / 2 \\
\& x: y=3: 2 \\
\& \hline
\end{aligned}
\] \& A1 \\
\hline \& \& \multirow[t]{3}{*}{11} \& \multirow[t]{3}{*}{\[
\begin{aligned}
\& \hline 6\left(1-\cos ^{2} x\right)-\operatorname{Cos} x-5=0 \\
\& 1-6 \cos ^{2} x-\operatorname{Cos} x=0 \\
\& 6 \cos ^{2} x+\cos x-1=0 \\
\& \text { Let } \cos x=y \\
\& 6 y^{2}+y-1=0 \\
\& (2 y+1)(3 y-1)=0 \\
\& y=-0.5 \text { or } y=0.3333 \\
\& \operatorname{Cos} x=-0.5 \\
\& x=120^{0}, 240^{0} \\
\& \operatorname{Cos} x=0.3333 \\
\& x=70.5,289.5 \\
\& x=70.5^{0}, 120^{0}, 240^{0}, 289.5
\end{aligned}
\]} \& \multirow{3}{*}{M1
M1

A1, A1}

\hline 4. \& $$
\begin{array}{lc}
\hline \hline \mathrm{L}^{2}=\frac{4}{9}\left(\frac{\mathrm{x}^{2}-\mathrm{PT}}{\mathrm{y}}\right) & \text { M1 sqrs } \\
\frac{9 L^{2} \mathrm{y}}{4}=\mathrm{x}^{2}-\mathrm{Pt} & \\
\mathrm{PT}=\mathrm{x}^{2}-\frac{9 L^{2} \mathrm{y}}{4} & \text { M1 separately } \\
\mathrm{P}=\mathrm{x}^{2} \frac{-9 \mathrm{~L}^{2} \mathrm{y}}{4} & \\
\frac{\mathrm{~A} 1}{\mathrm{~T}} & \\
\hline
\end{array}
$$ \& \& \&

\hline 5. \& \multirow[t]{2}{*}{$$
\begin{array}{lr}
1 \min \operatorname{tap}(A \& B)=1 / A+1 / B=1 / 6 \text { of work } \\
\frac{1}{B+5}+\frac{1}{B}=\frac{1}{6} & M 1 \text { forming eqn } \\
B^{2}-7 B-300 & M 1 \text { simplified eqn. } \\
\begin{array}{lr}
B-10)(B+3)=0 & A 1
\end{array}
\end{array}
$$} \& \& \&

\hline \& \& \multirow[t]{2}{*}{12.} \& \[
$$
\begin{aligned}
& \frac{\sqrt{14}(\sqrt{7}+\sqrt{2})-\sqrt{14}(\sqrt{7}-\sqrt{2})}{(\sqrt{7}-\sqrt{2})(\sqrt{7}+\sqrt{2})} \\
& 7 \sqrt{2}+\sqrt{28}-7 \sqrt{2}+\sqrt{28}
\end{aligned}
$$

\] \& | M1 |
| :--- |
| M1 |

\hline 6. \& $$
\begin{array}{lc}
\hline \frac{2}{2}^{2 x}+2^{2 x} \times 16=264 & \\
2^{2 x}+32\left(2^{2 x}\right)=528 & \text { M1 } \\
33\left(2^{2 x}\right)=528 & \\
2^{2 x}=16=2^{4} & \text { M1 } \tag{M1}\\
x=2 & \text { A1 } \\
\hline
\end{array}
$$ \& \& \[

$$
\begin{aligned}
& =\frac{2 \sqrt{28}}{5}=\frac{4 \sqrt{7}}{5}=a \sqrt{7}+b \sqrt{2} \\
& a=4 / 5 \quad b=0
\end{aligned}
$$
\] \& A1 both

\hline
\end{tabular}

GATUNDU SOUTH FORM FOUR 2015 EVALUATION EXAM

121/1
MATHEMATICS
PAPER I
JULY/AUGUST 2015
TIME: $2 ½$ HOURS

SECTION I

ANSWER ALL QUESTIONS IN THE SPACES PROVIDED BELOW EACH QUESTION

1. Without using Logarithms tables or a calculator evaluate.

$$
\sqrt{\frac{384.16 \times 0.0625}{96.04}}
$$

2. Simplify completely

$$
\frac{2 x^{2}-98}{3 x^{2}-16 x-35} \div \frac{x+7}{3 x+4}
$$

3. Solve the following inequality and show your solution on a number line.
$4 x-3 \leq 1 / 2(x+8)<x+5$
4. Rose bought a golden necklace for ksh. 6000 and sold it to Betty at a loss of 30%. Betty later sold it at a profit of 20%. What was Betty's selling price.
5. If $x=2 / 3$ is a root of $6 x^{2}+k x-2=0$, find the value of k and the other root.
6. Tap A takes 4 minutes to fill a tank and tap B takes 6 minutes to empty the tank. If the tank has a capacity of 3000 litres find the volume of the tank after 2 minutes when both taps are open.
7. From a viewing tower 30 metres above the ground, the angle of depression of an object on the ground is 30° and the angle of elevation of an aircraft vertically above the object is 42°. Calculate the height of the aircraft above the ground.
8. Find the equation of the perpendicular bisector of line $A B$ where A is $(3,9)$ and $B(7,5)$ giving your answer in the form $a x+b y+c=0$
9. Solve the simultaneous equations.

$$
\begin{aligned}
& x y=4 \\
& x+y=5
\end{aligned}
$$

10. Vectors A and B are $2 \mathbf{i}+5 \mathbf{i}$ and $8 \mathbf{i}-7 \mathbf{j}$ respectively. Find the coordinates of M which divide $A B$ in the ratio 1:2.
11. Ruto is 12 years old. In three years time he will be $1 / 3$ of his father's present age. How old was his father 12 years ago.
12. Given $\mathrm{a}: \mathrm{b}=6: 7$ and $\mathrm{b}: \mathrm{c}=14.17$ find $\mathrm{a}: \mathrm{b}: \mathrm{c}$.
13. The figure below is a velocity time graph for a car.

a) Find the total distance traveled by the car.
b) Calculate the deceleration of the car.
14. Two sides of a triangular piece of land are 21 km and 32 km long. If its area is $240 \mathrm{~km}^{2}$, find the obtuse angle between the sides.
15. Evaluate using sq- re root, reciprocal and square tables only.

$$
\left(\frac{1}{\sqrt{0.7235}}\right)^{2}-\frac{1}{10.56}
$$

16. A cylinder of diameter 28 m was drilled right through it as shown below. Calculate its surface area.

SECTION II

ANSWER ANY 5 QUESTIONS FROM THIS SECTION
17. A bus left Makindu at 11.45 a.m and traveled towards Mombasa at an average speed of $80 \mathrm{~km} / \mathrm{h}$. A Nissan Matatu left Makindu at 1.15 p.m on the same day and traveled along the same road at an average speed of $120 \mathrm{~km} / \mathrm{hr}$. The distance between Makindu and Mombasa is 400 km .
a) Determine the time of the day the Nissan overtook the bus.
b) Both vehicles continue towards Mombasa at their original speeds. Find how long the Matatu had to wait at Mombasa before the bus arrived.
18. Given that $y=7+3 x-x^{2}$, complete the table below

x	-3	-2	-1	0	1	2	3	4	5	6
y	-11			7						-11

b) On the grid provided and using a suitable scale draw the graph of $y=7+3 x-x^{2}$.
c) On the same grid draw a straight line using the graph to solve $x^{2}-4 x-3=0$
d) Determine the coordinates of the turning point of the curve.
19. From a reservoir, water flows through a cylindrical pipe of diameter 0.2 m at a rate of $0.35 \mathrm{~m} / \mathrm{s}$.
a) Determine the number of litres of water discharged from the reservoir in one hour.
b) The water flows from the reservoir for 18 hours per day for 25 days per month and serves a population of 2500 families. Determine the average consumption of water per family per month giving your answer to nearest 100 litres.
(4 marks)
c) The water is charged at the rate of sh. 450 per 100 litres. Calculate the average water bill per family per month.
(2 marks)
20. A room is constructed such that its external length and breadth are 7.5 m and 5.3 m respectively. The thickness of the wall is 15 cm and its height is 3.3 metres. A total space of $5 \mathrm{~m}^{2}$ is left for doors and windows on the walls.
a) Calculate the volume of:
(i) the materials needed to construct the walls without the doors and windows.
(4 marks)
(ii) the materials needed to construct the walls with doors and windows.
(2 marks)
b) The blocks used in constructing the walls are 450 mm by 200 mm by $150 \mathrm{~mm} .0 .225 \mathrm{~m}^{3}$ of cement is used to join the blocks. Calculate the number of blocks. Calculate the number of blocks needed to construct the room. (4 marks)
21. Every Sunday, Chalo drives a distance of 80 km on a bearing of 074° to pick up his brother Ben to go to church. The church is 75 km from Ben's house on a bearing of 550° E. After church they drive a distance of 100 km on a bearing of 260° to check on their father before Chalo drives to Ben's home to drop him off then proceeds to his house.
a) Using a scale of 1 cm represent 10 km show the relative positions of these places.
(4 marks)
b) Use your diagram to determine
(i) The true bearing of Charo's
(ii) The compass of bearing of the father's home from Ben's home
(1 marks)
(iii) The shortest distance between Ben's home and father's home.
(2 marks)
(iv) The total distance Charo travels' every Sunday.
22. The following measurement were recorded in a field book using $X Y$ as the baseline. $X Y=400 \mathrm{~m}$.

	Y	
C60	340	
	300	1200
	240	160 E
	220	160 F
B100	140	
A120	80	
	X	

a) Using a scale of 1:4000 draw an accurate map of the farm. (4 marks)
b) Determine the actual area of the farm in hectares.
c) If the farm is on sale at sh.80,000 per hectare find how much the farm costs.
23. A tailor bought a number of suits at a cost of sh. 57,000 from Ken-suit wholesalers. Had he bought the same number of suits from Umoja wholesalers it would have costed him sh. 480 less per suit. This would have enabled him to buy 4 extra suits for the same amount of money.
a) Find the number of suits the tailor bought.
b) The tailor later sold each suit for sh. 720 more than he had paid for it. Determine the percentage profit he made.
24. A particle P moves in a straight line such that t seconds after passing a fixed point Q. it's velocity is given by the equation $2 t^{3}-10 t+12$ find:
a) The values of t when p is instantaneously at rest.
b) An expression for the distance moved by P after t seconds.
c) The total distance traveled by P in the first 3 seconds after passing point 0 .
d) The distance of P from O when acceleration is zero.

GATUNDU SOUTH FORM FOUR 2015 EVALUATION EXAM

121/2
MATHEMATICS
PAPER II
JULY/AUGUST 2015
TIME: $21 ⁄ 2$ HOURS
SECTION I (50 MARKS) ANSWER ALL QUESTIONS

1. Use mathematical tables to evaluate.
$\sqrt[3]{\frac{4 \cos 60^{\circ} \times 0.1324^{2}}{5 \log 7}}$
2. Solve for x in the equation
$\operatorname{Sin}(4 \mathrm{x}-10)^{\circ}-\operatorname{Cos}\left(\mathrm{x}+60^{\circ}\right)^{\circ}=0$
3. A radio cassette is offered for sale at shs 8,000 or a deposit of shs. 1,000 and 15 monthly repayments of shs 840 . Find the rate of interest compounded monthly that is being charged under hire purchase terms.
4. A colony of insects was found to have 250 insects at the beginning. Thereafter the number of insects doubled every 2 days. Find how many insects there were after 16 days.
5. Under a shear with x-axis invariant a square with vertices $A(1,0), B(3,0), C(3,2)$ and $D(1,2)$ is mapped onto a parallelogram with vertices $A^{1}(1,0) B^{1}(3,0), C^{1}(7,2)$ and $D^{1}(5,2)$. Find the shear matrix.
(3 marks)
6. Using a ruler and a pair of compasses only construct a triangle $P Q R$ in which $Q R$ is $6.6 \mathrm{~cm}, \mathrm{P}=3.8 \mathrm{~cm}$ and $P Q=5.6 \mathrm{~cm}$. Locate point x inside triangle $P Q R$ which is equidistant from P and R such that angle $P X R=90^{\circ}$.
7. Find the variance and standard deviation of $3,5,7,9,11$
8. P and Q are two points such that $\mathbf{O P}=\mathbf{i}+2 \mathbf{j}+3 \mathbf{k}$ and $\mathbf{O Q}=4 \mathbf{i}+5 \mathbf{j}-3 \mathbf{k}$. M is a point that divides $P Q$ externally in the ratio 3:2. Find the co-ordinates of M.
(3 marks)
9. The sector below has a radius of 12 cm and an angle $\mathrm{AOC}=60^{\circ}$ is folded to form a cone. Find the volume of the cone formed.
(4 marks)

10. Find the equation of the normal to the tangent of the curve $y=x^{3}-3 x^{2}+2 x+1$ at the point where $x=3$. Leave your answer in the form $\mathrm{y}=\mathrm{mx}+\mathrm{c}$.
11. Without using mathematical tables or calculator; evaluate:

$$
\frac{\operatorname{Cos} 135^{\circ}-\operatorname{Sin} 30^{\circ}}{\operatorname{Sin} 135^{\circ}+\operatorname{Sin} 30^{\circ}}
$$

12. Find the midpoint of the straight line joining $A(2,1)$ and $D(6,5)$.
13. The equation of a circle centre (h, k) is $2 x^{2}+2 y-8 x+5 y+10=0$. Find the values of h and k.
14. Make y the subject of the formula given

$$
H=\sqrt{\frac{t}{q-y^{2}}}
$$

15. If $1-\underline{1}=\underline{c}$ for all values of a, evaluate c and b.

$a-2 \quad a+2 \quad a^{2}-b$

16. X and Y are two variables such that Y is partly constant and partly varies inversely as the square of X. If $Y=3$ when X $=2$ and $Y=5$ when $X=1$, find Y when $X=4$.
(3 marks)

SECTION II
 ANSWER ONLY FIVE QUESTIONS IN THIS SECTION IN THE SPACES PROVIDED.

17. The table below shows the number of students who scored marks in mathematics test.

Marks	$1-10$	$11-20$	$21-30$	$31-40$	$41-50$	$51-60$	$61-70$	$71-80$	$81-90$	$91-100$
Frequency	3	6	10	10	12	17	15	16	7	4

a) Draw a cumulative frequency graph for the data.
(4 marks)
b) Use the graph to estimate the median mark.
(2 marks)
c) If students who score over 40 marks pass the tests estimate the percentage of the students
i) who passed
(2 marks)
ii) who failed
(2 marks)
18. In a geometrical progression, the sum of the second and third terms is 6 ; and the sum of the third and fourth terms is 12. Find:
a) (i) The first term
(3 marks)
(ii) The common ration
(3 marks)
b) The sum of number of consecutive terms of an arithmetical progression is -19 $1 / 2$; the first term is $16 \frac{1}{2}$; and the common difference is -3 . Find the number of terms.
19. a) $P Q R S$ is a quadrilateral with vertices $p(1,4) Q(2,1), R(2,3)$ and $S(6,4)$. On the grid provided plot the quadrilateral (1 mark)
b) Draw $\mathrm{P}^{1} \mathrm{Q}^{1} \mathrm{R}^{1} \mathrm{~S}^{1}$ the image of PQRS under a positive quarter turn about the origin and write down its co-ordinates.
c) Draw $\mathrm{P}^{11} \mathrm{Q}^{11} \mathrm{R}^{11} \mathrm{~S}^{11}$ the image of P 1 Q 1 R 1 S 1 under the transformation whose matrix is $\left(\begin{array}{cc}1 & 0 \\ -2 & 1\end{array}\right)$ and write down its co-ordinates.
(3 marks)
(3 marks)
d) Determine the matrix T of a single transformation that maps $P Q R S$ onto $P^{11} Q^{11} \mathrm{R}^{11} \mathrm{~S}^{11}$
20. In the figure below, E is the midpoint of $\mathrm{AB}, \mathrm{OD}: \mathrm{DB}=2: 3$ and F is the point of intersection of OE and AD .

$\rightarrow \quad \rightarrow$
a) Given that $\mathrm{OA}=\mathbf{a}$ and $\mathrm{OB}=\mathbf{b}$, express in terms of a and b
i) $\overrightarrow{O E}$
(1 mark)
\rightarrow
(1 mark)
ii) AD

$$
\rightarrow \quad \rightarrow \quad \rightarrow \quad \rightarrow
$$

b) Given further that $\mathrm{AF}=\mathrm{tAD}$ and $\mathrm{OF}=\mathrm{sOE}$ where s and t are scalars, find the values of s and t . (5 marks)
c) Show that O, F and E are collinear.
(3 marks)
21. The position of two towns P and Q are given to the nearest degrees as $P\left(45^{\circ} \mathrm{N}, 110^{\circ} \mathrm{W}\right)$ and $Q\left(45^{\circ} \mathrm{N}, 70^{\circ} \mathrm{E}\right)$ Take $\pi=$ 3.142 , Radius of the earth $R=6370 \mathrm{~km}$. Find
a) The distance between the two towns along the parallel of latitude in km .
(3 marks)
b) The distance between the towns along a parallel of latitude in nautical miles.
(3 marks)
c) A plane flew from P to Q taking the shortest distance possible. It took the plane 15 hours to move from P and Q.

Calculate it's speed in knots
(4 marks)
22. Compete the table below

X°	-180°	-150°	-120°	-90°	-60°	-30°	0°	30°	60°	90°	120°	150°	180°
$\mathrm{Y}=\sin (\mathrm{x}+30)^{\circ}$			-1				0.50				0.50		
$\mathrm{Y}=2 \cos (\mathrm{x}+30)^{\circ}$			0				1.73				-1.73		

b) On the same axes draw the graphs of $y=\sin (x+30)^{\circ}$ and $y=2 \cos (x+30)^{\circ}$.
c) Use your graphs to solve the equation $2 \cos (x+30)^{\circ}-\sin (x+30)^{\circ}=0$
d) State the amplitude of each wave.
23. Two wheels have radii 20 cm and 30 cm . Their centres are 70 cm apart. A belt, passes tightly round the wheels as shown below.

a) Calculate the length of AB and FE .
(3 marks)
b) Evaluate the angles AOC and BCO.
c) Calculate the total length of the belt A B G E F H A
24. Given the equations: $y=4-x^{2}$ and $y=x^{2}-2 x$;
a) Find the co-ordinates of the points where the two curves meet.
b) Find the co-ordinates of points where $y=4-x^{2}$ meet:
(i) The x -axis.
(ii) The y-axis
c) Find the co-ordinates of the points where $y=x^{2}-2 x$ meet;
(i) The x-axis
(ii) The y-axis
d) Sketch the two curves above on the same axes
e) Find the area enclosed between the curves $y=4-x^{2}$ and $y=x^{2}-2 x$.

GATUNDU SOUTH FORM FOUR 2015 EVALUATION EXAM

121/1
MATHEMATICS
PAPER 1
JULY/AUGUST 2015
TIME: $21 ⁄ 2$ HOURS

	b) $\begin{aligned} & =\frac{57600}{20} \\ & =\text { sh. } 2880 \end{aligned}$ c) Profit per suit $=720$ $\frac{720 \times 100}{2880}=20 \%$
24	a) $\begin{aligned} & \hline V=2 t^{2}-10 t+12 \\ & \frac{2 t^{2}}{2}-\frac{10 t}{2}+\frac{12}{2}=0 \\ & t^{2}-5 t+6=0 \\ & t=3 \quad \text { or } t=2 \end{aligned}$ b) $\frac{\mathrm{ds}}{\mathrm{dt}}=2 \mathrm{t}^{2}-10 \mathrm{t}+12$ $\text { c) } \begin{aligned} & \left(2 \mathrm{t}^{2}+10 \mathrm{t}+12 \mathrm{dt}\right) \\ & \text { When } \mathrm{t}=0 \mathrm{~s}=0 \mathrm{c}=0 \\ = & 2 / 3 \mathrm{t}^{3}-\mathrm{st} 2+12 \mathrm{t} \\ = & 2 / 3(3)^{3}-5(3)^{2}+12(3) \\ = & 18-45+36 \\ = & \mathrm{m} \end{aligned}$

GATUNDU SOUTH FORM FOUR 2015 EVALUATION EXAM

121/2
MATHEMATICS
PAPER II
JULY/AUGUST 2015
TIME: $21 / 2$ HOURS

\begin{tabular}{|c|c|c|c|c|c|}
\hline 9. \& \begin{tabular}{l}
Area of a sector = curve are of a cone. 60 x л \(\times 12^{2}=\pi \mathrm{rx} 12\)
\[
1 / 6 \times 12=r
\] \\
Radius \(=2 \mathrm{~cm}\)
\[
\begin{aligned}
\& \mathrm{h}=\sqrt{12^{2}-2^{2}} \\
\& =\sqrt{140} \\
\& =11.83 \mathrm{~cm} \\
\& \begin{aligned}
\text { Volume } \& =1 / 3 \mathrm{x}^{22} / 7 \times 2 \times 2 \times 11.83 \\
\& =49.57 \mathrm{~cm}^{3}
\end{aligned}
\end{aligned}
\]
\end{tabular} \& 14 \& \[
\begin{aligned}
\& \mathrm{H}^{2}=\frac{\mathrm{t}}{\mathrm{q}-\mathrm{y}^{2}} \\
\& \mathrm{t}=\mathrm{H}^{2} \mathrm{q}-\mathrm{H}^{2} y^{2} \\
\& y^{2}=\frac{\mathrm{H}^{2} \mathrm{q}-\mathrm{t}}{\mathrm{H}^{2}} \\
\& \mathrm{y}= \pm \sqrt{\frac{\mathrm{H}^{2} \mathrm{q}-\mathrm{t}}{\mathrm{H}^{2}}}
\end{aligned}
\] \& \& M1
M1

A1

\hline \multirow[t]{2}{*}{10} \& \multirow[t]{2}{*}{$$
\begin{aligned}
& \text { Gradient } \frac{d y}{d x}=3 x^{2}-6 \mathrm{x}+2 \\
& \text { Gradient }=3(3)^{2}-6 \times 3+2=11 \\
& \text { Gradient of the normal } 1 \text { to line } \\
& M_{2}=\frac{-1}{11} \\
& Y=33-3(3)^{2}+3 \times 2+1 \\
& Y=7 ;(x, y) \text { is }(3,7) \\
& \text { Since } m_{2}=\frac{-1}{11} \\
& \frac{-1}{11}=\frac{y-7}{x-3} \\
& y=\frac{x}{11}+\frac{80}{11}
\end{aligned}
$$} \& 15 \& \multicolumn{2}{|l|}{\[

$$
\begin{aligned}
& \frac{1-1}{a-2} \frac{1}{a+2} \\
& =\frac{a+2-1(a-2)}{a^{2}-4} \\
& =\frac{4}{a^{2}-4} \\
& \text { Comparing with } \frac{c}{a^{2}-4} \\
& C=4 \\
& b=4
\end{aligned}
$$
\]} \& M1

M1
A1

\hline \& \& \multirow[t]{2}{*}{16} \& \multicolumn{2}{|l|}{$\mathrm{Yk}+\mathrm{c}$ where k and c are constants

$$
3=\mathrm{k}+\frac{\mathrm{c}}{4}
$$} \& M1

\hline \multirow[t]{6}{*}{11} \& $$
\begin{aligned}
\cos 135^{\circ} & =-\cos \left(180^{\circ}-135^{\circ}\right) \\
& =-\cos 45^{\circ}=-\frac{\sqrt{ } 2}{2} \\
\operatorname{Sin} 30^{\circ} & =1 / 2 \\
\operatorname{Sin} 135^{\circ} & =\sin \left(180^{\circ}-135^{\circ}\right) \\
& =\sin 450 \\
& =\frac{\sqrt{2}}{2} \\
\cos 135^{\circ} & -\sin 30^{\circ}
\end{aligned}
$$ \& \& \multicolumn{2}{|l|}{\[

$$
\begin{aligned}
& 5=\mathrm{k}+\mathrm{c} \\
& 2=3 / 4 \mathrm{c} ; \mathrm{c}=8 / 3=2^{2} / 3 \\
& \mathrm{k}=7 / 3=2^{1} / 3 \\
& \mathrm{k}=2^{1} / 3, \mathrm{C}=2^{2} / 3 \\
& \mathrm{y}=7 / 3+\frac{8}{3 \mathrm{x}^{2}} \\
& \text { When } \mathrm{x}=4, \mathrm{y}=7 / 3+\frac{8}{3(4)^{2}} \\
& \quad \mathrm{Y}=21 / 2
\end{aligned}
$$

\]} \& | M1 |
| :--- |
| A1 |

\hline \& Sin $135^{\circ}+\sin 30^{\circ}$ \& \multirow[t]{12}{*}{17} \& \multicolumn{2}{|l|}{a)} \& \multirow[t]{5}{*}{B1}

\hline \& \[
=-\frac{\sqrt{2}}{2}-\frac{1}{2}

\] \& \& | Class | Frequency |
| :--- | :--- | \& Cumulative Freq. C.F \&

\hline \& $\underline{\sqrt{2}}+\underline{1}$ \& \& | $1-10$ | 3 |
| :--- | :--- | \& 3 \&

\hline \& 22 \& \& | $11-20$ | 6 |
| :--- | :--- | \& 9 \&

\hline \& $=-1$ \& \& | $21-30$ | 10 |
| :--- | :--- | \& 19 \&

\hline \multirow[t]{7}{*}{12} \& \multirow[t]{7}{*}{\[
$$
\begin{aligned}
& \text { Mid point of } \mathrm{AB}= \\
& \\
& \qquad\left(\frac{2+6}{2}, \frac{1+5}{2}\right) \\
& =(8 / 2,6 / 2) \\
& =(4,3)
\end{aligned}
$$

\]} \& \& | $31-40$ | 10 |
| :--- | :--- |
| 4 | | \& 29 \&

\hline \& \& \& | $41-50$ | 12 |
| :--- | :--- | \& 41 \&

\hline \& \& \& | $51-60$ | 17 |
| :--- | :--- |
| 10 | | \& 58 \&

\hline \& \& \& | $61-70$ | 15 |
| :--- | :--- | \& 73 \&

\hline \& \& \& | $71-80$ | 16 |
| :--- | :--- | \& 89 \&

\hline \& \& \& | $81-90$ | 7 |
| :--- | :--- | \& 96 \& B1

\hline \& \& \& | $91-100$ | 4 |
| :--- | :--- | \& 100 \& B1

\hline 13 \& \[
$$
\begin{aligned}
& \mathrm{X}^{2}+\mathrm{y}^{2}-4 \mathrm{x}+5 / 2 \mathrm{y}+5=0 \\
& \mathrm{X}^{2}+\mathrm{y}^{2}-4 \mathrm{x}+5 / 2 \mathrm{y}=-5 \\
& \mathrm{X}^{2}-4 \mathrm{x}+4+\mathrm{y}^{2}+5 / 2 \mathrm{y}+25 / 16=-5+4+{ }^{25} / 16 \\
& (\mathrm{x}-2)^{2}+(\mathrm{y}+\underline{5})^{2}=\underline{9} \\
& 4 \quad 16 \\
& \mathrm{~h}=2 ; \mathrm{k}=-1.25
\end{aligned}
$$

\] \& \& \multicolumn{2}{|l|}{| b) Median mark the mark scored by the |
| :--- |
| ($1 / 2 \times 100)^{\text {th }}$ student from the graph 56 ± 2 |
| c) 27 students scored 40 marks and below. |
| (i) Students who scored 41 marks and above $=100-27=73$ |
| Students who passed $=\frac{73}{100} \times 100$ |
| (ii) Students who failed $=100-73=27 \%$ |} \& B1

B1

B1
B1

\hline
\end{tabular}

20	20 a) $\text { (i) } \begin{aligned} & \mathrm{OE} \end{aligned}=1 / 2 \mathbf{a}+1 / 2 \mathbf{b}, ~=-a+2 / 5 \mathbf{b} .$ b) $\begin{aligned} \mathrm{AF} & =\mathrm{t} \mathrm{AD} \\ \mathrm{AF} & =\mathrm{t}(2 / 5 \mathrm{~b}-\mathrm{a}) \\ \mathrm{AF} & =0 \mathbf{A}+0 \mathrm{~F} \\ & =-\mathbf{a}+\mathrm{s}(1 / 2 \mathbf{a}+1 / 2 \mathbf{b}) \\ & =(1 / 2 \mathrm{~s}-1) \mathbf{a}+1 / 2 \mathrm{sb} \end{aligned}$ Equating $\begin{aligned} 2 / 5 t b & =t a=(1 / 2 s-1) a+1 / 2 s b \\ t & =1-1 / 2 s \\ 2 / 5 t & =1 / 2 s \\ t & =5 s \end{aligned}$	B1 B1 B1 B1 B1 B1 B1 B1	22	
	$\begin{aligned} 5 s & =1-1 / 2 s \\ =s & =2 / 11 \\ t & =10 / 11 \end{aligned}$ c) $\begin{aligned} & O F=K O E \\ & O F=S(1 / 2 a+1 / 2 b)=2 / 11(1 / 2 a+1 / 2 b) \\ & O E=1 / 2 a+1 / 2 b \\ & 2 / 11(1 / 2 a+1 / 2 b)=K(1 / 2 a+1 / 2 b) \\ & K=2 / 11 \\ & O=2 / 11 O E \end{aligned}$ 0 is common point O, F and E are collinear points.	B1 B1 B1	23	
21				$\begin{aligned} & \mathrm{AB}=\sqrt{4900-100}=\sqrt{4800}=69.28 \mathrm{~cm} \\ & \mathrm{AB}=\mathrm{FE}=69.28 \mathrm{~cm} \end{aligned}$ b) Let $<A O C$ be $Q=\operatorname{Cos} Q=\frac{10}{70}$ $\begin{aligned} & \mathrm{Q}=\operatorname{Cos}^{-1} 0.1429 \\ & \mathrm{Q}=81.79^{\circ} \end{aligned}$ $\begin{aligned} & \text { «BCD }=90^{\circ}+\alpha \\ & \mathrm{A}=90^{\circ}-8179=8.213+90^{\circ} \\ & \mathrm{BCO}=98.21^{\circ} \end{aligned}$ b) Length of major arc AHF $=$ $\frac{196.42}{360} \times \frac{2 \times 22}{7} \times 30=102.89 \mathrm{~cm}$ Length of arc BGE $\frac{163.58}{360} \times 2 \times \underline{7} \times 20=57.12 \mathrm{~cm}$ $\text { TOTAL LENGTH }=(69.28 \times 2)+102.89+57.12$ $=298.6 \mathrm{~cm}$

LONDIANI SUB-COUNTY JOINT EXAMINATION 2015
 Kenya Certificate of Secondary Education (KCSE)
 Paper 1
 Mathematics

SECTION I - 50 MARKS

Answer ALL questions in this section.

1. Evaluate the following;
2. Simplify
$\frac{p^{2}-2 p q+q^{2}}{p^{3}-p q^{2}+p^{2} q-q^{2}}$
3. A farmer has a piece of land measuring 840 m by 396 m . He divides it into square plots of equal size. Find the maximum area of one plot.
(3 Marks)
4. In a Chemistry experiment, a boy mixed some acid solution of 45% concentration with an acid solution of 25% concentration. In what proportion should the two acids be mixed in order to get $100 \mathrm{~cm}^{3}$ of solution of 30% concentration? (3 Marks)
5. (a) Find the greatest common divisor of the term $9 x^{3} y^{2}$ and $4 x y^{4}$.
(b) Hence factorise completely the expression $9 x^{3} y^{2}-4 x y^{4}$
(2 Marks)
6. Mr. Wanyama has a plot that is in a triangular form. The plot measures $170 \mathrm{~m}, 190 \mathrm{~m}$ and 210 m , but the altitudes of the plot as well as the angles are not know. Find the area of the plot in hectares.
(3 Marks)
7. Given that $\log 3=0.4771$ and $\log 5=0.6990$, evaluate the following without using logarithm table or calculator.
(a) $\log 135$
(2 Marks)
(b) $\log 1125$
(2 Marks)
8. Mutai imports rice from the United States at initial cost of 500 US Dollars per tonne. He then pays 20% of this amount as shipping costs and 10% of the same amount as custom duty. When the rice reaches Mombasa he has to pay 5% of the initial cost to transport it to Nairobi. Given that on the day of this transaction the exchange rate was 1US Dollar = KSh. 76.60. Calculate the total cost of importing one tonne of rice up to Nairobi in Kenya Shillings.
(3 Marks)
9. Given that $\tan x=\frac{5}{13}$, find the value of the following without using mathematics tables of calcular:
(a) $\operatorname{Cost} x$
(2 Marks)
(b) $\operatorname{Sin}^{2}(90-x)$
(2 Marks)
10. A solid consists of three discs each of $1 \frac{1}{2} \mathrm{~cm}$ thick with diameter of $4 \mathrm{~cm}, 6 \mathrm{~cm}$ and 8 cm respectively. A central hole 2 cm in a diameter is drilled out as shown below. If the density of the material used is 2.8 cm 3 , calculate it mass to 1 decimal place.
(4 Marks)
11. Sales lady sold goods whose marked price was Sh. 340,000 at a discount of 3%. She was paid Sh. 16,490 as a commission for this sale. Calculate the percentage rate of commission she was paid.
12. Use reciprocal table to work out the following correct to 4 s.f.
$\frac{16}{2.674}+\frac{24}{0.1396}$
13. Solve the simultaneous inequality below and represent the combined solution of a number line.
$2 x-5 \leq 10-3 x<x+18$
14. Find the value of m and n in the figure below.

15. The number 5.81 contains an integral part and a recurring decimal. Convert the number into an improper fraction and hence into a mixed number
16. Sixteen men working 9 hours a day can complete a piece of work in 14 days. How many more men working 7 hours a day would complete the same job in 12 days?
(2 Marks)

SECTION II (50 MARKS)

Answer any Five Questions in this section
17. The figure below shows two circles centres O_{1} and O_{2} of radii 13.2 cm respectively. Centre O_{1} and O_{2} are 20 cm apart and $\mathrm{O}_{1} \mathrm{NO}: \mathrm{NO}_{2}=4: 6$.

Calculate to 2 decimal places
(a) The size of angle $\mathrm{PO}_{1} \mathrm{Q}$
(b) The size of angle $\mathrm{PO}_{2} \mathrm{Q}$
(c) The area of the shaded region (Take $\pi=3.142$
18. Four points P, Q, R and S are situated on a horizontal plane such that Q is 200 m on a bearing of 065° from P. R is 300 m on a bearing of 1200 from Q and S is due west of R.
(a) Draw a rough sketch showing the position of the four points
(b) Using a suitable scale drawing representing the positions of
(c) By measuring use your scale drawing to find the distance and bearing of
(i) S from P
(ii) Q from S
(d)
19. The table below shows the marks scored by form one students in a maths test.

Marks	Class midpoint x	Frequency f	Fx
$5-14$	9.5	3	28.5
$15-24$	19.5	7	
$25-34$		12	
$35-44$	49.5	20	1485.0
$45-54$		30	
$55-64$		8	
$65-74$		3	179.0
$75-84$	89.5	2	$\sum \mathrm{fx}=$

(a) Complete the table above
(b) State the modal class
(c) Use the completed table to calculate the mean mark for the student.
(d) Draw a histogram and hence a frequency polygon to represent this information.
20. The figure below shows triangle $O P Q$ in which $O P=P$ and $O Q=p . M$ and N are points on $O Q$ and $O P$ respectively such that $\mathrm{ON}: \mathrm{NP}=1: 3$ and $\mathrm{OM}: \mathrm{MQ}=2: 1$

(a) Express the following vectors in terms of p and q
(3 Marks)
(i) PM
(ii) QN
(iii) PQ
(b) Lines PM and QN intersect at X such that $\mathrm{PX}=\mathrm{hPM}$ and $\mathrm{QX}=\mathrm{kQN}$. Express OX in two different ways and hence find the value of h and k.
(c) OX produced meets PQ at Y such that $\mathrm{PY}: \mathrm{YQ}=3: 2$. Using the ratio theorem or otherwise, find OY in terms of P and q
21. The distance between town A and B is 360 km . A minibus left A at 8.15 am and travelled towards B at an average speed of $90 \mathrm{~km} / \mathrm{h}$. A matatu left B two and a third hours later on the same day and travelled towards A at an average speed of $110 \mathrm{~km} / \mathrm{hr}$.
(a) (i) At what time did the two vehicles meet?
(ii) How far from A did the vehicles meet
(b) A motorist started from his home at 10.30 am on the same day and travelled at an average speed of $100 \mathrm{~km} / \mathrm{hr}$. He arrived at B at the same time as the minibus. Calculate the distance from A to his house.
(4 Marks)
22. The diagram below shows a frustum which represents a bucket with an open top diameter of 30 cm and a bottom diameter of 24 cm . The bucket is 30 cm deep and it is used to fill an empty cylindrical tank of diameter 1.4 m and height of 1.2 m .

(a) Leaving your answer in terms of π calculate
(i) The capacity of the bucket in litres
(6 Marks)
(ii) The capacity of the tank in litres
(2 Marks)
(b) Determine the number of bucket that must be drawn in order to fill that tank
23. A piece of wire can be folded into a rectangle whose dimensions are such that its length is 3 cm longer than the width. The area of the rectangle so formed is $28 \mathrm{~m}^{2}$
(a) Determine
(i) The dimensions of the rectangle
(ii) The perimeter of the rectangle
(b) The wire can also be folded into a circle. Taking $\pi=\frac{22}{7}$ find the radius of the circle and hence calculate its area
24. A survey recorded the measurement of a field book using $X Y=400 \mathrm{~m}$ as the base line as shown below.

	y	
To E 200	320	
	210	150 to D
To F 250	170	150 to C
	50	225 to B
	x	100 to A

(a) Use a scale of 1 cm 50 m to draw the map of the field
(5 Marks)
Find the area of the field in hectares.

LONDIANI SUB-COUNTY JOINT EXAMINATION 2015
 Kenya Certificate of Secondary Education (KCSE)
 Paper 2
 Mathematics

SECTION I (50 MARKS)

Answer all the questions from this section

1. Use logarithm tables to evaluate
$\sqrt[4]{\frac{4.562 \times 0.38}{0.82}}$
Correct to 3 significant figures
(4 Marks)
2. Simplify the expression: $(3 x-2 y)(2 x+3 y)-5 x y$

Hence factorize your answer
3. Make y the subject of the formula in
$a=\sqrt{\frac{c y}{b+y}}$
4. The first three consecutive terms of a geometric progression are:
$2, x$ and 8 . Find the value of x
(2 Marks)
5. Given that the matrix $\mathrm{M}=\left[\begin{array}{ll}a & 0 \\ 5 & b\end{array}\right]$
(a) Determine M^{2}
(b) If $M^{2}=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$ determine the possible pairs of values of a and b
6. If $(x+y):(x-y)$ find the ratio $x: y$
7. There are two boxes labeled A and B on a table. Box A contains 5 red balls and 3 white balls, while box B contains 2 red balls and 6 white balls. A box is chosen at a random and two balls are drawn from it, one after the other without replacement. Find the probability that the two balls chosen are of different colours
8. A water tank has a capacity of 50 litres. A similar model tank has a capacity of 0.25 litres. If the larger tank has a height of 10 cm . Calculate the height of the model tank, to the nearest cm .
9. Solve for x in

$$
9^{x}+3^{2 x}-3=51
$$

10. Without using a calculator or mathematical tables, express $\frac{\sqrt{3}}{1-\operatorname{Sin} 60^{\circ}}$ in surd form and rationalize the denominator
11. The figure shows a circle centre O. The line $A B=14 \mathrm{~cm}$ is a tangent to the circle such that $O A=O B$ and $\angle O A B=120^{\circ}$.

Calculate to one decimal place
(a) The radius of the circle
(b) The total of the shaded parts
12. Calculate the value of $(2 x+3) d x$
13. Three quantities; P, Q and R are such that P varies directly as the square of Q and inversely as the square root of R. If $P=6$ when $Q=R$ and $R=25$. Find the value of P when $Q=15$ and $R=81$.
14. A tea blender buys two grades of tea at Sh. 60 and $\operatorname{Sh} .80$ per packet. Find the ratio in which she should mix them so that by selling the mixture at Sh. 90 , a profit of 20% is realized.
15. (a) Expand:
$(2+x)^{5}$ up to the term containing x^{3}
(2 Marks)
(c) Use the expansion in (a) above to the find the approximate value of (1.99) 5 correct to three decimal places.
16. Obtain the centre and radius of a circle represented by the equation:
$x^{2}+y^{2}+4 x-10 y-7=0$

SECTION II (50 MARKS)

Answer any five questions from this section

17. In the figure below $X C$ is a tangent to the circle $A B Y C$ at C and Y is the midpoint of arc $B C$.

If $\angle B X C=280$ and $\angle B C A=2 \angle A C X$.
Find, giving reasons for your answer:
(a) (i) $\angle \mathrm{CBA}$
(3 Marks)
(3 Marks)
(2 Marks)
(2 Marks)
(b) Given that $\mathrm{AX}=10 \mathrm{~cm}$ and $\mathrm{XC}=12 \mathrm{~cm}$, calculate the length of BX
18. The figure below represents a rectangular based pyramid $V A B C D$. $A B=16 \mathrm{~cm}$ and $A D=20 \mathrm{~cm}$. Point 0 is vertically below V and $\mathrm{VA}=30 \mathrm{~cm}$.

Calculate:

(a) The height, VO, of the pyramid
(b) The angle between the edge VA and the plane ABCD
(c) The angle between the planes $V A B$ and $A B C D$.
19. (a) The eleventh term of an arithmetic progression is four times its second term. The sum of the first seven terms of the same progression is 175 .
Find the first term and the common difference of the progression
(b) Given the series $3+9+15+21+27+$ \qquad find the number of the terms that will given a sum of 432
(c) A geometric series is such that its first term is 2 . Find the two possible common ratios if the sum of its first three terms is 26
20. (a) Complete the table below:

x	-30	0	30	60	90	120	150
$\operatorname{Sin}(\mathrm{x}+30)^{0}$	0		1.7			1.5	
$\sqrt{3} \operatorname{Cos} \mathrm{x}^{0}$		1.7	1.5		0.0		

(b) On the grid provided, using the same scale and axes, draw a graph of:
$y=2 \sin (x+30)^{0}$ and $y=\sqrt{3} \operatorname{Cos} x$ for $-30^{\circ} \leq x \leq 1500$
(c) Use the graph drawn in (b) above to determine the values of x for which
(i) $2 \operatorname{Sin}(x+30)^{0}=\sqrt{3} \operatorname{Cos} x$
(2 Marks)
(d) Find the difference in amplitudes between $y=2 \operatorname{Sin}(x+300)$ and $y=\sqrt{3} \operatorname{Cos} x$
(2 Marks)
21. The points $A(1,4), B(-2,0)$ and $C(4,-2)$ of a triangle are mapped onto $A^{1}(7,4), B^{1}(x, y)$ and $C^{1}(10,16)$ by a transformation $\mathrm{N}=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$
(a) (i) Matrix N of the transformation
(ii) Coordinates of B 1
(b) $\mathrm{A}^{\text {II }} \mathrm{B}^{\text {II }} \mathrm{C}^{\text {II }}$ are the image of $\mathrm{A}^{1} \mathrm{~B}^{1} \mathrm{C}^{1}$ under transformation represented by matrix
$\mathrm{M}=\left(\begin{array}{cc}2 & -1 \\ 0 & 0\end{array}\right)$
Write down the co-ordinates of $\mathrm{A}^{\text {II }} \mathrm{B}^{\text {II }} \mathrm{C}^{I I}$
(3 Marks)
(c) A transformation N followed by M can be represented by a single transformation K. Determine K
22. The table below gives marks scored by candidates in a mathematics test.

Marks	$1-10$	$11-20$	$21-30$	31.40	$41-50$
No. of candidates	5	13	32	27	3

(a) Using an assumed mean of 25.5, calculate the mean mark
(b) Estimate the median mark
(c) Calculate the standard deviation of the marks
23. The positions of three ports in the Indian Ocean are p $\left(40^{\circ} \mathrm{N}, 30^{\circ} \mathrm{W}\right) \mathrm{Q}\left(400 \mathrm{~N}, 20^{\circ} \mathrm{E}\right)$ and $\mathrm{R}\left(36^{\circ} \mathrm{S}, 30^{\circ} \mathrm{W}\right)$ respectively.
(a) Find the distance in nautical miles to the nearest nm between:
(i) Ports p and Q
(ii) Ports P and R
(b) A ship left port P on Tuesday 1430 hours and sailed to port Q at 20 knots.

Calculate:
(i) The local time at port Q when the ship left port P
(ii) The day and time the ship arrived at port Q
24. Two quantities Q and R are connected by the equation; $Q=K R^{n}$

The table of values of Q and R is given below.

Q	1.2	1.5	2.0	2.5	3.5	4.5
R	1.58	2.25	3.39	4.74	7.86	11.6

(a) Complete the table of $\log \mathrm{Q}$ and $\log \mathrm{r}$ given below;

Log Q		0.30	0.40			0.65	
Log R		0.35		0.68	0.90		

(b) On a grid, draw a suitable line graph to represent the relation $\mathrm{Q}=\mathrm{KR}^{\mathrm{n}}$.
(c) From the graph, determine the values of K and n.
(d) Hence write down the relationship connecting Q and R.

1.	$\begin{aligned} & \text { Numerator }=\frac{2}{3}-\left(\frac{5}{4}+\frac{5}{6}=\frac{15+10}{12}=\frac{25}{12}\right) \\ & =\frac{2}{3}-\frac{25}{12}=\frac{8-25}{12}=-\frac{17}{12} \\ & \text { Denominator }=\frac{16}{3}+\frac{9}{10}=\frac{160+27}{30}=\frac{187}{30} \\ & \frac{16}{5}+\frac{7}{8}=\frac{14}{5} \times \frac{11}{6}=\frac{77}{15} \\ & \frac{2}{7} \times \frac{77}{15}=\frac{30+539}{105}=\frac{569}{105} \\ & \frac{569}{105}-\frac{187}{30}=\frac{1138-1309}{210}=-\frac{171}{210} \\ & -\frac{17}{12} \times \frac{-210}{171}=\frac{3570}{2052}=1 \frac{253}{342} \\ & \hline \frac{p^{2}-2 p q+q^{2}}{p^{3}-p q^{2}+p^{2} q-q^{3}} \\ & p^{2}-p q-p q+q^{2} \end{aligned}$	7.	$\begin{aligned} & \text { a) } \begin{array}{l} \log 135 \\ 135=3^{3} x 5 \\ \log 135=\log \left(3^{3} x 5\right) \\ =\log 3^{3}+\log 5 \\ =3 \log 3+\log 5 \\ 3(0.477)+0.6990 \\ 1.4313+0.6990=2.1303 \\ \\ \text { b) } 1125=3^{2} x 5^{3} \\ \log 1125=\log (32 x 53) \\ =\log 3^{2}+\log 5^{3} \\ =2 \log 3+3 \log 5 \\ =2 x 0.4771+3 x 0.6990 \\ =0.9542+2.0970 \\ \\ \quad=3.0512 \\ \hline \hline \end{array} \quad \begin{array}{l} \quad=1 \end{array} \\ & \\ & \hline \end{aligned}$
2.	$\begin{aligned} & p^{3}-p q^{3}+p^{2} q-q^{3} \\ & \frac{P(p-q)-q(p-q)}{p\left(p-q^{3}\right)-q\left(p^{2}-q^{2}\right)} \\ & =\frac{(p-q)(p-q)}{(p-q)\left(p-q^{3}\right)\left(p^{2}-q^{2}\right)} \\ & \frac{(p-q)(p-q)}{(p+q)\left(p-q^{3}\right)(p-q)(p+q)} \end{aligned}$	8.	$\begin{aligned} & \text { Shipping cost }+ \text { custom duty }+ \text { transport } \\ & =20 \%+10 \%+5 \%=35 \% \\ & \frac{135}{100} \times 500=675 U S D \\ & 1 U S D=\text { sh. } 76.60 \\ & \frac{675 \times 76.60}{1}=\text { Ksh. } 51,705 \end{aligned}$
	$=\frac{(p-q)}{(p+q)^{2}\left(p-q^{3}\right)}$	9.	a)
3.			
4.	$\begin{aligned} & \text { Let volume of } 45 \% \text { concentration be } x \\ & \text { Therefore } 25 \% \text { will be }(100-x) \\ & \frac{0.45 x+0.25(100-x)}{100}=30 \% \\ & 0.45 x-0.25 x=30 \\ & 0.45 x-0.25 x+25=30 \\ & 0.20 x=5 \\ & x=\frac{50}{2}, x=25 \mathrm{~cm}^{3}, \text { Volume of } 45 \%=25 \mathrm{~cm}^{3} \end{aligned}$		$\cos x=\frac{12}{13}$ b) $\operatorname{Sin}^{2}(90-x)=\left(\frac{12}{13}\right)^{2}=\frac{144}{169}$
		10	$\begin{aligned} & \hline \text { Disc } A \text { vol }=(3.142 \times 2 \times 2 \times 2 \times 1)=18.852^{3} \\ & \text { Volume of the hole }=3.142 \times 1 \times 1 \times 1.5 \\ & \quad=4.713 \mathrm{~cm}^{3} \\ & \text { Disc } B=3.142 \times 3 \times 3 \times 1.5=42.417-4.713 \\ & \quad=37.704 \mathrm{~cm}^{3} \\ & \text { Disc } C=3.142 \times 4 \times 4 \times 1.5=75.408-4.713 \end{aligned}$
5.	a) b) $\quad 9 x^{3} y^{2}-4 x y^{4}=x y^{2}\left(9 x^{2}-4 y^{2}\right)$		$\begin{aligned} & =70.695 \mathrm{~cm}^{3} \\ \text { Total volume }= & 14.139+37.704+70.695 \\ & =122.538 \mathrm{~cm}^{3} \\ \int=\frac{m}{v}=m= & \int x v=2.8 \mathrm{~g} / \mathrm{cm}^{3} \times 122.538 \mathrm{~cm}^{3} \end{aligned}$
	$\begin{aligned} & 9 x^{2}-4 y^{2} \\ & 9 x^{2}-4 y^{2}=(3 x+2 y)(3 x-2 y) \\ & =x y^{2}(3 x+2 y)(3 x-2 y) \end{aligned}$	11	Marked price of goods $=$ sh 340,000 Less 3% T. Discount $=\frac{97}{100} \times 3340000$
6.	$\begin{aligned} & A=\sqrt{s(s-a)(s-b)(s-c)} \\ & S=\sqrt{285(285-170)(285-190)(285-210)} \\ & A=\sqrt{285 \times 115 \times 95 \times 75}=15,281.4226 \mathrm{~m}^{2} \\ & 10,000 \mathrm{~m}^{2}=1 \mathrm{ha} \\ & 15,281.4226=? \\ & \frac{15,281.4226}{10,000} \times 1 \mathrm{ha}=1.528 \mathrm{ha} \end{aligned}$		$\begin{aligned} & \text { Selling price }=\text { sh } 329,800 \\ & \text { Commission paid }=\text { sh } 16490 \\ & \% \text { ratio of commission }=\frac{16490}{329800} \times 100 \\ & \qquad=5 \% \end{aligned}$

12	$\begin{align*} & \frac{2 y^{2}-2 x y-x y-x^{2}}{2\left(x^{2}-y^{2}\right)} \\ & =-2 y(y-x)-x(y-x) \\ & \frac{(2 y-x)(y-x)}{2(x-y)(x+y)} \\ & x-2 y \tag{i} \end{align*}$	20	a) $\mathrm{PM}=\mathrm{PO}+\mathrm{OM}=-\mathrm{p}++\frac{2}{3} q$ ii) $\mathrm{QN}=\mathrm{QO}+\mathrm{ON}=--p+\frac{1}{4} q$ iii) $P Q=P O+P X=p+h p m$ $(1-h) P+\frac{2}{3} h q$
			b)Using $\triangle O Q X$ we have $\begin{aligned} & O X=O Q+Q X=p+h p m \\ & =p+h\left(-p+\frac{2}{3} q\right) \end{aligned}$ Using $\triangle O Q X$ we have $\begin{align*} & O X=O Q+Q X=q+K Q N \\ & q+k\left(q+\frac{1}{4} p\right) \\ & (1-k) r+\frac{k}{4} p \\ & \frac{k}{4} p+(1-k) q \ldots \ldots \ldots \ldots \ldots . . \tag{ii} \end{align*}$ From equation (i)\&(ii) $(1-h) p+\frac{2}{3} q=\frac{k}{4} p+(1-k) q$ Comparing coeffient of p we have $\begin{align*} & \frac{k}{4}=1-h \\ & k=4-4 h \tag{iii} \end{align*}$ comparing coefficient of q we have. $\begin{align*} & \frac{2}{3} h=1-k \\ & 2 h=3-3 k \\ & 2 h+3 k \\ & =3 \ldots \ldots \ldots \ldots \tag{iv} \end{align*}$ Substitution e.g. (iii) $\begin{aligned} & K=4-4 x \frac{9}{10} \\ & =4-\frac{36}{10}=\frac{4}{10} \text { or } \frac{2}{5} \end{aligned}$ c) Using the ratio theorem,, $\triangle O P Q$ we have $O Y=2 p 3 q$ $\begin{aligned} & 3+2 p+3+2 \\ & =\frac{2}{5} p+\frac{3}{5} q \end{aligned}$
13	$\begin{aligned} & \hline 2 x-5 \leq 10-3 x \\ & 2 x+3 x-5 \leq 10-3 x+3 x \\ & 5 x=5 \leq 10 \\ & \frac{5 x}{5} \leq \frac{15}{5} \\ & x \leq 310-3 x<x+18 \\ & 10-4 x<18 \\ & -4 x<8 \\ & x>-2 \text { or }-2<x \end{aligned}$ Combined both		
14	$\begin{aligned} & \hline 4 n+5 n=180^{\circ} \\ & \text { (opposite angle of a cyclic quadrilateral) } \\ & q n=180^{\circ} \\ & n=20^{\circ} \\ & =3 m+120^{\circ} \\ & =180^{\circ} \text { (opposite angle of a cyclic quadrilateral) } \\ & \quad 3 m=60^{\circ} \\ & \quad M=20^{\circ} \\ & \hline \end{aligned}$		
15	$\begin{aligned} & 5.81=5.818181 \\ & \text { Let } r=5.818181 \\ & \text { Then let } 100 r=581.818181 \ldots \ldots \ldots . \\ & \text { Subtract equation (i)from equation (ii) } \\ & 99 r=576 \\ & R=\frac{576}{99} \\ & R=\frac{64}{11} \text { or } \frac{59}{11} \\ & \hline \hline \end{aligned}$	21	i) $90 x \frac{7}{3}=210 \mathrm{~km}$ $360-210=150 \mathrm{~km}$ remaining $R . s=110+90=200 \mathrm{~km} / \mathrm{hr}$ $\frac{150 \mathrm{~km}}{200 \mathrm{~km} / \mathrm{hr}}=45 \mathrm{mins}$ 10:35+45 mins 11.20 am ii) 8.15am to 11.20am $=3 \mathrm{hrs} 5 \mathrm{mins}=3 \frac{1}{12} \mathrm{hrs}=$ $\begin{aligned} & \frac{37}{12} \mathrm{hrs} \\ & =\frac{37}{12} \times 90=277.5 \mathrm{~km} \end{aligned}$ b) $\frac{360 \mathrm{~km}}{90 \mathrm{~km} / \mathrm{hr}}=4 \mathrm{hrs}$ Minibus arrived at $8.15+4 \mathrm{hrs}=12.15 \mathrm{pm}$. motorist took $12.15 \mathrm{am}-10.30 \mathrm{am}=1 \frac{3}{4} \mathrm{hrs}=\frac{7}{4} \mathrm{hrs}$ Distance $=100 \mathrm{~km} / \mathrm{hrx}{ }_{4}^{7} \mathrm{hrs}=175 \mathrm{~km}$
16			

22.	From similar triangle $\frac{h+30}{h}=\frac{15}{12}=\frac{5}{4}$ $\begin{aligned} & \mathrm{Sh}=4 \mathrm{~h}+120 \\ & \mathrm{H}=120 \end{aligned}$ Small cone height $=120 \mathrm{~cm}$ Height of original cone $=150 \mathrm{~cm}$ Volume of frustrum = vol. of cone -vol . of cone removed Volume of bucket removed $\begin{aligned} & =\frac{1}{3} \pi \times 15 \times 15 \times 150-\frac{1}{3} \pi \times 12^{2} \times 120 \\ & =90 \pi(125-64) \\ & =90 \pi \times \frac{61}{10001} \text { litre } \\ & =5.49 \pi \text { litres } \end{aligned}$	24	Area $\mathrm{A}=\frac{1}{2} \times 170 \times 250=21,250 \mathrm{~m}^{2}$ Area $B=\frac{1}{2}(250 \times 200) X 100=33,750 \mathrm{~m}^{2}$ Area C $=\frac{1}{2} \mathrm{X} 80 \times 20=8000 \mathrm{~m}^{2}$ Area $D=\frac{1}{2} \times 150 \times 90=14250 \mathrm{~m}^{2}$ Area $E=40 \times 150=6000 \mathrm{~m}^{2}$ Area $F=\frac{1}{2}(225+150) \times 120=22,500 \mathrm{~m}^{2}$ Area $\mathrm{G}=\frac{1}{2} \mathrm{X}(100+225) \mathrm{X} 50=1825 \mathrm{~m}^{2}$
ii	$\begin{aligned} & \text { Vol. of the tank }=\pi r^{2} \mathrm{~h}=\frac{\pi \times 70^{2} \times 120}{1000} \text { litres } \\ & =588 \pi \text { litres } \\ & \text { Ns of bucket draw }=\frac{\text { vol.of tank }}{\text { vol.of bucket }} \\ & =\frac{588 \pi}{5.49 \pi}=107.1=180 \text { buckets } \end{aligned}$		$\begin{aligned} & \text { Total area }=21250+33750+ \\ & 8000+14250+6000+22500+8125 . \\ & =\frac{113,875}{10000}=11.3875 \mathrm{ha} . \end{aligned}$
23	$\begin{aligned} & \text { Area of rectangle }=x(x+3)=x 2+3 x \\ & X 2+3 x=28 \\ & X 2+3 x-28=0 \\ & \text { Factorizing }=x 2-4 x+7 x-28=0 \\ & X(x-4)+7(x-4)=0 \\ & (x-4)(x+7) \\ & X=4 \text { or } 7 \\ & \text { Width of the rectangle }=4 \mathrm{~cm} \\ & \text { Length of the rectangle }=7 \mathrm{~cm} \\ & \hline \end{aligned}$		
ii	Perimetre $=2(1+\mathrm{w})=2(4+7)=22 \mathrm{~cm}$		
b	$\begin{aligned} & \text { Circumfrence of the circle }=\text { perimetre of the } \\ & \text { rectangle. } \\ & 2 \pi \mathrm{r}=22 \\ & 2 \times \frac{22}{7} \mathrm{r}=22 \\ & \mathrm{r}=\frac{22 x 7}{2 x 22}=3.5 \mathrm{~cm} \\ & \begin{array}{l} \text { area of the circle }=\pi \mathrm{r}^{2} \\ \frac{22}{7} \times 3.5 \times 3.5 \\ =38.5 \mathrm{~cm}^{2} \end{array} \\ & \hline \end{aligned}$		

LONDIANI SUB-COUNTY JOINT EXAMINATION 2015
Kenya Certificate of Secondary Education (KCSE)
Paper 2
Mathematics

1.	NO. L0G 4.562 0.6592 0.38 1.5798 0.2390	M1 M1 M1		$\begin{aligned} & =\frac{15}{112}+\frac{15}{112}+\frac{12}{112}+\frac{12}{112} \\ & =\frac{54}{112} \text { or } \frac{27}{56} \end{aligned}$	
	0.82 T. 9138 $0.325 / 4$ 1.2059×10^{-2} 0.0813 $=0.012059 \leq 20.01206$	A1	8.	$\begin{aligned} & \text { v.s.f }=\frac{\text { vol of model tank }}{\text { vol of w.tank }}=\frac{0.25 l}{50 l}=\frac{1}{200} \\ & \text { L.s.f }=\sqrt[3]{\frac{1}{200}} \\ & =\sqrt[3]{\frac{1}{200}}=\frac{\text { height of tank }}{\text { height of w.tank }}=\frac{x}{100} \\ & \left(\frac{x}{100}\right)^{3}=\frac{1}{200} \end{aligned}$	M1
2.	$\begin{aligned} & (3 x-2 y)(2 x+3 y)-5 x y \\ & =6 x^{2}+9 x y-4 x y-6 y^{2}-5 x y \\ & =6 x^{2}-6 y^{2} \\ & =6\left(x^{2}-y^{2}\right) \\ & =(6)(x+y)(x-y) \\ & \hline \end{aligned}$	M1 A1 B1			M1
3.	$\begin{aligned} & a^{2}=\frac{c y}{b+y} \\ & a^{2} b+a^{2} y=c y \\ & a^{2} y+c y=a^{2} b \\ & y\left(a^{2}-c\right)=-a^{2} b \\ & y=\frac{a^{2} b}{a^{2}-c} \\ & \hline \end{aligned}$	M1 M1 A1		$\begin{aligned} \mathrm{X} 3 & =\frac{1}{200} \times 1000000=5000 \\ \mathrm{X} & =\sqrt[3]{5000}=10^{3} \sqrt{5} \\ & =10 \times 1.7321 \\ & =17.321 \\ & =17 \mathrm{~cm} \end{aligned}$	
4.	$\frac{X}{2}=\frac{8}{X}$				A1
	$\begin{array}{r} x^{2}=16 \\ \mathrm{X}=14 \end{array}$		9.	$\begin{aligned} & \left(3^{2}\right)^{x} \times 3^{2 x}=54 \\ & 3^{2 x}+3^{2 x}=54 \end{aligned}$	M1
5.	$\begin{gathered} \mathrm{M}^{2}=\left(\begin{array}{ll} a & 0 \\ 5 & b \end{array}\right)\left(\begin{array}{ll} a & 0 \\ 5 & b \end{array}\right) \\ =\left(\begin{array}{cc} a^{2} & 0 \\ 5 a+5 b & b 2 \end{array}\right) \end{gathered}$	M1		$\begin{aligned} & 2.3^{2 x}=54 \\ & 3^{2 x}=27 \\ & 3^{2 x}=3^{3} \\ & 2 \mathrm{x}=3 \\ & \mathrm{x}=\frac{3}{2}=1.5 \\ & \hline \end{aligned}$	M1
b	$\begin{aligned} &\left(\begin{array}{cc} a^{2} & 0 \\ 5 a+5 b & b 2 \end{array}\right)=\left(\begin{array}{ll} 1 & 0 \\ 0 & 1 \end{array}\right) \\ & a^{2}=1 \\ & \mathrm{~A}=+1 \\ & \text { And } b^{2}=1 \\ & \mathrm{~b}=+1 \end{aligned}$	B1	10	$\begin{aligned} & \frac{2 \sqrt{3}(2+\sqrt{3})}{(2-\sqrt{3})-(2+\sqrt{3})} \\ & =4 \sqrt{3}+6 \end{aligned}$	B1 M1 A1
		A1	11	$\begin{aligned} & \text { Tan } 60=\frac{7}{r} \\ & r=7 \end{aligned}$	M1
6	$\begin{aligned} & (x+y):(x-y)=8: 3 \\ & x+y=8 \\ & x=8-y \ldots \ldots . .(i) \\ & 8-y-y=3 \\ & 8-2 y=3 \\ & 2 y=\frac{5}{2} \\ & x=8-\frac{5}{2} \\ & =\frac{11}{2}:-\frac{5}{2}=11.5 \end{aligned}$	M1 M1	b	Area of sector $=\frac{120}{360} \times \frac{22}{7 x}$ Area of triangle $=\frac{1}{2} \times 7 \times X_{2}$ Shaded area $=$	A1 M1 A1
		A1	13	$\frac{\overline{p x Q^{2}}}{\sqrt{R}}$	
7				$\begin{aligned} & \mathrm{P}=\frac{R . Q 2}{\sqrt{R}} \\ & 6=\frac{12^{2} R}{\sqrt{25}} \\ & \mathrm{R}=\frac{6 \times 5}{144}=\frac{5}{24} \\ & \mathrm{P}=\frac{5 Q^{2}}{24 \sqrt{R}} \\ & \mathrm{P}=\frac{5\left(5^{2}\right)}{24 \sqrt{81}}=\frac{5}{24} \times 25=\frac{125}{24}=5 \frac{5}{24} \end{aligned}$	

\begin{tabular}{|c|c|c|c|c|c|}
\hline 14 \& \multirow[t]{2}{*}{\begin{tabular}{l}
Let the grades of tea bought be \(x\) and \(y\). for sh. 60 and sh. Respectively \\
\(=\frac{60+80 y}{x+y}\) cost of the mixture
\[
\begin{aligned}
\& 120 \%=\text { sh. } 90 \\
\& 100 \%=? \\
\& 90 \times \frac{100}{120}=\text { sh. } 75 \\
\& \frac{60 x+80 y}{x+y}=75
\end{aligned}
\]
\[
\left\lvert\, \begin{aligned}
\& 60 \mathrm{x}+80 \mathrm{y}=75 \mathrm{x}+75 \mathrm{y} \\
\& -15 \mathrm{x}=15 \mathrm{y} \\
\& \frac{x}{y}=\frac{1}{3} \text { therefore ratio of } \mathrm{x}: \mathrm{y}=1: 3
\end{aligned}\right.
\]
\end{tabular}} \& \& b. \& \[
\begin{aligned}
\& \text { Tan VAC }=\frac{v o}{A O} \\
\& \text { VAC }=\tan -1^{-17.13} \frac{12.81}{}=64.72^{\circ}
\end{aligned}
\] \& M1
A1 \\
\hline \& \& A1

M1

A1 \& c. \& $$
\begin{aligned}
& \mathrm{MV}=\sqrt{900-64}=28.91 \\
& \mathrm{M} 0=1 / 2 \mathrm{AD}=1 / 2(20)=10 \mathrm{~cm} \\
& \text { VMO }=\cos ^{-1} \\
& \frac{10}{28.91}=69.77^{\circ}
\end{aligned}
$$ \& M1

\hline 15. \& a) $(2+x)^{5}=2^{5} x 0+5.2^{4} x^{1}+10.2^{3} x^{2}+10.2^{2} x^{3}$

$=32+80 x+80 x^{2}+40 x^{3}$ \& M1 \& \multirow[t]{3}{*}{\[
$$
\begin{array}{|l|}
\hline 19 \\
\mathrm{a} .
\end{array}
$$

\]} \& \multirow[t]{3}{*}{\[

$$
\begin{aligned}
& \hline \mathrm{T}_{11}=\mathrm{a}+10 \mathrm{~d}= \\
& \mathrm{T}_{2}=\mathrm{a}+\mathrm{d} \\
& \mathrm{a}+10 \mathrm{~d}=4(\mathrm{a}+\mathrm{d}) \\
& \mathrm{a}+10 \mathrm{~d}=4 \mathrm{a}+4 \mathrm{~d} \\
& -3 \mathrm{a}=-6 \mathrm{~d} \\
& \mathrm{a}=2 \mathrm{~d}(\mathrm{i}) \\
& \mathrm{s}_{7}=\frac{7}{2}[29+(7-1) \mathrm{d}]=175 \\
& =\frac{7}{2}(4 \mathrm{~d}+6 \mathrm{~d})=175 \\
& 7 \\
& \left.\frac{7}{2} \times 10 \mathrm{~d}\right)=175 \\
& 70 \mathrm{~d}=350 \\
& \mathrm{~d}=5 \\
& \mathrm{a}=2(\mathrm{~s}) \\
& \mathrm{a}=10 \\
& \mathrm{a}=10, \mathrm{~d}=5 . \\
& \hline
\end{aligned}
$$
\]} \& M1

\hline b \& $$
\begin{aligned}
& (2+x)=1.99 \\
& \mathrm{X}-0.01 \\
& (1.99)^{5}=(2-0.01)^{5} \\
& 32+80(-0.01)+80(-0.01)^{2}+40(-0.01)^{3} \\
& 32-0.8+0.008-0.0004 \\
& =31.20796 \\
& =31.208
\end{aligned}
$$ \& B1 \& \& \& M1

\hline 16 \& | $\begin{aligned} & x^{2}+4 x+y^{2}-10 y=7 \\ & x^{2}+4 x+\left(\frac{4}{2}\right)^{2}+y^{2}-10 y+\left(\frac{-10}{2}\right)^{2}=7+2^{2}+5^{2} \\ & (x+2)^{2}+(y-5)^{2}=36=6^{2} \end{aligned}$ |
| :--- |
| centre is $(-2,5)$ |
| radius is 6 units | \& M1

A1
A1 \& \& \& A1

\hline 17 \& \[
$$
\begin{aligned}
& \hline \angle \mathrm{Acx}=<\mathrm{ABC}=<\sin \text { alt segments } \\
& \mathrm{x}+\mathrm{x}+2 \mathrm{x}+28=180^{\circ}<\text { s in a triangle } \\
& 4 \mathrm{x}=152 \\
& \mathrm{x}=38^{\circ} \\
& <\mathrm{CBA}=38^{\circ} \\
& \hline
\end{aligned}
$$

\] \& | B1 |
| :---: |
| B1 |
| 81 | \& b. \& \[

$$
\begin{aligned}
& \mathrm{D}=9-3=6 \\
& \mathrm{Sn}=\frac{n}{2}[2 \times 3+(\mathrm{n}-1) 6]=432 \\
& \mathrm{n}(6+6 \mathrm{n}-6)=864 \\
& 6 \mathrm{n}^{2}=144 \\
& \mathrm{n}= \pm 12 \\
& \mathrm{n}=12 \text { terms }
\end{aligned}
$$
\] \&

\hline ii \& $$
\begin{aligned}
& \hline \text { <CBA }=180-[38+2(38)]<\text { s in triangle } \\
& =180-114 \\
& =66 \\
& <\text { BYC }=180-66=114 \ldots . . \mathrm{opp}<\text { s. in cyclic } \\
& \text { quadrilateral } \\
& <\text { CBY }=\frac{180}{2}-114 . \text { Base angles of isosceles triangle } \\
& =33^{\circ}
\end{aligned}
$$ \& B1 \& \multirow[t]{3}{*}{\[

$$
\begin{array}{l|}
\hline 21 \\
\text { a.i }
\end{array}
$$

\]} \& \[

$$
\begin{aligned}
& \mathrm{n}=12 \text { terms } \\
& \left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)+\left(\begin{array}{cc}
1 & 4 \\
4 & -2
\end{array}\right)=\left(\begin{array}{ll}
7 & 10 \\
4 & 16
\end{array}\right) \\
& \mathrm{A}+4 \mathrm{~b}=7 \ldots \ldots . . .(\mathrm{i}) \times 4 \\
& 4 \mathrm{a}+16 \mathrm{~b} \ldots \ldots10 \text { (ii) } \\
& 4 \mathrm{a}+16 \mathrm{~b}=28
\end{aligned}
$$
\] \&

\hline iii \& $$
\begin{aligned}
& \langle\text { BYC }=180-66 \text {..op .angles in cyclic quadrilateral. } \\
& =114
\end{aligned}
$$ \& B1 \& \& \multirow[t]{2}{*}{\[

$$
\begin{aligned}
& \frac{4 a-2 b=10}{18 b=18} \\
& \mathrm{~b}=1 \\
& \mathrm{a}=9-4=3 \\
& \mathrm{c}+4 \mathrm{~d}=4 \ldots \ldots \ldots . \text { (iii) } \times 4 \\
& 4 \mathrm{c}-2 \mathrm{~d}=16 \ldots \ldots . . \text { (iv) } \\
& 4 \mathrm{c}+16 \mathrm{~d}=16 \\
& \frac{4 c-2 d=16}{20 d=0} \\
& \mathrm{~d}=0 \\
& \mathrm{c}=4 \\
& \left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)=\left(\begin{array}{ll}
3 & 1 \\
4 & o
\end{array}\right)
\end{aligned}
$$
\]} \&

\hline b. \& $$
\begin{aligned}
& \mathrm{AX} . \mathrm{XB}=(\mathrm{cx})^{2} \\
& 10(10+\mathrm{x})=12^{2} \\
& 100+10 \mathrm{x}=144 \\
& 10 \mathrm{x}=44 \\
& \mathrm{X}=4.4 \\
& \mathrm{AB}=4.4+10 \\
& =14.4 \mathrm{~cm} . \\
& V \quad \mathrm{Ac}=\sqrt{\mathbf{2 0}^{2}+\mathbf{1 6}^{2}}
\end{aligned}
$$ \& \& \& \&

\hline \& | $=\sqrt{656}$ |
| :--- |
| $=25.61$ |
| $\mathrm{AO}=1 / 2(25.61)$ |
| $=12.81$ |
| $\mathrm{VO}=\sqrt{3 \mathbf{3 0}^{2-12.81^{2}}}$ |
| $=27.13 \mathrm{~cm}$ | \& \& ii \& \[

$$
\begin{aligned}
& \binom{x}{y}=\left(\begin{array}{ll}
3 & 1 \\
4 & o
\end{array}\right)\binom{-2}{0}=\binom{-6}{-8} \\
& \mathrm{~B}^{1}=(-6,-8)
\end{aligned}
$$
\] \&

\hline
\end{tabular}

KIRINYAGA WEST EFFECTIVE "40" EXAM

Kenya Certificate of Secondary Education (K.C.S.E)

121/1
 MATHEMATICS
 PAPER 1

July /August 2015
$21 / 2$ HOURS

Section 1 (50 mks)

Answer all questions in this section in the spaces provided.

1. A square of side $(x+2) \mathrm{cm}$ has the same area as a rectangle measuring $(2 x+4) \mathrm{cm}$ and $(x-2) \mathrm{cm}$. Calculate the area of the rectangle.
(3 marks)
2. Use the prime factors of 1936 and 1728 to evaluate.
$\frac{\sqrt[3]{1728}}{\sqrt{1936}}$
3. Simplify the expression.
(3 marks)
$\frac{3 x^{2}-27 y^{2}}{2 x^{2}+10 x y+12 y^{2}}$
4. Two boats P and Q are located 45 km apart, P being due north of Q . An observer at P spots a ship whose bearing he finds as $S 56^{0}$. From Q the bearing of the same ship is $N 38^{0} E$. Calculate the distance of the ship from Q to 2 decimal places.
(4 marks)
5. The sum of interior angles of a regular polygon is 3240°. Find the size of each exterior angle.
(3 marks)
6. Simplify $\frac{\left(\frac{1}{27}\right)^{-\frac{2}{3}}+\left(\frac{1}{4}\right)^{-\frac{1}{2}}}{8^{\frac{2}{3}}}$
(3 marks)
7. Given that $\underset{\sim}{a}=5 \underset{\sim}{i}+\underset{\sim}{j}$ and $\underset{\sim}{h}=\underset{\sim}{i j}+\underset{\sim}{j}$ evaluate $|7 \underset{\sim}{a}-\underset{\sim}{5 h}|$
8. Eight years ago the age of a father was six times the age of his son and after eight years from today the age of the father would be only twice the age of his son. Find their present ages.
9. The mass of a cylindrical metal rod of radius 14 cm and height 10 cm is 5.47 kg . Find it's density in $\mathrm{g} / \mathrm{cm}^{3}$ to 2 decimal places.
10. Construct a DABC in which $\mathrm{BC}=5 \mathrm{~cm}, \angle \mathrm{~B}=75^{\circ}$ and $\angle \mathrm{C}=60^{\circ}$. From A drop a perpendicular to BC and measure its length to the nearest mm .
11. $\underset{\sim}{\sim}=\left(\begin{array}{cc}2-x & x \\ 3 & 2+x\end{array}\right)$

Find the values of x for which A has no inverse.
12. Solve $15<5(3-x) \leq 30$ hence show your solution on a number line.
13. A major arc of a circle substends an angle of 250^{0} at the centre of a circle. If the radius of the circle is 9.8 cm find the area of the minor sector. (Use $\pi=22 / 7$)
(3 marks)
14. A point $A(-1,3)$ is mapped onto $A^{1}(8,12)$. Fidn the centre of enlargement given that the scale factor is 2 . (3 marks)
15. A particle moving in a straight line has its displacement x metres from the origin 0 at time t seconds defined by the equation $\mathrm{x}=\mathrm{t}^{3}-6 \mathrm{t}^{2}+7$. Determine the values of t for which the particle is momentarily at rest.
(3 marks)
16. Maina can do a piece of work in 12 hours. Muthui can do it in 20 hours. How long would it take Muthui to complete the work if Maina has been working for 7 hours.

SECTION 2 (50 MARKS)

Answer any five questions in this section in the spaces provided

17. A line T passes through points $(-3,-5)$ and $(3,-6)$ and is perpendicular to a line l at $(-2,-2)$.
a) Find the equation of 1 .
b) Find the equation of T in the form $\mathrm{ax}+\mathrm{by}=\mathrm{c}$ where a, b and c are constants.
c) Given that another line Q is parallel to T and passes through (1, -3) find x and y intercepts of Q.
d) Find the points of intersection of L and Q.
18.

Use this velocity - time graph which represents the motion of a car for 10 seconds, to find:
a) The rate of acceleration.
(1 mark)
b) The rate of retardation.
c) The total distance travelled.
d) The total distance travelled during the first 4 seconds.
e) The average speed maintained during this journey.
f) The distance travelled at the constant speed.
19. The percentage marks obtained by 40 students in a test are as under:
$85,30,49,62,17,84,24,15,82,61,74,38,27,13,44,72,61,49,38,23$, $90,32,67,18,45,58,22,46,37,39,43,55,62,30,46,59,41,26,34$ and 47.
a) Prepare a grouped frequency table from the above data using a class width of 10 .
b) Use 49.5 as the working mean and estimate the mean from the grouped frequency table.
c) Prepare a cumulative frequency table and draw the cumulative frequency curve on the grid of squares provided.
d) Use the cumulative frequency curve to estimate the median.
20. A calf runs in a straight line towards a cow with a velocity of vm / s after t seconds given by $\mathrm{v}=\mathrm{t}(8-\mathrm{t})$.
a) Complete the table below

t	0	1	2	3	4	5	6	7	8
$8-\mathrm{t}$	8					3	2		
v	0		12					7	

b) Hence draw the graph of v against t for $0 \leq \mathrm{t} \leq 8$ on the grid provided.
c) From the graph find the total distance the calf run.
i) Using eight trapezia of equal width.
ii) Using the exact method.
21. The figure below represents a game sanctuary in the shape of a quadrilateral in which $\mathrm{AB}=30 \mathrm{~km}$,
$\mathrm{AE}=20 \mathrm{~km}$ and $\mathrm{CE}=45 \mathrm{~km} \angle \mathrm{BAC}=60^{\circ}, \angle \mathrm{EBC}=30^{\circ}$ and $\angle \mathrm{ECB}=17.10^{0}$.

Calculate
a) The side BC correct to 2 decimal places.
b) The angle ABE to 1 decimal place.
c) The area of the game sanctuary in hectares correct to 2 decimal places.
(3 marks)
22. Using a ruler and compasses only, construct a triangle ABC with $\mathrm{AB}=4.5 \mathrm{~cm}, \angle \mathrm{ABC}=75^{\circ}$ and $\angle \mathrm{BAC}=60^{\circ}$. Prolong CB and CA hence construct a circle that touches side AB and the prolonged sides. Calculate he area of the circle. Use p $=3.142$.
23.

The figure above shows a right pyramid VEFGHK. The base EFGHK is a regular pentagon. $\mathrm{EO}=7 \mathrm{~cm}$ and $\mathrm{VE}=12 \mathrm{~cm}$. Calculate:
a) The perimeter of the base to 2 decimal places.
b) The length VO to 2 decimal places.
c) The angle which edge VF makes with the edge FE.
d) The volume of the pyramid to 2 decimal places.
(3 marks)
4. The equation of a curve is given by $y=2 x^{3}+3 x^{2}-12 x+5$.
a) Find the y - intercept of the curve.
b) Determine the stationery points of the curve.
c) Sketch the curve $y=2 x^{3}+3 x^{2}-12 x+5$

KIRINYAGA WEST EFFECTIVE "40" EXAM
 Kenya Certificate of Secondary Education (K.C.S.E)

121/2
 MATHEMATICS
 PAPER 2
 MARCH/APRIL 2015
 $21 / 2$ HOURS

Section 1 (50 mks)

Answer all questions in this section in the spaces provided.

1. The length of two similar iron bars A and B were given as 10.5 m and 8.2 m . Calculate the maximum possible difference in length between the two bars.
2. The first term of an arithmetic sequence is 5 and the common difference is 2 .
a) List the first six terms of the sequence.
b) Determine the sum of the first 40 terms of the sequence.
3. In the figure below $P Q R$ is the diameter of the circle centre 0 . Angle $Q P R=20^{0}$ and angle $Q T R=80^{\circ}$.

Determine the size of
a) Reflex angle POS
b) Angle OSQ
4. The quantities P, Q and R are such that P varies directly as Q and inversely as the square of R. Given that $P=2$ when $Q=12$ and $R=6$. Determine the equation connecting the three.
5. The table shows the frequency distribution of marks scored by students in a test.

Marks	Fr
$21-30$	2
$31-40$	4
$41-50$	11
$51-60$	5
$61-70$	3

Determine the median mark correct to one decimal point.
(4 marks)
6. Determine the amplitude and period of the function $3 y=6 \sin (2 x-30)$.
7. In a transformation, an object with area $9 \mathrm{~cm}^{2}$ is mapped onto an image whose area is $54 \mathrm{~cm}^{2}$. Given that the matrix of transformation is $\left(\begin{array}{cc}x & x-1 \\ 2 & 4\end{array}\right)$ find the value of x
8. Expand $(4-x)^{7}$ upto to the term in x^{4}. Hence find the appropriate value of $(3.8)^{7}$.
9. Solve for x without using mathematical tables or calculators.
$\log _{2}\left(x^{2}-9\right)=3 \log _{2} 2+1$
10. The figure below represent a square based right pyramid $A B C D V$. $A B=10 \mathrm{~cm}$, $A V=B V=C V=D V=15 \mathrm{~cm}$.

Calculate the angle between AV and the base ABCD to the decimal place.
(3 marks)
11. Solve the simultaneous equations.
$2 x-y=3$
$x y-y^{2}=0$
12. Francis bought a vehicle at ksh. 2800000 . After three years he sold the vehicle at Kshs. 1,500,000. Determine the average rate of depreciation per annum correct to one decimal place.
13. A plane flies from point $P\left(40^{0} N, 50^{0} \mathrm{E}\right)$ towards West to a point Q. Given that the plane covers a distance of $10,000 \mathrm{~km}$ what is the position of Q .
(Take $\pi=22 / 7$, radius of the earth 6370 km)
14. Given $\underset{\sim}{\sim}=\left[\begin{array}{r}2 \\ -3 \\ 5\end{array}\right]$ and $\underset{\sim}{b}=\left[\begin{array}{l}0 \\ 3 \\ 7\end{array}\right]$. Find
$|2 a+b|$
$|2 \underset{\sim}{a}+\underset{\sim}{b}|$
(3marks)
15. The gradient function of a curve is $x^{3}-4$. If the curve passes through point (2,3). Find the equation of the curve.
(3 marks)
16. A vehicle initially moving at a velocity of $80 \mathrm{~m} / \mathrm{s}$ had breaks applied. The table below shows how velocity changed in the next 14 seconds.

Time (seconds)	0	2	4	6	8	10	12	14
Velocity (m/s)	80	60	46	34	26	20	16	14

Determine the average rate of deceleration between the fourth and the twelfth second.
(3 marks)

SECTION II (ATTEMPT ANY FIVE)

17. A businesswoman mixes three types of rice A, B and C in the ratio $A: B=1: 2$ and $B: C=4: 5$. The mixture is to contain 60 bags of type B.
a) Find the ratio $\mathrm{A}: \mathrm{B}: \mathrm{C}$
b) Find the required number of bags of type C.
c) The cost per bag of type A is Kshs. 7,500, type B Kshs. 5,000 and type C Kshs. 4,000.
i) Calculate the cost per bag of the mixture.
(2 marks)
ii) Find the percentage profit if the selling price of the mixture is Ksh. 6,500 per bag.
iii) Find the selling price of a bag of the mixture if the businesswoman makes a profit of 25%.
18. The figure below shows the pulleys with centres A and B and radii 13 cm and 6 cm respectively. The distance between the centres is 25 cm .

A belt PRSTUP goes round the two pulleys. PQ and TS are also tangents.
a) Calculate
i) Length $P Q$
ii) Angle BAP
b) Hence or otherwise calculate the length of the belt.
19. The table below shows income tax rates for a certain year.

Monthly income in Kenya shilling (Ksh)
0-10164
10165-19740
19741-29316
29317-38892
Over 38892

Tax rate in each shilling 15\%

20\%
10\%
15\%
25\%
30\%

A secondary school teacher was earning a monthly basic salary of Ksh. 55,480 house allowance of Kshs. 12,000 and a commuter allowance of ksh. 8000. He was entitled to a personal relief of Kshs. 1162 per month.
a) Calculate
i) The teacher's taxable income.
ii) The teacher's net monthly tax.
b) In addition to the tax the other deductions were per month as follows:

- Cooperative loan Ksh. 10,000
- Co-operative shares Ksh. 2,000
- Window and children's pensions scheme at 2% of the basic salary. Calculate the teacher's net monthly pay.

20. A farmer wishes to keep some chicks and ducks. Chicks cost Ksh. 60 each while ducks costs Kshs. 80 each. She finds its uneconomical to keep less than 250 birds. She also wishes to keep more chicks than ducks but the chicks must be less than 200. She cannot afford to spend more than ksh. 24,000.
a) Taking x and y to be the number of chicks and ducks respectively rite down all the inequalities that satisfy the above conditions.
b) Represent the inequalities graphically shading out the unwanted region.
c) If the farmer makes a profit of ksh. 200 per chicks and ksh. 250 per duck, find the number of chicks and ducks she must keep in order to maximize her profit. State the profit.
(2 marks)
21. Three pupils Irene, Mary and Atieno applied for a form one vacancy. The probability of Irene, Mary and Margaret getting the chance in the school are $0.5,0.4$ and 0.9 respectively. Determine the probability that
a) None gets the chance
b) Only one gets the chance.
(2 marks)
c) At most one of the three gets the chance.
d) At least one of the three gets the chance.
22. The figure shows triangle OPQ in which $\mathrm{QN}: \mathrm{NP}=1: 2$, $\mathrm{OT}: \mathrm{TN}=3: 2$ and M is the mid - point of OQ .

$\underset{\sim}{\mathrm{OP}}=\underset{\sim}{\mathrm{p}}$ and $\underset{\sim}{\mathrm{OQ}}=\underset{\sim}{\mathrm{q}}$
a) Express the following in terms of $\underset{\sim}{p}$ and q.
i) $P Q$
(1 mark)
ii) $\underset{\sim}{\mathrm{ON}}$
iii) PT
iv) $\underset{\sim}{P M}$
b) Hence show that P, T and M are collinear.
23. Using a ruler and compasses only, construct triangle ABC such that $\mathrm{AB}=\mathrm{AC}=3.9 \mathrm{~cm}$ and angle $\mathrm{ABC}=30^{0}$ (3marks)
b) Measure BC.
c) A point P is always on the same side of $B C$ as A. Draw the locks of P such that angle BAC is always twice angle BPC.
d) Drop a perpendicular from A to meet BC to D. Measure AD.
24. The relationship between two variables X and Y is known to be of the form $y=a x^{2}+b$ where a and b are constants. In an experiment, for some fixed values of x, corresponding values of y were recorded as in the table below.

x	1	2	3	4	5
y	7	13	23	37	55
x^{2}					

a) Fill the missing values of x^{2}.
b) Draw the graph of Y against x^{2}.
c) Using the graph find the value of a and b.
d) State the relationship between y and x.

KIRINYAGA WEST EFFECTIVE "40" EXAM

Kenya Certificate of Secondary Education (K.C.S.E)

121/1

MATHEMATICS

PAPER 1

July /August 2015
$21 / 2$ HOURS

KIRINYAGA WEST EFFECTIVE "40" EXAM
Kenya Certificate of Secondary Education (K.C.S.E)

121/2

MATHEMATICS

PAPER 2

July /August 2015
$21 / 2$ HOURS

WESTLANDS DISTRICT JOINT EXAMINATION

Kenya Certificate of Secondary Education (K.C.S.E)

```
121/1
MATHEMATICS
PAPER 1
```

July /August 2015
$21 / 2$ HOURS

1. Evaluate without using a calculator

$$
\begin{equation*}
\frac{\left(-\frac{1}{2}\right) \div\left(-\frac{2}{3}\right) \text { of } 8-\left(-4 \frac{1}{2}\right)}{\frac{3}{4}-\left(2 \frac{3}{4}\right) \div \frac{11}{8}} \tag{4marks}
\end{equation*}
$$

2. Use tables of squares, square root and reciprocals to evaluate to 3 decimal places the question below.
$\frac{10}{\sqrt{0.625}}+(1.64)^{2}$
3. Simplify the expression:
$\frac{32 x^{2}-18 y^{2}}{4 x^{2}-x y-3 y^{2}}$
4. The area of a rhombus is $120 \mathrm{~cm}^{2}$. Given that one of its diagonals is 24 cm , calculate the perimeter of the rhombus.
(3 marks)
5. Given that $8^{4 y} \times 27^{x}=36$, find the exact values of x and y.
(3 marks)
6. Three bells ring at intervals of 18 minutes, 30 minutes and 42 minutes the bells will next ring together at 10.00am.

Find the time the bells last rang together.
(3 marks)
7. A truck left Nairobi at 7 a.m for Nakuru at an average speed of $60 \mathrm{~km} / \mathrm{hr}$. At 8 a.m a bus left Nakuru for Nairobi at an average speed of $120 \mathrm{~km} / \mathrm{hr}$. How far from Nairobi did the vehicles meet if Nairobi is 160 km from Nakuru. (3 marks)
8. Using a ruler and a pair of compasses only, draw a line $A B=7 \mathrm{~cm}$ long. Construct $<B A C=67.5^{\circ}$. Use line $A C$ to divide AB into 3 equal parts.
(2 marks)
9. Given the vectors $\underset{\sim}{a}\binom{3}{-2}, \underset{\sim}{b}=\left[\begin{array}{c}-1 \\ 2\end{array}\right]$ and $\underset{\sim}{c}=\binom{-4}{2}$ find $|3 \underset{\sim}{a}-\underset{\sim}{b}+\underset{\sim}{1 / 2} \underset{\sim}{c}|$ giving your answer to 4 significant figures.
10. Given that $\sin \theta=\frac{12}{13}$, find without using mathematical tables or a calculator $\tan (90-\theta)^{0}$
11. Given that $\mathrm{p}=\left(\begin{array}{cc}4 & -2 \\ 3 & 0\end{array}\right), \mathrm{Q}=\left(\begin{array}{cc}1 & 5 \\ -2 & 3\end{array}\right)$ and $\mathrm{R}=2 \mathrm{PQ}-\mathrm{P}^{2}$. Determine matrix R .
12. Without using mathematical tables or a calculator, solve the equation.
$2 \log _{10} y-3 \log _{10} 2+\log _{10} 32=\log _{2} 4$
13. The line $2 y-4 x-5=0$ meets another line L at appoint where $y=4.5$. Find the equation of L in the form $y=m c+c$ if the lines are perpendicular to each other.
(4 marks)
14. A Kenyan bank buys and sells foreign currencies at the exchange rates shown below.

currency	Buying (ksh)	Selling (ksh)
1 Euro	147.56	148.00
1 US dollar	94.22	94.50

A tourist arrived in Kenya with 11,155 Euros. He converted all the Euros to Kenya shillings at the bank. He spent ksh. $1,130,200.50$ while in Kenya and converted the remaining Kenya shillings into US dollars at the bank. Find the amount in dollars that he received correct to 2 decimal places.
15. The figure below represents a solid regular hexagon based pyramid of side 4 cm and height 10 cm . It is cut along a plane 3 cm from the vertex. Calculate the volume of the remaining part.

16. A two digit number is such that the sum of the digits is 11 . When the digits are reversed, the new number exceeds the original number by 9 . Calculate the original number.
(3marks)
17. Patients who attended pumwani clinic in one week were grouped by age as shown in the table below.

Age x years	$5 \leq x<10$	$10 \leq x<20$	$20 \leq x<30$	$30 \leq x<50$	$50 \leq x<80$
Number of patients	14	41	59	70	15
a) Estimate the mean age.		(3marks)			
b) Estimate the median age.					

c) On the grid provided, draw a histogram to represent the distribution:

Using the scales: 1 cm to represent 5 units on the horizontal axis 1 cm to represent 1 units on the vertical axis
(4marks)
18. The figure below represents a solid cuboid ABCDEFGH with a rectangular base. $\mathrm{AC}=13 \mathrm{~cm}, \mathrm{BC}=5 \mathrm{~cm}$ and $\mathrm{CH}=15$ cm . M is the midpoint of GH .

a) Calculate the surface area of the cuboid
(3marks)
b) Calculate the angle between line AH and the base ABCD. (2marks)
c) Calculate the angle between the base ABCD and the plane ADM (2 marks)
d) Calculate the angle between line AC and MF
19. i) It would take Alex working alone 30 days, Bernard 40 days and Charles 60 days to complete a task. All three start working together but after five days, Alex falls sick and cannot continue. Determine how many more days it will take Bernard and Charles to complete the task.
(4 marks)
ii) A dealer has three grades of coffee, A, B and C. Grade A costs sh. 140 per kg., grade B costs sh. 16 per kg and grade C cost sh. 256 per kg.
a) The dealer mixes grade A and B in the ratio 5:3 to make a brand of coffee which he sells at sh. 180 per kg. Calculate the percentage profit he makes.
(3 marks)
b) The dealer maker a new brand by mixing the three grades of coffee in three in the ratio $\mathrm{A}: \mathrm{B}=5: 3$ and $\mathrm{B}: \mathrm{C}=2: 5$. Determine the selling price of the new brand if he has to make a 30% profit.
(3 marks)
20. A hotel planned to buy sacks of charcoal for a total of sh. 30,000 . Before the hotel could buy the charcoal, the price per sack was reduced by sh. 100. This reduction in price enabled the hotel to buy 10 more sacks of charcoal.
a) Determine the number of sacks that the hotel bought.
b) Calculate the percentage change in price
c) If the charcoal dealer makes sh. 50 per bag as commission, calculate the total commission.
21. The velocity of a particle moving in a straight line after t seconds is given by $V=2 t^{2}-t-6 m / s$. calculate
a) the acceleration of particle after 2 seconds
(2marks)
b) the distance covered during the third second.
c) the time when the particle will be momentarily at rest.
(2marks)
d) the minimum velocity attained.
22. A triangular plot $P Q R$ is such that $P Q=72 m, Q R=80 \mathrm{~m}$ and $P R=84 \mathrm{~m}$
a) calculate.
i) the area of the plot in square metres
(3 marks)
ii) the largest angle in the triangle (2 marks)
iii) The perpendicular height from P to the side $Q R$
(3 marks)
b) A water tap is to be installed inside the plot such that the tap is equidistant from each of the vertices P, Q and R. Calculate the distance of the tap from the vertex P
23. A pole stands directly across the street from a building. The angle of depression of the top of the building from the top of the pole is 24.5° and the angle of elevation of the top of the pole from the foot of the building is 48.6^{0}. Given that the distance between the pole and the building is 50 m , calculate to 2 decimal places.
a) the height of the pole
b) the difference in height between the pole and the building.
c) the height of the building.
d) the angle of elevation of the top of the building from the top of the pole.
24. In the figure below, AT and AD are tangents to the circle at B and D respectively. DEF is a straight line, $\angle C B T=60^{\circ},<$ $\mathrm{FAD}=48^{\circ}$ and $\angle \mathrm{ADF}=42^{\circ}$

Calculate giving reasons, the value of:
a) $<$ DCE
b) $<\mathrm{BCE}$
(2 marks)
c) $<\mathrm{DCB}$
(2 marks)
d) $<D E C$
(2 marks)
e) $<B E F$

WESTLANDS DISTRICT JOINT EXAMINATION

Kenya Certificate of Secondary Education (K.C.S.E)
121/2
MATHEMATICS
PAPER 2
July /August 2015
$21 / 2$ HOURS

1. Use logarithm tables to evaluate:
$\sqrt[5]{\frac{(0.6873)^{2} \times 438.7}{396.8}}$
(4 marks)
2. Make x the subject of the formula
$\mathrm{h}=\sqrt{\frac{x^{2}-t^{2}}{4+t^{2} x^{2}}}$
3. A point divides line $P Q$ in the ratio 3: -2 . Given that $P=2 \underset{\sim}{i}-3 j+k$ and $Q=3 i-4 j-3 k$ find the coordinates of T.
4. In the triangle below, a point R moves such that the area of $\Delta A C B=$ area of $\Delta A R B$ and $\angle A R B=30^{\circ}$. Using a ruler and a pair of compasses only, locate the possible position of R on the same side as C and find the distance between them.

5. Solve for x in the equation. $\operatorname{Sin}(2 x-10)^{0}=-0.5$ for $0^{0} \leq x \leq 360^{\circ}$
6. Find the interquartile range of the data below:
$2,4,6,8,10,5,6,9,4,6$
7. A sum of sh. 50,000 is invested in a financial institution that gives 12% p.a. Find the total investment after 3 years if the interest is compounded quarterly. Give your answer to the nearest 100.
8. Solve for x and y given that.
$\left(\begin{array}{cc}x & y \\ 1 & -1\end{array}\right)\binom{x}{y}=\binom{26}{4}$
(3marks)
9. Simplify $\frac{7}{3-\sqrt{11}}$
10. The base and the height of a right angled triangle were measured as 4.34 cm and 8.25 cm respectively. Calculate the percentage error in the area of the triangle.
11. a) Expand $(1-2 x)^{6}$ upto to the fourth term.
b) Use the expansion in (a) above to find the value of $(0.98)^{6}$ correct to 4 significant figures.
12. In the figure below, $A T$ is a tangent to the circle at A. $A B$ and $C D$ intersect at X. Give that $B X=4 \mathrm{~cm}, C X=6 \mathrm{~cm}, C D=12$ cm and $\mathrm{AT}=8 \mathrm{~cm}$, calculate:
a) the legth of $A X$
b) the length of secant CT.

13. Determine the centre and radius of a circle whose equation is given by $2 x^{2}+2 y^{2}-8 x+4 y+2=0$
14. The quantities P and Q are such that P varies partly as Q and partly as the square of Q. When $q=60$ and when $Q=3, P$ $=105$.
a) Write the equation connecting P and Q.
b) Find the value of P when $Q=5$
(4 marks)
15. Find the equation of the normal to the curve $y=3 x^{2}-8 x+5$ at the point where $x=2$ in the form $a x+b y=c$
(3 marks)
16. A business woman deposits sh. 4,000 in a bank at the beginning of every year which earns compound interest of 12% p.a. Calculate the total amount that she accumulates at the end of the sixth year to the nearest cent.
(2 marks)

SECTION II 50 MARKS

17. The probability of Owino going to school by tuktuk is $1 / 4$ while that of going by boda boda is $2 / 5$.If he travels by tuktuk, the probability of arriving in school late is $1 / 7$ whereas that of the boda boda is $1 / 3$. If he uses other means , the probability of him getting to school late is $1 / 10$
a) Draw a tree diagram to represent the above information.
b) Calculate the probability that:
i) He is late for school.
ii) He is not late for school
iii) He is late for school if he does not use boda boda.
18. OABC is a trapezium in which $\mathrm{OA}=\mathrm{a}$ and $\mathrm{AB}=\underset{\sim}{\mathrm{b}} . \mathrm{AB}$ is parallel to OC with $2 \underset{\sim}{2} \underset{\sim}{\sim}=\underset{\sim}{O C}$. T is a point on $O C$ produced so that $\mathrm{OC}: ~ \mathrm{CT}=2: 1$. AT and BC intersect at X . So that $\mathrm{BX}=\mathrm{hBC}$ and $\mathrm{A} \widetilde{\sim}=\mathrm{kAT}$

a) Express the following in terms a and b.
i) $O B$
ii) $\underset{\sim}{\sim}{ }_{\sim}^{C}$
(2 marks)
b) Express CX in terms of a, b, and h.
c) Express $\widetilde{\mathrm{C}} \mathrm{X}$ in terms of a, b, and k .
d) Hence calculate the values of h and k
19. a.) Determine the inequalities that define the unshaded region below

b) calculate the area of the unshaded region
(2marks)
20. a) A triangle ABC has vertices $\mathrm{A}(1,4), \mathrm{B}(-2,0)$, and $\mathrm{C}(4,-2)$. On the grid provided, draw ABC .
b) $\mathrm{A}^{1} \mathrm{~B}^{1} \mathrm{~B}^{1}$ is the image of ABC after transformation $\mathrm{N}=\left(\begin{array}{ll}3 & 1 \\ 4 & 0\end{array}\right)$. Draw $\mathrm{A}^{1} \mathrm{~B}^{1} \mathrm{C}^{1}$ on the same grid.
c) $\mathrm{A}^{11} \mathrm{~B}^{11} \mathrm{C}^{11}$ is the image of $\mathrm{A}^{1} \mathrm{~B}^{1} \mathrm{C}^{1}$ after transformation $\mathrm{M}=\left(\begin{array}{cc}2 & -2 \\ 1 & 0\end{array}\right)$. Draw $\mathrm{A}^{11} \mathrm{~B}^{11} \mathrm{C}^{11}$ and find its coordinates
d) N followed by M is represented by matrix K . Determine K .
e) If an object of area $4 \mathrm{~cm}^{2}$ is transformed using matrix K. find the area of the image.
21. a) Complete the table below giving all values to 2 decimal places for the functions $y=\cos x^{0}$ and $y=2 \cos (x+30)^{0}$

| x^{0} | 0^{0} | 60^{0} | 120^{0} | 180^{0} | 240^{0} | 300^{0} | 360° | 420^{0} | 480^{0} | 540^{0} |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $\cos \mathrm{x}^{0}$ | | | | | -0.50 | | | | | |
| $2 \cos (\mathrm{x}+30)^{0}$ | 1.73 | | | | | | | | | |

b) For the function $y=2 \cos (x+30)^{0}$, state.
i) the period
(1 mark)
ii) the phase angle
(1 mark)
c) on the same set of axes, draw the waves of the function $y=\cos x^{0}$ and $y=2 \cos (x+30)^{0}$ for $0^{0} \leq x \leq 540^{0}$. Using the scale 1 cm to represent 30° horizontally and 2 cm to represent 1 unit vertically.
d) Use your graph in (c) above to solve the inequality $2 \cos (x+30)^{0} \leq \cos x^{0}$
e) Find the transformation that maps $y=\cos x^{0}$ onto $y=2 \cos (x+30)^{0}$
(2 marks)
22. The frequency distribution of marks 80 students is given in the table below.

Marks	$1-10$	$11-20$	$21-30$	$31-40$	$41-50$	$51-60$	$61-70$	$71-80$	$81-90$	$91-100$
Frequency	1	6	10	20	15	5	14	5	3	1

a) Using 45.5 as assumed mean calculate the standard deviation of the data.
(5 marks)
b) On the grid provided, represent the data on an ogive and use it to find:
i) The median mark
(1 mark)
ii) The pass marks if 60% of the students are to pass.
(1 mark)
23. The position of two satellite station A and B on the earth's surface are $\left(36^{\circ} \mathrm{N}, 50^{\circ} \mathrm{E}\right)$ and $\left(36^{\circ} \mathrm{n}, 130^{\circ} \mathrm{W}\right)$ respectively . (use $\pi=3.142$ and $\mathrm{R}=6400 \mathrm{KM}$)
a) Find the distance along the small circle in km .
b) Find the shortest distance between A and B IN nm
(3 marks)
c) If time A is 1700 hrs , calculate the time at B in 12 hrs system.
(5 marks)
24. Otieno bought a second hand car and later sold it through a sales agent who charges $7 \frac{1}{2} \%$ commissions on the price of the car. He received sh. 222,000 from the agent after the tatter had deducted his commission .Otieno incurred a loss of 25% on the price at which he had bought the car.
a) Calculate the price at which the agent sold the car.
b) Find the price at which Otieno had bought the car
c) If the amount otieno paid for the car was 26% less than the price of the new car, calculate the price of the new car to the nearest cent.
d) Express as a percentage the amount Otieno received for his car to its price when new.

WESTLANDS DISTRICT JOINT EXAMINATION
Kenya Certificate of Secondary Education (K.C.S.E)
121/1
MATHEMATICS
PAPER 1
July /August 2015
$21 / 2$ HOURS

1	$\begin{aligned} & \frac{-\frac{1}{2} \div\left(-\frac{2}{3} x 8\right)+\frac{9}{2}}{\frac{3}{4}-\left(\frac{11}{4} x \frac{8}{11}\right)} \\ & \frac{-\frac{1}{2} x-\frac{3}{6}+\frac{9}{2}}{\frac{3}{4}-\frac{8}{4}} \\ & \frac{\frac{3}{32}+\frac{44}{32}}{-\frac{5}{4}} \\ & \frac{147}{32} x-\frac{4}{5} \\ & -\frac{147}{40}=-3 \frac{27}{40} \\ & \hline \hline \end{aligned}$	7	Truck $=60 \times 1=60 \mathrm{~km}$ Resolved distance $=160-60=100 \mathrm{~km}$ Relative speed $=120+60=180 \mathrm{~km}$ Meeting time takes $=\frac{100}{180}=\frac{5}{9} \mathrm{hrs}$ Distance $=11 \frac{5}{9} \times 60=93.33 \mathrm{~km}$	
2	$\begin{aligned} & \frac{10}{\sqrt{62.5} \times 10^{-2}}+2.690 \\ & \frac{10}{7.9057+10^{-1}}+2.690 \\ & 0.1265 \times 10 \times 10+2.690 \\ & 12.65+2.690 \\ & 15.34 \end{aligned}$	8		
3	$\begin{gathered} \frac{2\left[(4 x)^{2}-(3 y)^{2} p\right.}{4 x^{2}-4 x y+3 x y-3 y^{2}} \\ \frac{2(4 x-3 y)(4 x+3 y)}{4 x(x-y)+3 y(x-y)} \\ \frac{2(4 x-3 y)(4 x+3 y)}{} \end{gathered}$			
	$\begin{aligned} & (4 x+3 y)(x-y) \\ & \frac{2(4 x-3 y)}{x-y} \end{aligned}$	9	$\begin{aligned} & 3\binom{3}{-2}-4\binom{-1}{2}+\frac{1}{2}\binom{-4}{2} \\ & \left(\begin{array}{ccc} 9 & +4 & -2 \\ -6 & -8 & +1 \end{array}\right)=\binom{11}{-13} \end{aligned}$	
4	Area of rhombus $=\frac{1}{2}$ product of diagonals $\frac{120}{12}=\frac{1}{2} x 24 \mathrm{x} x$ $2^{\text {nd }}$ diagonal $\mathrm{x} x=10$		$\begin{aligned} \text { Magnitude }= & \sqrt{11^{2}+13^{2}} \\ & =\sqrt{121+169} \\ & =17.0294 \\ & =17.03 \end{aligned}$	
	$\begin{aligned} & y=\sqrt{5^{2}+122}=13 \mathrm{~cm} \\ & \text { Perimeter }=13 \times 4 \\ & =52 \mathrm{~cm}^{2} \end{aligned}$	10		
5	$\begin{aligned} & \left(2^{3}\right)^{4 y} \times\left(3^{3}\right)^{\mathrm{x}}=3^{2} \times 2^{2} \\ & 2^{12 \mathrm{y}} \times 3^{3 \mathrm{x}}=3^{2} \times 2^{2} \\ & 2^{12 \mathrm{y}}=2^{2} \\ & \frac{3 x}{3}=\frac{2}{3} \\ & \frac{12 y}{12}=\frac{2}{12} \\ & y=\frac{1}{6}, x=\frac{2}{3} \\ & \hline \hline \end{aligned}$			
6	$\begin{aligned} & 18=2 \times 3^{2} \\ & 30=2 \times 3 \times 5 \\ & 42=2 \times 3 \times 7 \\ & L C M=2 \times 3^{2} \times 5 \times 7=630 \\ & \frac{630}{60}=10 \mathrm{hrs} 30 \mathrm{~min} \\ & 10.00 \\ & -\frac{10.30}{23.30} \\ & -12.00 \\ & 11.30 \text { p.m previous day } \\ & \hline \end{aligned}$			

20	(a) Let the original no. of sacks be x Original price per sack $=\frac{30000}{x}$ New price $=\frac{3000}{x+10}$ $\frac{30000}{x+10}=\frac{30000}{x}-100$ $\mathrm{x}^{2}+\mathrm{x}-3000=0$ $(x+60)(x-50)=0$ $x=-60 x=50$ Bags bought $=50+10=60$ (b) $\mathrm{BP}=\frac{30000}{60}=500$ $\%$ a in price $=\frac{100}{500} \times 100 \%$ = 20\% (c) Total commission $=60 \times 50$ = 3000/=	23	 (a) $\begin{aligned} & \text { Tan } 48.6=\frac{y}{50} \\ & y=50 \tan 48.6 \\ & =56.7139 \end{aligned}$
21	$\begin{array}{rl} \hline \hline \text { (a) } \mathrm{V} & =2 \mathrm{t} 2-\mathrm{t}-6 \\ \mathrm{a} & =\frac{d v}{d t}=4 t-1 \\ \mathrm{a} & 4 \times 2-1 \\ = & 7 \mathrm{~m} / \mathrm{s}^{2} \\ \text { (b) } \mathrm{S} & =\int_{2}^{3}\left(2 t^{2}-t-6\right) \\ & =\left[\frac{2}{3} t^{3}-\frac{t^{2}}{2}-6 t+c\right]_{2}^{3} \\ & \left(\frac{2}{3} x 3^{3} \frac{3^{2}}{2}-6 \times 3\right)-\left(\frac{2}{3} x 2^{3}-\frac{2}{2}-6 \times 2\right) \end{array}$		$\begin{aligned} & \text { (b) } \begin{aligned} & \cong 56.71 \mathrm{~m} \\ & =220 \tan 24.5 \\ & \cong 22.789 \end{aligned} \end{aligned}$ $\text { (c) } \begin{aligned} \text { Height of building } & =56.71-22.79 \\ & =33.92 \end{aligned}$ (d) $\begin{aligned} \operatorname{Tan} \theta & =\frac{33.92}{50}=0.6784 \\ \theta & =\tan -10.6784 \\ & =34.155^{\circ} \end{aligned}$
	$\left.(-4.5)-8 \frac{2}{3}\right)$ (c) Particle is momentarily at rest $\mathrm{v}=0$ $\begin{aligned} & 2 \mathrm{t}^{2}-\mathrm{t}-6=0 \\ & 2 \mathrm{t}^{2}-4 \mathrm{t}+3 \mathrm{t}-6=0 \\ & 2 \mathrm{t}(\mathrm{t}-2)+3(\mathrm{t}-2)=0 \\ & (\mathrm{t}+3)(\mathrm{t}-3)=0 \\ & \mathrm{t}=-\frac{3}{2} \text { ignore } \mathrm{t}=2 \text { seconds } \end{aligned}$ (d) Minimum velocity attained when $\mathrm{a}=0$ $\begin{aligned} & \mathrm{a}=\frac{d v}{d t}=4 \mathrm{t}-1=0 \\ & \mathrm{t}=\frac{1}{4} \\ & \mathrm{v}=2\left(\frac{1}{4}\right)^{2}-\frac{1}{4}-6 \\ & =-6 \frac{1}{8} \mathrm{~m} / \mathrm{s} \end{aligned}$	24	(a) DCE $=$ EDF (\angle s in alternate segment) $=42^{0}$ (a) $\mathrm{BCE}=\mathrm{BDF}(\angle \mathrm{s}$ in the same segment $)$ $\begin{aligned} \frac{180-48}{2} & =42^{0} \\ & =24^{0} \end{aligned}$ (b) $\mathrm{DCB}=\mathrm{DBF}(\angle \mathrm{s}$ in alternate segment $)$ $\begin{aligned} \mathrm{DBF} & =\frac{180-4 \grave{8}}{2}(\mathrm{AB}=\mathrm{D}) \\ & =66^{0} \end{aligned}$ (c) $\mathrm{CED}=\mathrm{CBD}(\angle \mathrm{s}$ in the same segment) $C B D=180-(60+60)(\angle \mathrm{s} \text { on straight line })$ $\mathrm{CED}=54^{\circ}$ (d) $\mathrm{BEF}=\mathrm{BCD}$ (ext. angle $=$ opp. interior angle) $=24+42$
22	$\begin{aligned} & S=\frac{7+84+80}{2} \\ & =118 \end{aligned}$ (e) $\text { (i) } \begin{aligned} \mathrm{S}= & \sqrt{118(118-72)(118-80)(118-84)} \\ = & \sqrt{7012976} \\ & =2648.2024 \mathrm{~cm}^{2} \end{aligned}$ (ii) $\frac{1}{2} \times 72 \times 80 \operatorname{Sin} \theta=2648.2024$ $\theta=\operatorname{Sin}^{-1}\left(\frac{2648.202442}{72 \times 80}\right)=66.8552^{\circ}$ (iii) $\frac{1}{2} \times 80 \times h$ $\begin{aligned} 40 \mathrm{~h} & =26480.2024 \\ \mathrm{~h} & =\frac{2648.2024}{40} \\ & =66.2051 \mathrm{~km} \\ \frac{84}{\sin 66.85} & =2 \mathrm{R} \\ \frac{84}{0.9195} & =2 R \\ R & =45.68 \mathrm{~m} \end{aligned}$		

WESTLANDS DISTRICT JOINT EXAMINATION
Kenya Certificate of Secondary Education (K.C.S.E)
121/2
MATHEMATICS
PAPER 2
July /August 2015
$21 / 2$ HOURS

1	No Log 0.6873^{2} $\overline{1} .6744$ $\overline{1} .8372 \times 2$ 438.7 $\underline{2.6422}$ 2.3166 396.8 $\underline{2.5986}$ 1.7180 $\overline{1.718}$ 5 8.782×10^{-1} $\boxed{\overline{1}} .9436$ $\underline{5}+\frac{4.718}{5}$ 0.8782 5		5	$\begin{array}{ll\|l} \hline \hline \angle \text { acute }=\operatorname{Sin}^{-1} 0.5=30^{0} & & \\ 2 \mathrm{x}-10=210,330,570,690 & \mathrm{~S} & \mathrm{~A} \\ \frac{2 x}{2}=\underline{30} 220,340,580,700 & \mathrm{~T} & \mathrm{~K} \\ \mathrm{x}=110^{\circ}, 170^{\circ}, 290^{\circ}, 350^{\circ} & & \\ \hline \hline \end{array}$
			6	$\begin{aligned} & 2,4,4,5,6,6,6,8,9,10 \\ & 1,2,4,5,6,7,8,9,10 \\ & \mathrm{Q}_{3}=\frac{3}{4} \times 10=7.5^{\text {th }} \rightarrow 8 \\ & \mathrm{Q}_{1}=\frac{1}{4} \times 10=2.5^{\text {th }} \rightarrow 4 \end{aligned}$
2	$\begin{aligned} \mathrm{h}^{2} & ={\left.\sqrt{\left(\frac{x^{2}-t^{2}}{4+t^{2} x^{2}}\right.}\right)^{2}}^{\mathrm{h}^{2}}=\frac{x^{2}-t^{2}}{4+t^{2} x^{2}} \\ \mathrm{~h}^{2}\left(4+t^{2} x^{2}\right) & =\mathrm{x}^{2}-\mathrm{t}^{2} \\ 4 \mathrm{~h}^{2}+\mathrm{h}^{2} \mathrm{t}^{2} \mathrm{x}^{2} & =\mathrm{x}^{2}-\mathrm{t}^{2} \\ \mathrm{x}^{2}-\mathrm{h}^{2} \mathrm{t}^{2} \mathrm{x}^{2} & =4 \mathrm{~h}^{2}+\mathrm{t}^{2} \\ \sqrt{x^{2}} \frac{\left(1-h^{2} t^{2}\right)}{1-h^{2} t^{2}} & =\sqrt{\left(\frac{4 h^{2}+t^{2}}{1-h^{2} t^{2}}\right)} \\ x & =\sqrt{\left(\frac{4 h^{2}+t^{2}}{1-h^{2} t^{2}}\right)} \end{aligned}$		7	$\begin{aligned} & \text { IQR }=8-4=4 \\ & \begin{aligned} \mathrm{A} & =50000\left(1+\frac{12}{100} x \frac{1}{4}\right)^{3 \times 4} \\ & =50000(1.03) 12 \\ & =71,288.0443 \\ & =71,300 \end{aligned} \end{aligned}$
			8.	$\begin{aligned} & \left(\begin{array}{cc} x & y \\ 1 & -1 \end{array}\right)\binom{x}{y}=\binom{26}{4} \\ & x^{2}+y^{2}=26 \\ & x-y=4 \Rightarrow x=4+y \\ & (4+y)^{2}+y^{2}=26 \\ & 16+8 y+2 y^{2}=26 \end{aligned}$
3				$\begin{aligned} & \frac{2 y 2+8 y-10}{2}=\frac{0}{2} \\ & y^{2}+4 y-5=0 \\ & (y+5)(y-1)=0 \\ & y=-5 \text { or } y=1 \\ & \text { when } y=-5 \quad x=4+-5=-1 \\ & \quad y=1 \quad 4+1=5 \end{aligned}$
			9	$\begin{aligned} & \frac{7}{(3-\sqrt{11})} \times \frac{3+\sqrt{11}}{3+\sqrt{11}} \\ & \frac{21+7 \sqrt{11}}{9-11} \\ & -\frac{21}{2}-\frac{7 \sqrt{11}}{2} \\ & -10.5-3.5 \sqrt{11} \end{aligned}$
			10	Min Actual Max 4.335 4.34 4.345 8.245 8.25 8.255
4	$\begin{aligned} & \begin{array}{l} \text { PT } \quad: \mathrm{TQ} \\ \frac{3}{1} \\ \mathrm{OT}=30 \mathrm{O} \\ \mathrm{OT} \\ -2 \mathrm{OP} \\ =3\left(\begin{array}{c} 3 \\ -4 \\ -3 \end{array}\right)-2\left(\begin{array}{c} 2 \\ -3 \\ 1 \end{array}\right) \\ =\left(\begin{array}{ccc} 9 & - & 4 \\ -12 & + & 6 \\ -9 & - & 2 \end{array}\right) \\ =\left(\begin{array}{c} 5 \\ -6 \\ -11 \end{array}\right) \\ \mathrm{T}(5,-6,-11) \end{array} \end{aligned}$			$\begin{aligned} & \frac{0.5}{17.871} \quad \frac{0.5}{17.9025} \quad \frac{0.5}{17.9340} \\ & \begin{array}{l} \mathrm{AE}=\frac{17.934-17.871}{2}=0.0315 \\ \begin{aligned} \% \text { error } & =\frac{0.0315}{17.925} \times 100 \% \\ & =0.1759 \% \end{aligned} \\ \quad \end{array} \end{aligned}$
			11	

12	(a) $\begin{aligned} & \frac{4 x A X}{4}=\frac{6(12-6)}{4} \\ & A X=9 \mathrm{~cm} \end{aligned}$ (b) $\begin{aligned} & (12+x) x=64 \\ & x^{2}+12 x-64=0 \\ & (x+16)(x-4)=0 \\ & x=4 \mathrm{~cm} \mathrm{x}=-16 \text { ignore } \\ & \text { DT }=4+12=16 \mathrm{~cm} \\ & \hline \end{aligned}$	18	18. a) i) $\mathrm{OB}=\underset{\sim}{a}+\underset{\sim}{b}$ ii) $\begin{aligned} \mathrm{BC} & =\mathrm{BA}+\underset{\sim}{A O}+Q \mathrm{QC} \\ & =-b+-a+2 b \\ & =b-a \end{aligned}$ b) $\begin{aligned} C X & =-2 b+a+b+h B C \\ & =-b+a+h(\widetilde{b}-a) \\ & =-b+a+h b-h a \\ & =(1-h) a+(h-1) b \end{aligned}$ c) $\begin{aligned} C X & =-2 b+a+k A T \\ & =-2 \tilde{b}+\underset{a}{a}+k(-\tilde{a}+3 b) \\ & =-2 \tilde{b}+\tilde{a}-k a+3 k \tilde{b} \\ & =(1-k) \widetilde{a}+(3 k-2) \underset{\sim}{\sim} \end{aligned}$ $\begin{aligned} & \text { d) } \begin{array}{l} (1-h) a+(h-1) b=(1-k) a+(3 k-2) b \\ 1-h=1-k \\ h=k \\ h-1=3 k-2 \\ \therefore k-1=3 k-2 \\ 1=2 k \\ \therefore k=1 / 2 \\ h=1 / 2 \end{array} . \end{aligned}$ (a) L1 $\begin{aligned} & (0,2) \quad(4,0) \\ & \mathrm{m}=\frac{2-0}{0-4}=-\frac{1}{2} \\ & \therefore \mathrm{y}=-\frac{1}{2} \mathrm{x}+2 \end{aligned}$ Hence $\mathrm{y} \leq-\frac{1}{2} \mathrm{x}+2 / 2 \mathrm{y} \leq-\mathrm{x}+4$ L2 $(0,2)(-2,0)$ $\begin{aligned} & \mathrm{m}=\frac{0--2}{4-0}=\frac{2}{4}=\frac{1}{2} \\ & \therefore \mathrm{y}=x+2 \end{aligned}$ Hence $\mathrm{y}<\mathrm{x}+2$ L3: $(4,0)(0,-2)$ $\begin{aligned} & \mathrm{m}=\frac{0--2}{4-0}=\frac{2}{4}=\frac{1}{2} \\ & \therefore \mathrm{y}=\frac{1}{2} x-\frac{2}{2 y}>x-4 \end{aligned}$ L4: $(-2,0)(0,-2)$ $\begin{aligned} & \mathrm{m}=\frac{0+2}{-2-0}=-1 \\ & \therefore \mathrm{y}=-\mathrm{x}-2 \end{aligned}$ Hence $y \geq-2$ (c) Area $=\left(\frac{1}{2} \times 6 \times 2\right)+\left(\frac{1}{2} \times 6 \times 2\right)$
13	$\begin{aligned} & \frac{2 x^{2}+2 y^{2}-8 x+4 y+2}{2}=\frac{0}{2} \\ & \left(x^{2}-4 x+2^{2}\right)+\left(y^{2}+2 y+1\right)=-1+1+4 \\ & (x-2)^{2}+(y+1)^{2}=2^{2} \\ & \text { Radius = 2 units } \\ & \text { Centre }(2,-1) \end{aligned}$		
14	$\begin{aligned} & \mathrm{P}=\mathrm{aq}+\mathrm{bq}^{2} \\ & (2 \mathrm{a}+4 \mathrm{~b}=60) \div 2 \\ & (3 \mathrm{a}+9 \mathrm{~b}=105) \div 3 \\ & \mathrm{a}+3 \mathrm{~b}=35 \\ & \mathrm{a}+2 \mathrm{~b}=\underline{30} \\ & \mathrm{~b}=5 \\ & \mathrm{a}=30-2 \times 5 \\ & =30-10=20 \\ & \text { (a) } \mathrm{P}=20 \mathrm{q}+5 \mathrm{q} 2 \\ & \text { (b) } \mathrm{P}=20 \times 5+5\left(5^{2}\right) \\ & \quad=100+125=225 \\ & \hline \hline \end{aligned}$		
15	$\begin{aligned} & y=3 x^{2}-8 x+5 \\ & y=3\left(2^{2}\right)-8(2)+5=1,(2,1) \end{aligned}$		
	$\begin{aligned} & \frac{d y}{d x}=6 x-8 \\ & m_{1}=6 \times 2-8=4 \\ & \frac{y-1}{x-2}=-\frac{1}{4} \\ & 4 y-4=2-\mathrm{x} \\ & \frac{4 y}{4}=-\frac{x}{4}+\frac{6}{4} \\ & \mathrm{y}=-\frac{1 x}{4}+\frac{3}{2}=4 y+x=6 \end{aligned}$	19	
16	$\begin{aligned} & \mathrm{a}=1.12 \times 4000=4,480 \\ & \mathrm{r}=\left(100+\frac{12}{100}\right)=1.12 \\ & \mathrm{~S}_{6}=\frac{a\left(r^{6}-1\right)}{r-1} \\ & =\frac{448\left(1.12^{6}-1\right)}{1.12-1} \\ & =36,356.05 \end{aligned}$		
17	(i) P $\begin{aligned} & \mathrm{P}(\text { late })=\left(\frac{1}{4} \times \frac{1}{7}\right)+\left(\frac{2}{5} x \frac{1}{3}\right)+\left(\frac{7}{20} x \frac{1}{10}\right) \\ & =\frac{1}{28}+\frac{2}{15}+\frac{7}{200} \\ & =\frac{857}{4200} \text { or } 0.2040 \end{aligned}$ $\begin{aligned} \text { (ii) } \mathrm{P}\left(\mathrm{~L}^{\mathrm{L}}\right)=1-\frac{857}{4200} \\ =\frac{3343}{4200} \text { or } 0.7960 \end{aligned}$ (iii) $\mathrm{P}\left(\mathrm{TL}\right.$ or OL) $=\left(\frac{1}{4} \times \frac{1}{7}\right)+\left(\frac{7}{20} \times \frac{1}{10}\right)$ $=\frac{1}{28}+\frac{7}{200}=\frac{99}{1400} \text { or } 0.07071$		

23	(a) $\begin{aligned} & \frac{180}{360} \times 2 \times 3.142 \times 6400 \sec 36^{0} \\ & =16268.3609 \mathrm{~km} \end{aligned}$ (b) $\begin{aligned} & 180-(36 \times 2)=108^{0} \\ & \therefore \text { distance }=60 \times 108 \\ & =6480 \mathrm{~nm} \end{aligned}$ (c) $\begin{aligned} & \text { Time diff. }=4 \times 180^{0} \\ & =720 \text { minutes } \\ & =\frac{720}{60}=12 \mathrm{hrs} \\ & \therefore \text { time at }=1700-12 \mathrm{hrs} \\ & =5.00 \text { a.m previous day } \end{aligned}$	24	$\begin{aligned} & \hline \hline \text { (a) } 92.5 \%=222,000 \\ & 100 \%=? \\ & =\frac{100 \times 222,000}{922.5} \\ & =\text { KSh. } 240,000 \\ & \text { (b) } 75 \%=240,000 \\ & 100 \%=? \\ & =\frac{100 \times 240,000}{75} \\ & =\text { KSh. } 320,000 \\ & \text { (c) } 74 \%=320,000 \\ & 100 \%=? \\ & =\frac{100 \times 320,000}{74} \\ & =\text { KSh. } 432,432.432 \\ & =\text { KSh. } 432,432.40 \\ & \text { (d) } \frac{222,000}{432,432.40} \times 100 \\ & =51.34 \% \end{aligned}$

THARAKA SOUTH SUB-COUNTY JOINT EVALUATION
 Kenya Certificate of Secondary Education
 Mathematics
 Paper 1

SECTION I: (50 Marks)

Answer ALL the questions in this section.

1. Evaluate:
$\frac{-16 \div 18 \times 6-3 \times 8}{48 \div 6 \times 2}$
2. Given that $1.0 \dot{5}=1 \frac{a}{b}$, find the values of a and b
(3 Marks)
3. Solve for x in the following
$3^{(2 x+1)}+3^{2}=3^{(x+3)}+3^{x}$
4. A wire is bent into the shape shown below. BCE is a straight line and CDE is a semicircle radius 1 m and centre 0 . Two ants, starting at the same time moved at equal speeds along the wire from points A and E respectively. How far from C did they meet?

5. 15 men working 4 hours a day can do a job for 20 days. How long does it take 10 men working 5 hours a day to do the same job.
6. All prime numbers between 10 and 20 are arranged in descending order to form a number.
(a) Write down the number.
(b) State the total value of the third digit in the number formed in (a) above.
7. Simplify:
$\frac{2 y^{2}-3 x y-2 x^{2}}{4 y^{2}-x^{2}}$
8. A Kenyan tourist left America through South Africa. While in South Africa she bought a necklace worth 24 dollars. Given that 1 rand $=0.15$ dollars and 1 rand $=11.24$ Kenya shillings, find the value of the necklace in
(a) South Africa rands
(1 Mark)
(b) Kenya shillings
(2 Marks)
9. In the figure below, points A, B, C and C lie on the circumference of a circle. $\angle A D C=780$ and line $A B=$ line $B C$. Calculate $\angle \mathrm{BAC}$.

(3 Marks)
10. Using tables of reciprocals only to find the value of
$\frac{5}{0.0829}-\frac{14}{0.581}$
11. The volumes of two similar cylinders are $4752 \mathrm{~cm}^{3}$ and $1408 \mathrm{~cm}^{3}$. If the area of the curved surface of the smaller cylinder is $352 \mathrm{~cm}^{2}$, find the area of the curved surface of the larger cylinder.
12. Given that $\overrightarrow{O A}=2 i+3 j$ and $\overrightarrow{O B} 3 i-2 j$. Find the magnitude of $A B$ to one decimal place.
13. The graph below shows frequency densities for the masses of some 200 students selected from a class. Use it to answer the questions that follow.

(a) Complete the frequency distribution table below.
(3 Marks)

Mass in kg					
Frequency					

(b) State the modal frequency.
14. Given that $\tan \mathrm{x}^{0}=\frac{3}{7}$, find $\operatorname{Cos}(90-\mathrm{x}) 0$ giving your answer to 4 significant figures.
15. An irregular 6 sided polygon has 2 of its interior angles equal to $2 x$ each, 3 angles equal to x each and one side equal to 200. Calculate the value of x.
(3 Marks)
16. The diagonals of a parallelogram are 20 cm and 28.8 cm . The angle between the diagonals is 620 . Calculate the area of the parallelogram.
(3 Marks)

SECTION II: (50 Marks)

Answer only FIVE questions from this section.
17. The diagram below shows a crescent formed by two circles of radii 3 cm and 5 cm , centres A and B respectively.

Calculate the area of the shaded region if it subtends and angle of 600 at centre B.
(10 Marks)
18. The table below shows the height measured to the nearest cm of 101 pawpaw trees.

Height in cm	$20-24$	$25-29$	$30-34$	$35-39$	$40-44$	$45-49$	$50-54$	$55-59$
Frequency	2	15	18	25	30	6	3	2

(a) State the modal class.
(1 Mark)
(b) Calculate to 2d.p
(i) the mean height
(4 Marks)
(ii) the difference between the median height and the mean height.
19. (a) Using a ruler and a pair of compasses only, construct triangle $A B C$ where line $A B=5.5 \mathrm{~cm}$, line $B C=4.8 \mathrm{~cm}$ and
line $\mathrm{AC}=6.8 \mathrm{~cm}$, construct a circle through vertices A, B and C .
(b) Measure the radius of the circle.
(2 Marks)
(c) Measure the angle subtended at the centre of the circle by a chord AC.
20. A bus left Kisumu at 9.30 a.m towards Nairobi at an average speed of $81 \mathrm{~km} / \mathrm{h}$. A matatu left Nairobi at 10.10 a.m at average speed of $72 \mathrm{~km} / \mathrm{hr}$. The distance between Kisumu and Nairobi is 3600 km .
(a) Determine:
(i) the time taken before the two vehicles meet
(3 Marks)
(ii) the distance between the two vehicles 40 minutes after meeting
(b) A car left Kisumu towards Nairobi at 9.50 a.m at an average speed of $90 \mathrm{~km} / \mathrm{h}$.

Determine
(i) the time when the car caught up with the bus
(3 Marks)
(ii) the distance of Nairobi from place where the car caught up with the bus.
21. Given that $y=-2 x^{2}-3 x+11$
(a) Complete the table below.
(2 Marks)

x	-4	-3	-2	-1	0	1	2	3
$-2 \mathrm{x}^{2}$	-32		-8	-2	0	-2	-8	
-3 x	12	9		3	0		-6	-9
11	11	11	11	11	11	11	11	11
y	-9		9	12	11	6	-3	

(b) On the grid provided, draw the graph of $-2 x^{2}-3 x+11$ for $-4 \leq 3$
(3 Marks)
(c) Use the graph to solve
(i) $-2 x^{2}-3 x+11=0$
(2 Marks)
(ii) $-2 x^{2}-5 x+10=0$
(3 Marks)
22. The table below shows measurements in metres, made by a surveyor in his field book. Calculate the area of the field in hectares.

	G F 50	
C 120		
	250	E
200	E 40	
C	150	D 100
100		
40	B 50	
A		

23. The figure below shows a tumbler with diameters 6 cm and 10 cm and height 15 cm .

(a) If it is filled with water, what area is in contact with water?
(7 Marks)
(b) Find the volume of the tumbler.
(3 Marks)
24. A straight line passes through the points $(8,-2)$ and $(4,-4)$
(a) Write its equation in the form $\mathrm{ax}+\mathrm{by}+\mathrm{c}=0$ where a, b and c are integers.
(b) If the line in (a) above cuts the x-axis at point, determine the coordinates of P.
(c) Another line which is perpendicular to the line in (a) above passes through point P and cuts the y-axis at the point Q. Determine the coordinates of point Q .
(d) Find the length of QP
(2 Marks)

THARAKA SOUTH SUB-COUNTY JOINT EVALUATION KENYA CERTIFICATE OF SECONDARY EDUCATION
 121/2
 MATHEMATICS
 PAPER 2

1. a) $\mathrm{T}=\frac{1}{0.003146-0.003130}$
(1 mark)
b) An approximate value of T in (a) above may be obtained by first correcting each of the decimal in the denominator to 5 decimal places. Calculate:
i. The approximate value
(1 mark)
ii. The error introduced by approximation.
2. Find the value of X
$\left(5^{x}\right) 5^{x-1}=10$
3. Make y the subject of the formula.
$T=2 \pi \sqrt{\frac{x^{2}+y^{2}}{g x}}$
4. Draw the locus of the points that satisfy inequalities $(y-3)^{2}+(x-2)^{2} \leq 9$ and $x+y \geq 6$
(3 marks)
5. Find the binomial expansion of $\left(1+\frac{1}{2} x\right)^{7}$ upto the term in x^{3}. Hence estimate the value of $(1.04)^{7}$ correct to $4 \mathrm{~d} . p$.
(4 marks)
6. Object A of area $10 \mathrm{~cm}^{3}$ is mapped on to its image B of area $60 \mathrm{~cm}^{2}$ by transformation whose matrix is given
by $P=\left[\begin{array}{cc}x & 4 \\ 3 & x+3\end{array}\right]$ Find the positive values of x
(3 marks)
7. A cold water tap can fill a bath in 10 minutes while a hot water tap can fill it in 8 minutes. The drainage pipe can empty the bath in 5 minutes. The cold water and hot water taps are opened for 4 minutes all the 3 taps are opened. Find how long it will take to fill the bath.
(3 marks)
8. Simplify the following
$\frac{3 \sqrt{5}}{\sqrt{7-2}}-\frac{2 \sqrt{5}}{\sqrt{7+2}}$
9. Solve $4-4 \cos ^{2} x=4 \sin x-1$ for $0^{0} \leq x \leq 360^{\circ}$
(4 marks)
10. The $3^{\text {rd }}$ term of a geometric sequence is 20 and the $6^{\text {th }}$ term is -160 .

Calculate the $8^{\text {th }}$ term.
11. The cost of the 2 brands of coffee A and B per kg are sh. 59.40 and sh. 72 respectively. The two brands are mixed in the ratio x : y and sold at a profit of 20% above the cost. If the selling price per kg of mixture is sh. 72 . Find the value of x and y.
(3 marks)
12. Point $P P\left(40^{\circ} S, 45^{\circ} S\right)$ and point $Q\left(40^{\circ} S, 60^{\circ} \mathrm{W}\right)$ are on the surface of the earth. Calculate the shortest distance along a circle of latitude between the two points.
13. A quantity y varies partly as x^{2} and partly as x. When $y=6, x=1$ and when $y=30, x=3$.Find y when $x=3$. (3 marks)
14. Find the equation of the normal to the curve. $y=x^{2}+4 x-3$ at point $(1,3)$
15. The length and width of a rectangle are 8.3 cm and 4.2 cm respectively correct to the nearest millimeter. Calculate the percentage error in the area of the rectangle.
16. Obtain the intergral values of x for which $3<27^{x}<81$

SECTION B (50 Marks)
Answer only five questions in this section in the space provided.
17. The table shows income tax rates.

Monthly taxable pay $\mathrm{K} £$	Rate of tax in Ksh. Per K£
$1-435$	2
$436-870$	3
$971-1305$	4
$1306-1740$	5
Excess over 1740	6

A company employee earn a monthly basic salary of Ksh. 30,000 and is also given taxable allowances amounting to Ksh. 10480.
a) Calculate the total income tax.
b) The employee is entitled to a personal tax relief of Ksh. 800 per month. Determine the net tax.
c) If the employee received a 50% increase in his total income. Calculate the corresponding percentage increase on the income tax.
(3 marks)
18. In the figure below A and B are centres of circles. $P Q=12 \mathrm{~cm}$ is an internal tangent $A B=15 \mathrm{~cm}$ and the ratio of the radii is $2: 3$

Calculate :
a) The radii of the circles (4 marks)
b) Distance AT and TQ
19. a) Using mid-ordinate rule, estimate the area under the curve $y=\frac{1}{2} x^{2}-2$. Using six strips between $\mathrm{x}=2$ and $\mathrm{x}=8$ and x -axis.
b) Using intergration to determine the exact area under the curve.
c) Find the percentage error in calculating the area using the mid-ordinate rule.
20. The probability that three dart players Akinyi, kamau and Juma hit bull's eye are $0.2,0.3$ and 0.15 respectively.
a) If each plays once show the possible outcomes on a tree diagram.
b) Calculate the probability that
i) All hit the bulls eye
ii) Only one hit the bulls eye
iii) Almost one misses the bulls eye.
21. In the figure below $\overrightarrow{O A}=$ a and $\overrightarrow{O B}=b$. M is the midpoint of $\overrightarrow{O A}$ and $\mathrm{AN}: \mathrm{NB}=2: 1$

a) Express in terms of a and b
i) $\overrightarrow{B A}$
ii) $\overrightarrow{B N}$
iii) $\overrightarrow{O N}$
b) Given that $\overrightarrow{B X}=\mathrm{h} \overrightarrow{B M}$ and $\overrightarrow{O X}=\mathrm{k} \overrightarrow{O N}$. Determine the values of h and k .
(6 marks)
22. A triangle has vertices $A(1,2), B(7,2)$ and $C(5,4)$
a) Draw ABC on the Cartesian plane.
b) Construct the image triangle $A^{1} B^{1} C^{1}$ of triangle ABC under negative quarter turn about the origin.
c) Draw triangle $A^{11} B^{11} C^{11}$ the image of triangle $A^{1} B^{1} C^{1}$ under reflection in the line $\mathrm{y}=\mathrm{x}$. State the coordinates of $A^{11} B^{11} C^{11}$.
(2 marks)
d) Find a single matrix of transformation which maps triangle ABC on to triangle $A^{11} B^{11} C^{11}$
e) Describe a single transformation that maps triangle $A^{11} B^{11} C^{11}$ on triangle ABC.
23. The table below shows heights of student in a certain school.

Height	$150-154$	$155-159$	$160-164$	$165-169$	$170-174$	$175-179$
No. of students	10	26	24	20	14	6

a) Construct cumulative frequency distribution table.
(2 marks)
b) Draw cumulative frequency curve (o-give) for the above data.
(3 marks)
c) From the o-give curve
i) Find the percentage of students whose height is below 166 cm .
(2 marks)
ii) Find the quartile deviation.
(3 marks)
24. The figure below shows a right pyramid with a square block at its base. The sides of the base are 40 cm and height of the base is 30 cm . M is the mid-point of $Q R$ such that $P M=29 \mathrm{~cm}$.
Calculate:
a) The vertical height of vertex P from plane ABCD
b) The angle between planes PQR and PST.
c) The projection of the line RP on the plane QRST.
d) The angle between planes $Q R C D$ and $A B C D$.

THARAKA SOUTH SUB-COUNTY JOINT EVALUATION KENYA CERTIFICATE OF SECONDARY EDUCATION
121/1
MATHEMATICS
PAPER 1

THARAKA SOUTH SUB-COUNTY JOINT EVALUATION KENYA CERTIFICATE OF SECONDARY EDUCATION
121/2
MATHEMATICS
PAPER 2

1.	a) $T=\frac{1}{0.000016}=62.500$ b) $T=\frac{1}{0.0000315-00313}$ i) $\frac{1}{0.00003}=50,000$ ii) Error $=625,000-500,000=12,500$	6	$\begin{aligned} & \hline \text { det }=x(x-3)-12=\frac{60}{10}=\frac{6}{1} \\ & x^{2}-3 x-18=0 \\ & x^{2}-6 x+3 x-18=0 \\ & x(x-6)+3(x-6)=0 \\ & (x+3)(x-6)=0 \end{aligned}$
2	$\begin{aligned} & 5^{x} \cdot 5^{x} \cdot 5^{-1}=10 \\ & 5^{x} \cdot 5^{x} \end{aligned}$		$x=-3$ or $6 \quad \therefore x=6$
	$\begin{aligned} & \frac{5}{5^{2 x}=50} \\ & 2 x \frac{\log 5}{\log 5}=\frac{\log 50}{\log 5} \\ & 2 x=2.4307 \\ & x=1.2153 \end{aligned}$	7	$\begin{gathered} \left(\frac{1}{10}+\frac{1}{8}\right)^{4}=\frac{90}{40} x 40=\frac{9}{10} \\ \frac{1}{10}+\frac{1}{8}-\frac{1}{3}=\frac{4+5}{40}-8=\frac{1}{40} \\ \text { Time taken }=\frac{1}{10} \div \frac{1}{40}=40 \mathrm{mins} \end{gathered}$
3	$\begin{aligned} & T^{2}=4 \pi^{2}\left(\frac{x^{2}+y^{2}}{g x}\right) \\ & T^{2} g x=4 \pi^{2}\left(x^{2}+y^{2}\right) \\ & T^{2} g x-4 \pi^{2} x^{2}+4 \pi y^{2} \\ & 4 \pi^{2} y^{2}-T^{2} g x-4 \pi^{2} x^{2} \\ & \hline \end{aligned}$	8	$\begin{gathered} \hline \frac{3 \sqrt{5}(\sqrt{7}+2)-2 \sqrt{5(\sqrt{7}-2)}}{(\sqrt{7}-2)(\sqrt{7}+2)} \\ =\frac{\sqrt[3]{35}+6 \sqrt{5}}{7-4} \end{gathered}$
	$\begin{aligned} & \frac{4 \pi}{4 \pi}=\frac{4 \pi^{2}}{y^{2}=\frac{T^{2} g x-x^{2}}{4 \pi^{2}}} \\ & \therefore y= \pm \sqrt{\frac{T^{2} g x}{4 \pi^{2}}}-x^{2} \end{aligned}$	9	$\begin{gathered} 4-4\left(1-\sin ^{2} x\right)=4 \sin x-1 \\ 4 \sin ^{2} x-4 \sin x+1=0 \\ (2 \sin x-1)(2 \sin x-1)=0 \\ \sin x=\frac{1}{2} \\ x=30^{0}, 150^{\circ} \end{gathered}$
4		10	$\begin{gathered} T_{3}=a r^{2}=20 \Rightarrow a \frac{20}{r^{5}} \\ T_{6}=a r^{5}=-160 \Rightarrow a=\frac{-160}{r^{5}} \\ r=-2 \\ a=\frac{20}{4}=5 \\ T_{8}=5(-2)^{7}=-640 \end{gathered}$
		11	$\begin{gathered} 120 \rightarrow 72 \\ 100 \rightarrow x \\ x=\frac{7200}{120}=60 \\ \frac{59.40+72 y}{x+y}=60 \\ 59.40 x+72 y=60 x+60 y \\ 12 y=0.6 x \end{gathered}$
5	a) Coefficients are $1,7,21,35$ $\begin{gathered} \left(1+\frac{1}{2} x\right)^{7}=1+7(1)^{6} \frac{1}{2} x+21(1)^{5}\left(\frac{1}{2} x\right)^{2}+35(1)^{4}\left(\frac{1}{2} x\right)^{3} \\ =1+\frac{7}{4} x+\frac{21}{4} x^{2}+\frac{35}{8} x^{3} \end{gathered}$ $\begin{gathered} \text { b) }(1.04)^{7}=(1+0.04)^{7} \\ \frac{1}{2} x=0.04 \\ x=0.08 \\ (1.04)^{7}=1+\frac{7}{2}(0.08)+\frac{21}{4}(0.08)^{2}+\frac{35}{8}(0.08)^{2} \\ =1+0.28+0.0336+0.00224=1.3158 \end{gathered}$		$\begin{gathered} 120 y=6 x \\ \frac{20 y}{y}=\frac{x}{y} \\ x: y=20: 1 \\ x=20, y=1 \end{gathered}$

a) $0.2 \times 0.3 \times 0.15=0.009$ or $\frac{9}{1000}$
b) ii) $(0.2 \times 0.7 \times 0.85)+(0.8 \times 0.3 \times 0.85)+$ ($0.8 x 0.7 x 0.15$)
$=0.119+0.204+0.084=0.407$ or $\frac{407}{1000}$
iii) $(0.2 x 0.3 .0 .85)+(0.2 x 0.7 x 0.15)$
$+(0.8 \times 0.3 \times 0.15)$

$$
=0.051+0.21+0.036=0.297
$$

iv) $0.8 \times 0.3 \times 0.85=0.204$ or $\frac{51}{250}$

21
a) i) $\underset{\sim}{a}-\underset{\sim}{b}$
ii) $1 / 3(\underset{\sim}{a}-b)$
iii) $\mathfrak{\sim}+1 / 3(\underset{\sim}{a}-\underset{\sim}{b})=1 / 3 \underset{\sim}{a}+2 / 3 b$
b)

$$
\begin{align*}
& B X=h(1 / 2 a-b) \\
& \overrightarrow{O X}=O B+B X=h O N \\
& O X=b+h(1 / 2 a-b)=k \\
& O X=b+1 / 2 a h-b h=1 / 2 \tag{i}\\
& (1-h) b=2 / 3 b k \tag{ii}\\
& k=3 / 2(1-h) \ldots \ldots \ldots . . \\
& 1 / 2 / h=1 / 3 a k \\
& k=3 / 2 h \\
& \frac{3 h}{2}=\frac{3}{2}-\frac{3}{2} h \\
& 3 h=\ldots \ldots \ldots \ldots \\
& 3 h=3 \\
& h=3 / 6=1 / 2 \\
& k=3 / 2(1 / 2)=3 / 4 \\
& \therefore h=1 / 2, k=3 / 4
\end{align*}
$$

$$
\overrightarrow{O X}=b+h(1 / 2 a-b)=k(1 / 3 a+2 / 3 b)
$$

$$
\overrightarrow{\mathrm{OX}}=b+1 / 2 a h-b h=1 / 3 a k+2 / 3 b k
$$

b) $A^{1}(2,-1), B^{1}(2,-7), C^{1}(4,-5)$
c) $A^{11}(-1,2), B^{11}(-7,2),, C^{11}(-5,4$,
d) let matrix be $\left(\begin{array}{ll}a & c \\ b & d\end{array}\right)$

$$
\begin{gathered}
\left(\begin{array}{ll}
a & c \\
b & d
\end{array}\right)\left(\begin{array}{lll}
1 & 7 & 5 \\
2 & 2 & 4
\end{array}\right)=\left(\begin{array}{ccc}
-1 & -7 & -5 \\
2 & 2 & 4
\end{array}\right) \\
a+2 c=-1 \\
7 a+2 c=-7 \\
\Rightarrow a=-1, c=0 \\
b+2 d=2 \\
7 b+2 d=2 \\
\Rightarrow b=0, d=1
\end{gathered}
$$

\therefore the matrix is $\left(\begin{array}{cc}-1 & 0 \\ 0 & 1\end{array}\right)$
e) Reflection in the y-axis

Height(cm)	$150-$ 154	$155-$ 159	$160-$ 164	$165-$ 169	$170-$ 174	$175-$ 179
No. of students	10	26	24	20	14	6
c.f	10	36	60	80	94	100

c) i) 68%
ii) Quartile deviation $=Q_{3}-Q_{1}$ $=167.5-157=10.5$

b) $\operatorname{Tan} \theta=\frac{20}{21}$
c)
$\theta=43.6028$
$43.60 \times 2=87.21^{0}$

c) $R T=\sqrt{40^{2}+40^{2}}$
$R T=\sqrt{3200}$
$R T=56.5685$
Projection of line $R P=\frac{1}{2} \times 56.5685=28.28 \mathrm{~cm}$

d) $\operatorname{Tan} \theta=\frac{30}{40}=36.87^{\circ}$

KERICHO WEST JOINT EVALUATION
 KENYA CERTIFICATE OF SECONDARY EDUCATION
 121/1
 MATHEMATICS
 PAPER 1
 SECTION 1(50 MARKS)

Answer all the questions in this section in the spaces provided.

1. Without using mathematical tables or calculators, evaluate.
(2 marks)
$\sqrt{\frac{0.0625 \times 2.56 x(8)^{\frac{1}{2}}}{0.25 \times 0.16 \times 0.5}}$
2. The equation of a line is $-\frac{3}{5} x+3 y=6$ Find
a) The gradient of the line
(1 mark)
b) The equation of a line passing through the point $(1,2)$ and is perpendicular to the given line
3. Given that $\log _{10} 7=0.8451$ and $\log _{10} 6=0.7782$. find $\log _{10} 25.2$
4. Given that $\cos (x-20)^{0}=\operatorname{Sin}(2 x+32)^{0}$ and x is an acute angle. Find $\tan (\mathrm{x}-4)$
5. Two similar containers have masses 256 kgs and 128 kgs respectively. If the surface of the smaller container has an area of $810 \mathrm{~cm}^{2}$. What is the area of the corresponding surface of the large container. (3 marks)
6. Mashillingi has 21 coins whose total value is Kshs 72. There are twice as many five shillings coins as there are ten shillings coins. The rest are one shilling coins. Find the number of ten shilling coins that mashillingi has. (3 marks)
7. A Kenyan bank buys and sells foreign currencies as shown below.

	Buying	Selling
1US Dollar	76.38	75.19
1UK pound	132.92	132.95

A tourist arrived in Kenya from Britain with 126,000 UK sterling pounds. He converted the pounds into Kenyan shillings. While in Kenya he spent $\frac{4}{5}$ of the money. He changed the balance to US dollars. Calculate to the nearest Dollar, the amount he received.
8. The marks scored by 10 students were follows $35,34,32,33,28,36,31,32,32$ and 37 . Calculate the standard deviation of the marks.
9. The figure below shows the sketch of a tea farm. The measurement are in metres. Fill the information given in a field book. Take PQ as the base line, 200m long.

10. Construct the image $P^{1} Q^{1} R^{1}$ of the object $P Q R$ below though a rotation of -60 using centre C.

11. Relative to the origin $O . O P=\left(\frac{4}{5}\right)$ and $O Q=\left(\frac{9}{3}\right)$ if R is a point on $O Q$; such that $\mathrm{PR}: \mathrm{RQ}=2: 3$, Find the co-ordinates of R . (3 marks)
12. Three litres of water (density $1 \mathrm{gm} / \mathrm{cm}^{3}$) is added to twelve litres of methanol. (Density $0.8 \mathrm{~g} / \mathrm{cm}^{3}$). What is the density of the mixture?
13. Simplify the following expression completely. $\frac{12 a^{2}-3 b^{2}}{2 a^{2}-a b-b^{2}}$
14. Find the exact value of $1 . \ddot{4} 5-0.5$ in its simplest form.
15. Solve for x ; if $9^{x} x 27^{x-1}=1$
16. Use logarithms tables to evaluate $\sqrt[4]{\frac{849.6 \times 2.41}{394.1}}$

SECTION 11(50 MARKS)

Answer ONLY FIVE questions in this section in the spaces provided.

17. The vertices of a triangle $\mathrm{ABC} \mathrm{A}(2,1) \mathrm{B}(5,4)$ and $\mathrm{C}(5,1)$ has been mapped onto $A^{1}(-2,1) \cdot B^{1}(-5,4)$ and $C^{1}(-5,1)$ by a transformation matrix T. Triangle $A^{1} B^{1} C^{1}$ is also mapped onto triangle $A^{11}(-2,-1) B^{11}(-5,4)$ and $C^{11}(-5,-1)$ by a transformation matrix S . Find:
a) The transformation T
b) The transformation S
c) The single transformation matrix $\triangle A B C$ onto $\triangle A^{11} B^{11} C^{11}$
18. Christians who attended a church service on Sunday were grouped by age as shown in the table below.

Age in(x) years	$0 \leq x<5$	$5 \leq x<15$	$15 \leq x<25$	$25 \leq x<45$	$45 \leq x<75$
No.of members	14	41	59	70	15

a) Estimate the mean age
b) On the grid provided, draw a histogram to represented the distribution data. Use the scale 1 cm to represent 5 units on the horizontal axis.
2 cm to represented 1 units in the vertical axis
c) On the same axis in (b) above, construct a frequency polygon and use it to determine the modal class. (2 marks)
19. The intersecting circles centres S and R have radii 28 and 35 respectively. A common chord $A B=38 \mathrm{~cm}$.

a) Calculate
i) Angle ASB
ii) Angle ARB
b) Calculate the area of the shaded region.
20. The figure below is a triangle $O A B$, where $\overrightarrow{O A}=$ a and $\overrightarrow{O B}=\mathrm{b}$. A point R divides AB in the ratio $1: 3 \overrightarrow{O R}$ and $\overrightarrow{A T}$ intersect at D.

a) Find in terms of a and b
i) BT
ii) $O R$
iii) AT
b) If $O D=h O R$ and $A D=k A T$, express $O D$ in two ways hence determine the values of h and k.
21. Two countries X and Y are 600 km apart. A bus left country Y at 9.00 am and an everage speed of $100 \mathrm{~km} / \mathrm{hr}$. A matatu started from country X at 10.30am for country Y and travelled at an everage speed of $150 \mathrm{~km} / \mathrm{hr}$. Find
a) How far country Y the Bus and the matatu met.
b) The time the bus and the matatu met.
c) The time at which the matatu arrived at Y
d) If the matatu started from Y at 10.30am, how far from X would be their overtaking point.
22. a) Give the inequalities that define the unshaded region.

b) Find the extract area of the region.
23. A ship leaves port P and sails to port Q to Ron a bearing of 160° and is 150 km from Q. From R, the ship returns directly to P at a speed of $25 \mathrm{~km} / \mathrm{hr}$.
a) Using a suitable scale, show the relative positions of P, Q and R.
b) i) Find the bearing of R from P
ii) Find the distance travelled from R and the time taken to arrive at the destination.
c) As island S is equidistant from P, Q and R. Show its relative position.
24. a) Determine the x -intercept of the curve $y=x^{3}-9 x$
b) Use the trapezium rule with 6 strips to find areas bounded by the curve and the x-axis.
c) By using integration, find the exact area bounded by the curve and the x - axis.
d) Calculate the percentage error in using trapezium rule to obtain the area.

KERICHO WEST JOINT EVALUATION
 KENYA CERTIFICATE OF SECONDARY EDUCATION
 121/2
 MATHEMATICS
 PAPER 2
 SECTION 1(50 MARKS)

Answer all the questions in this section in the spaces provided.

1. Without using mathematical tables or a calculator, evaluate.
$2 \log _{3} 9-\frac{1}{2} \log _{3} 144+\log _{3} 972$
2. Two variable V and R are such that V partly varies as R and partly varies as the square root of R. When $R=9, V=144$ and when $\mathrm{R}=16, \mathrm{~V}=272$
a) Find the law connecting V and R
b) Hence find the value of V when $R=56.25$.
3. Make n the subject of the formula given that
$E=\sqrt{\frac{x\left(n^{2}-x\right)}{n^{2}-1}}$
4. A shopkeeper bought x kg of locally made sugar at Kshs 85 per kilogram and 120 kg of imported sugar at ksh 102 per kilogram. He mixed the two types of sugar and sold the mixture at Ksh 119 per kilogram making a profit of 25%. Find the number of kilograms (x) of locally made sugar.
(3 marks)
5. In the figure below $A B$ and $B c$ are chords of a circle centre $0 . A B=6 \mathrm{~cm}, B C=16 \mathrm{~cm}$ and $O C=10 \mathrm{~cm}$

Calculate angle ABC correct to three significant figures.
6. Kamau saved 2000 during the first month of employment. In each subsequent month he saved 15% more than the preceding month. How many years did he take to save a sum of Kshs 2.028,692
(3 marks)
7. Given that $A=2 i+j-2 k, B=3 j+4 j-k$ and $C=-5 i+3 j+2 k$ and that $P=3 A-B+2 C$, Find the magnitude of the vector P to three significant figures.
(3 marks)
8. Solve the equation $2 \operatorname{Cos} 3 \theta=\sqrt{3}$ for $0^{0} \leq \theta \leq 180^{\circ}$
(3 marks)
9. There are two boxes A and B on the floor. Box A contains 3 red marbles and 5 white marbles while Box B contains 6 red marbles and 2 white marbles. A box is chosen at random and two marbles are drawn from it one after the other without replacement. Find the probability that the two marbles are of different colours.
10. Without using mathematical tables or a calculator evaluate.
$\frac{\operatorname{Sin} 150^{\circ}+\operatorname{Cos} 210^{\circ}}{\operatorname{Tan} 225^{\circ}-\operatorname{Tan} 240^{\circ}}$
11. In the figure below ABT is straight line with $\mathrm{AB}=5 \mathrm{~cm}$ and $\mathrm{BT}=4 \mathrm{~cm} .0$ is the centre of the circle with radius 8 cm and PT is a tangent to the circle at P .

a) Calculate the length of PT.
b) Calculate the area of the shaded region correct to two significant figures (Take $\pi=3.142$
12. a) Expand $(a+b)^{5}$
b) Use the first three terms of the expansion in (a) to find the value of $(1.97)^{5}$ to two decimal places. (2 marks)
13. Given that $10.5 \leq x \leq 20$ and $1.5 \leq y \leq 3$, find the maximum value and correct to three decimal places of: $\frac{x-y}{y+x}$
14. Two matrices A and B are $A=\left[\begin{array}{ll}P & 4 \\ 3 & 2\end{array}\right]$ and $B\left[\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right]$ Given that the product $A B$ is a singular matrix, find the value of P.
15. A $(-6,-2)$ and $B(2,-4)$ are the end point of a diameter of a circle.

Find the co-ordinates of the centre of the circle
(1 mark)
Find the equation of the circle expressing it in the form $x^{2}+y^{2}+a x+b y+c=0$, where a, b and c are intergers.
(2 marks)
16. A farmer has 200 m of fencing with which to form three sides of a rectangular enclosure, the fourth side being existing wall of the yard. Find in metres the dimension of the largest possible area that can be enclosed.
(3 marks)
SECTION II (50 MARKS)
Answer only five questions in this section in the spaces provided.
17. Mr. Korir borrowed Kshs $3,600,000$ from the bank to buy a residential house. He was required to repay the loan with a simple interest for a period of four years. The repayment amounted to kshs 111000 per month. Calculate
a) i) the interest paid to the bank.
(2 marks)
ii) the rate per annum of the simple interest.
(2 marks)
b) The value of the house appreciated at the rate of 15% per annum. Calculate the value of the house after 4 years to the nearest hundreds.
(3 marks)
c) After n years, the value of the house was Kshs $8,327,019$. Find the value of n.
(4 marks)
18. A certain number of Jua kali artisan agreed to contribute equally to buy a welding machine worth Ksh 12,000 . Five of the artisan pulled out so the others agreed to contribute an extra Kshs 100 each. Their contribution enabled them to buy a machine worth Ksh 2000 more than the previous machine.
a) If the original number of artisan was n, write down:
i) An expression of how much each artisan was to contribute originally.
(1 mark)
ii) An expression of how much each of the remaining artisan contributed.
(1 mark)
b) Calculate how many artisan made the contribution.
(6 marks)
c) Calculate how much each contributed.
19. In the figure below $A O C$ is a diameter, $A D G$ and $B C F G$ are straight lines, angle $A C B=42^{\circ}$, angle $C A E=744^{0}$ and angle DEC=36

Find the following angles, giving reasons in each case.
a) Angle CDE (2 marks)
b) Angle BDC
(2 marks)
c) Angle DCA
d) Reflex angle COE
e) Angle DGF
20. a) Copy and complete the given table below to 2 decimal places.

x^{0}	0^{0}	30^{0}	60^{0}	90^{0}	120^{0}	150^{0}	180^{0}	210^{0}	240^{0}	270^{0}
$\operatorname{Sin}\left(x+30^{0}\right)$	0.50	0.87			0.50		-0.50		-1.00	-0.87
$\operatorname{Cos}\left(x-15^{0}\right)$	0.97		0.71		-0.26	-0.71		-0.97	-0.71	

b) Using the same axes plot the curves $\mathrm{y}=\operatorname{Sin}\left(\mathrm{x}+30^{\circ}\right)$ and $\mathrm{y}=\operatorname{Cos}(\mathrm{x}-15)$
(5 marks)
Taking 1 cm represented 30° and x-axis and 1 cm represented 0.25 cm on the y axis.
c) Using the graph state the amplitude of $y=\operatorname{Cos}\left(x-15^{0}\right)$
d) Using the graph solve the equation: $\operatorname{Sin}\left(x+30^{\circ}\right)-\operatorname{Cos}\left(x-15^{\circ}\right)=0$
(2 marks)
21. The figure below shows a frustrum $A B C D E F G H$ of a right pyramid where $A B=40 \mathrm{~cm}, \mathrm{BC}=30 \mathrm{~cm}, \mathrm{FG}=20 \mathrm{~cm}, \mathrm{GH}=15 \mathrm{~cm}$ and $\mathrm{AF}=\mathrm{BG}=\mathrm{CH}=\mathrm{DE}=25 \mathrm{~cm}$.

Find the vertical height of the frustrum.
a) Find the angle between line BE and the base ABCD
b) Find the angle between the plane BCHG and the base ABCD.
c) Find the angle between the plane ADEF and the plane AGHD
22. a) Using a ruler and pair of compasses only construct a square $A B C D$ of sides 6 cm .
b) A point P moves inside the square such that;
i) $A P \leq P B$
ii) Angle $A P B \geq 90^{\circ}$
iii) P is nearer to $A D$ than $A B$. construction on the square in (a) show the region that P must lie by shading.
c) Find the area of the region where P must lie.
23. A ship leaves an Island A ($600 \mathrm{~N}, 450 \mathrm{E}$) and sails due west for 120 hours to another island B.The average speed of the ship is 27 knots.
a) Find the position of the island B
(4 marks)
b) Another island C is south of island B and lies on latitude 550 N . Find the distance between Islands B and C in nautical miles.
c) The ship leaves island B when the time at Island A is 12.30 pm . On Monday and sailed to Island C. If the ship increases its speed by 20% between B and C find out the time of arrival at island C to the nearest minutes and the day.
24. a) Complete the table below for the equation $y=2 x^{3}+5 x^{2}-x-6$

x	-3.5	-3	-2.5	-2	-1.5	-1	-0.5	0	0.5	1	1.5	2
$y=2 x^{3}+5 x^{2}-x-6$		-12		0		-2		-6		0		28

b) On the grid provided draw the graph $y=2 x^{3}+5 x^{2}-x-6$ for $-3.5 \leq x \leq 2$. Use 2 cm to represent 1 unit on the x-axis and 1 cm to represent 5 units on the y-axis.
(3 marks)
c) By drawing a suitable line use the graph in (b) to solve the equation. $2 x^{3}+5 x^{2}-3 x-4=0$

KERICHO WEST JOINT EVALUATION
KENYA CERTIFICATE OF SECONDARY EDUCATION
121/1
MATHEMATICS
PAPER 1
SECTION 1(50 MARKS)

1.	$\begin{aligned} & \hline \sqrt{\frac{625 \times 256 \times 2}{25 \times 16 \times 10 \times 5}} \\ & \sqrt{\frac{256}{16}} \\ & \pm \frac{16}{4}= \pm 4 \\ & \hline \end{aligned}$	M1 A1 2	6	Let ten shilling coins be t five shilling coins 2 t One shilling coins ($21-3 t$) $\begin{aligned} & (10 x t)+(5+2 t)+1(21-3 t)=72 \\ & 20 t+21-3 t=72 \\ & 17 t=51 \\ & t=3 \end{aligned}$
	$\begin{aligned} & \frac{3}{5} x+3 y=6 \\ & 3 y=\frac{3}{5} x+6 \\ & y=\frac{1}{5} x+2 \\ & m=\frac{1}{5} \end{aligned}$ Perpendicular line to the given line Gradient=-5 $\begin{aligned} & \frac{y-1}{x-1}=-5 \\ & y-2=-5 x+5 \\ & y=-5 x+5+2 \\ & y=-5 x+7 \end{aligned}$	M1 A1 3	7	$\begin{aligned} & \text { 1Uk pound=Kshs } 132.92 \\ & \therefore 126,000 \text { ponds }=(126,000 x 132.92) \\ & =\text { Kshs } 16,747,920 \\ & \text { Spent }=\left(\frac{4}{5} \text { of } 16,747,920\right) \\ & =13,398,336 \\ & \text { Balance Kshs } 3,349,584 \\ & 1 \text { Us dollar }=75.19 \\ & \text { Ksh } 75.19=1 \text { Us dollar } \\ & \therefore 3,349,584=\frac{3,349,584 x 1}{75.19} \\ & =44548.26 \\ & =44548 . \text { US dollars. } \end{aligned}$
3.	$\begin{aligned} & \log _{10} 7=0.8451 \\ & \log _{10} 6=0.7782 \\ & \log _{10}(25.2)=\log _{10}\left(\frac{6^{2} x 7}{10}\right) \\ & 2 \log _{10} 6+\log _{10} 7-\log _{10} 10 \\ & 2(0.7782)+0.8451-1 \\ & 1.5564+0.8451-1 \\ & 1.4015 \end{aligned}$	M1 M1 A1 3	8	$\begin{aligned} & M=\frac{330}{10}=33 \\ & D=x-m \\ & \frac{D}{D^{2}} \frac{2}{4} \frac{1}{1} \frac{-1}{1} \frac{0}{0} \frac{-5}{25} \frac{3}{9} \frac{-2}{4} \frac{-1}{1} \frac{-1}{1} \frac{4}{16} \\ & \Sigma(x-m)^{2}=62 \\ & \therefore \text { variance }=\text { Standard deviation } \\ & =\sqrt{6.2} \\ & =2.45 \end{aligned}$
4.	$\begin{aligned} & 90^{0}-(x-20)=2 x+32 \\ & \quad \text { Or }(x-20)+2 x+32=90^{0} \\ & 3 x-12=90 \\ & 3 x=120^{0} \\ & x=34 \\ & \therefore \operatorname{Tan}(x-4)^{0} \\ & \operatorname{Tan}(34-4)^{0}=\operatorname{Tan} 30 \\ & =0.57735 \end{aligned}$	M1 A1 B1 3	9	Q 200 To C 70 To A 40 140 100 50 20 P 50 To D 60 To B
5.	$\begin{aligned} & \hline \hline M_{\text {large }}=256 \\ & M_{\text {small }}=108 \\ & \frac{M_{L}}{M_{S}}=\frac{256}{108}=2 \\ & \therefore \text { L.s. } f=2 \\ & (\text { L.s. } f)^{2}=\text { A.s.f } \\ & (2)^{2}=4 \\ & \text { A.s. } f=\frac{A_{L}}{A_{s}} \\ & =\frac{A_{L}}{840} \times \frac{4}{1} \\ & A_{L}=\text { Area of the large }=810 x 4 \\ & =3240 \mathrm{~cm}^{2} \end{aligned}$		10	

\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow[t]{7}{*}{11.} \& \& \& 15 \& \[
\begin{aligned}
\& \hline 9^{x} x 27^{x-1} \\
\& \left(3^{2}\right)^{x} x 3^{3(x-1)}=3^{0} \\
\& 2 x+3 x-3=0 \\
\& 5 x-3=0 \\
\& 5 x=3 \\
\& x=\frac{3}{5} \\
\& x=\frac{3}{5} \text { or } o .6 \\
\& \hline \hline
\end{aligned}
\] \& \\
\hline \& \& \& 16 \& No \({ }^{\text {L }}\) \& \\
\hline \& \[
P Q=\binom{9}{3}-\binom{4}{5}
\] \& \& \& \begin{tabular}{l|l}
\hline 849.6 \& 2.9292
\end{tabular} \& \\
\hline \& \& M1 \& \& \begin{tabular}{l|l}
2.41 \& 0.382 \\
\hline
\end{tabular} \& \\
\hline \& \[
\begin{aligned}
\& =\binom{b}{-2} \\
\& P R=\frac{2}{5}\binom{5}{-2}
\end{aligned}
\] \& \& \& \begin{tabular}{l|l}
394.1 \& 3.3112 \\
\& 2.5956 \\
\& \(0.7156 \mathrm{x}^{1} / 4\) \\
\hline 1.51 \& 0.1789
\end{tabular} \& \\
\hline \& \[
=\binom{2}{0.8}
\] \& M1 \& \& \begin{tabular}{l|l}
1.51 \& \(\begin{array}{l}0.1789 \\
=1.5097\end{array}\)
\end{tabular} \& \\
\hline \& \[
\begin{aligned}
\& \boldsymbol{P R}=\boldsymbol{R}-\boldsymbol{P} \\
\& \binom{2}{-0.8}=\binom{x}{y}-\binom{4}{5} \\
\& \binom{x}{y}=\binom{2}{0.8}+\binom{4}{5} \\
\& =\binom{6}{4.2} \\
\& \boldsymbol{R}(\mathbf{6 , 4 . 2}))
\end{aligned}
\] \& \[
\begin{aligned}
\& \mathrm{A} 1 \\
\& 3
\end{aligned}
\] \& \multirow[t]{2}{*}{17} \& \multirow[t]{4}{*}{\[
\begin{aligned}
\& \text { a) } \quad A B C A^{1} B^{1} C^{1} \\
\& \quad\left(\begin{array}{ll}
a \& b \\
c \& d
\end{array}\right)\left(\begin{array}{ccc}
2 \& 5 \& 5 \\
1 \& 4 \& 1
\end{array}\right)=\left(\begin{array}{ccc}
-2 \& -5 \& -5 \\
1 \& 4 \& 1
\end{array}\right) \\
\& 2 a+b=-2 \ldots \ldots .(i) \\
\& 5 a+4 b=4 \ldots \ldots \ldots(i i) \\
\& \quad \mathrm{a}=1 \\
\& \mathrm{~b}=0 \\
\& 2 c+d=1 \ldots \ldots \ldots(i) \\
\& 5 c+4 d=4 \ldots \ldots \ldots \ldots(i i) \\
\& \mathrm{c}=0 \\
\& \mathrm{~d}=1 \\
\& \text { Matrix } T=\left(\begin{array}{cc}
-1 \& 0 \\
0 \& 1
\end{array}\right)
\end{aligned}
\]
\[
\text { b) } A^{1} B^{1} C^{1} \quad A^{11} B^{11} C^{11}
\]
\[
\left(\begin{array}{ll}
a \& b \\
c \& d
\end{array}\right)\left(\begin{array}{ccc}
-2 \& -5 \& -5 \\
1 \& 4 \& 1
\end{array}\right)=\left(\begin{array}{ccc}
-2 \& -5 \& -5 \\
-1 \& -4 \& +1
\end{array}\right)
\]
\[
-2 a+b=-2
\]
\[
\begin{equation*}
-5 a+4 b=-5 \tag{ii}
\end{equation*}
\]
\[
-8 a+4 b=-8
\]
\[
\frac{-5 a+4 b=-5}{-3 a \quad=-3}
\]
\[
a=1
\]
\[
\mathrm{b}=0
\]
\[
-2 c+d=-1
\]
\[
-5 c+4 d=-4
\]
\[
\mathrm{c}=0
\]
\[
d=-1
\]
\[
\begin{array}{r}
\left(\begin{array}{ll}
a \& b \\
c \& d
\end{array}\right)=\left(\begin{array}{cc}
1 \& 0 \\
0 \& -1
\end{array}\right) \\
S=\left(\begin{array}{cc}
1 \& 0 \\
0 \& -1
\end{array}\right)
\end{array}
\]} \& \\
\hline 12 \& ```
3 litres of water \(=3000 \mathrm{~cm}^{3}\)
12 litres of Ethanol \(=12000 \mathrm{~cm}^{3}\)
Density of water \(=1 \mathrm{~g} / \mathrm{cm}^{3}\)
Density of Ethanol \(=0.8 \mathrm{~g} / \mathrm{cm}^{3}\)
Density of mixture \(=\frac{\text { Total mass }}{\text { Total value }}\)
Mass of water \(=3000 \times 1 \mathrm{~g} / \mathrm{cm}^{3}\)
\(=3000 \mathrm{~g}\)
mass of Ethanol \(=12,000 x 0.8 \mathrm{~g} / \mathrm{cm}\)
\(=9600 \mathrm{~g}\)
Density of mixture \(=\frac{3000+9600}{12000+3000}\)
\(=0.84 \mathrm{~g} / \mathrm{cm}\)
``` \& B1
B1

A1
3 \& \& \& <br>

\hline 13 \& $$
\begin{aligned}
& \hline \frac{12 a^{2}-3 b^{2}}{2 a^{2}-a b-b^{2}} \\
& \quad \text { Numerator: } \\
& 3\left(4 a^{2}-b^{2}\right) \\
& 3\{(2 a+b)(2 a-b)\} \\
& \text { Denominator } \\
& (2 a+b)(2 a-b) \\
& \\
& \frac{3(2 a-b)}{(a-b)} \\
& \hline \hline
\end{aligned}
$$ \& \[

$$
\begin{aligned}
& \text { M1 } \\
& \text { M1 } \\
& \text { A1 } \\
& 3
\end{aligned}
$$
\] \& \& \& <br>

\hline 14 \& \[
$$
\begin{gathered}
1.45=\frac{48}{33} \\
0 . \dot{5}=\frac{5}{9} \\
\frac{48}{33}-\frac{5}{9} \\
\frac{89}{99}
\end{gathered}
$$

\] \& | B1 |
| :--- |
| B1 |
| M1 |
| A1 |
| 4 | \& \& \& <br>

\hline
\end{tabular}



| 21 | b) Let the two meet at point C P Km from Y. <br> Time will be the same $\begin{gathered} 9.00+\frac{P}{100}=10.30+\frac{600-P}{150} \\ \frac{P}{100}-\frac{600-P}{150}=10.30+\frac{600-P}{150} \\ \frac{3 P-2(600-P)}{300}=\frac{3}{2} \\ P=330 \mathrm{~km} \end{gathered}$ <br> c) $\begin{gathered}9.00+\frac{330}{100} \quad \begin{array}{l}\frac{33}{10} \\ 9.00\end{array}=3 \mathrm{hrs} \quad \frac{3}{10} x 60 \\ 3.18\end{gathered}$ | M1 <br> M1 <br> M1 <br> A1 <br> M1 <br> A1 | 23 | b)i) $129^{0} \pm 1^{0}$ <br> ii) $6.5 \times 20=130 \mathrm{~km}$ $\begin{array}{r} \text { Time }=\frac{130}{25} \\ 25.2 \mathrm{hrs} \end{array}$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | 12.18 pm $\begin{gathered} =10.30+\frac{600-330}{150} \\ 10.30+\frac{270}{150} \\ 10.30+1.48=12.18 \mathrm{pm} \end{gathered}$ <br> d) $\frac{600}{150}=1430 \mathrm{hrs} 2.30 \mathrm{pm}$ | M1 <br> A1 $10$ | 24 | a) $\begin{aligned} & x^{3}-9 x=0 \\ & x\left(x^{2}-9\right)=0 \\ & x=0 \text { or } x= \pm 3 \end{aligned}$ <br> b) $\begin{aligned} & \text { Area }=\frac{1}{2} x 1\{0+0 \\ & \\ & \quad+2(10+8+0+8 \\ & \quad+10)\} \\ & \begin{array}{l} \frac{1}{2} x 2 x 36=36 \text { sq.units } \end{array} \end{aligned}$ $\begin{aligned} & \text { c) } \quad \text { Area }=\int_{-3}^{0}\left(x^{3}-9 x\right) d x+\int_{0}^{3}\left(x^{x}-9 x\right) d x \\ & =\left[\frac{1}{4} x 4-\frac{9}{2} x^{2}+c\right]_{-3}^{0}+\left[\frac{1}{4} x^{4}-\frac{9}{2} x^{2}+C\right]_{0}^{3} \\ & =20.25+-20.25=40.5 \text { square units } \end{aligned}$ |  |
| 22 | a) $L 14 y=3 x+11$ <br> Inquality $4 y \leq 3 x+11$ <br> L2 $3 y=-2 x+4$ <br> Inquality $3 y \geq-2 x+4$ <br> L3 $y=5 x-10$ <br> $y=5 x-10$ |  |  | $\text { d) } \begin{aligned} & \text { Error }=40.5-36=45 \\ & \\ & \% \text { Error }=\frac{4.5}{40.5} \times 100 \\ & =111 / 9 \% \end{aligned}$ |  |

## KERICHO WEST JOINT EVALUATION

KENYA CERTIFICATE OF SECONDARY EDUCATION
121/2
MATHEMATICS
PAPER 2
SECTION 1(50 MARKS)

| 1. | $\log \left(\frac{81 \times 972}{11}\right)$ orlog $_{3} 6561$ $\log _{3} 3^{8}=8 \log _{3} 3=8 x 1=8$ | 9 | $\overline{\left(\frac{1}{2} x \frac{3}{8} x \frac{5}{7}\right)+\left(\frac{1}{2} x \frac{5}{8} x \frac{3}{7}\right)+\left(\frac{1}{2} x \frac{6}{8} x \frac{2}{7}\right)+\left(\frac{1}{2} x \frac{2}{8} x \frac{6}{7}\right)}$ |
| :---: | :---: | :---: | :---: |
| 2 | a) $\begin{aligned} & V=a R+b \sqrt{R} \\ & 144=9 a+3 b \\ & 272=16 a+4 b \\ & 816=48 a+12 b \\ & 576=36 a+12 b \\ & 240=12 a \\ & a=20 \\ & b=-12 \\ & v=20 R=12 \sqrt{r} \end{aligned}$ <br> b) $\begin{aligned} V= & 20(56.25)-12(\sqrt{56.25}) \\ & =1035 \end{aligned}$ |  | $\begin{aligned} & \overline{112}+\overline{112}+\overline{112}+\overline{112} \\ & =\frac{27}{56} \end{aligned}$ |
|  |  | 10 | $\begin{aligned} & \frac{\frac{1}{2}-\frac{\sqrt{3}}{2}}{1-\sqrt{3}} \\ & \frac{\left(\frac{1}{2}-\frac{\sqrt{3}}{2}\right)(1-\sqrt{3})}{(1-\sqrt{3})(1+\sqrt{3})} \\ & \frac{1}{2}+\frac{\sqrt{3}}{2}-\frac{\sqrt{3}}{2}-\frac{3}{2} \\ & 1-3 \end{aligned}$ |
| 3 | $\begin{aligned} & E\left(n^{2}-1\right)=x\left(n^{2}-x\right) \\ & E n^{2}-E=x n^{2}-x^{2} \\ & E n^{2}-x n^{2}=E-x^{2} \\ & n^{2}(E-x)=\left(E-x^{2}\right) \\ & n= \pm \sqrt{\frac{E-x^{2}}{E-x}} \end{aligned}$ |  | $\frac{\frac{1}{2}-\frac{3}{2}}{-2}=\frac{1}{2}$ |
|  |  | 11 | a) $P T^{2}=9 \times 4$ $P T=6 \mathrm{~cm}$ <br> b) Area of triangle $=\frac{1}{2} \times 8 x 6=24 \mathrm{~cm}$ Area of the section $=\frac{36.87}{360} \times 3.142 \times 8 \times 8$ |
| 4 | $\begin{aligned} & \text { Cost price }=\frac{100}{125} \times 119 \\ & =92.50 \\ & \frac{85 \times x 120 \times 102}{x+120}=92.50 \\ & \Rightarrow 85 x+12240+11424 \\ & 10.2 x=816 \\ & x=80 \mathrm{~kg} \end{aligned}$ |  | $\begin{aligned} & =20.59476267 \\ \text { Required area } & =24-20.59=3.41 \mathrm{~cm}^{2} \end{aligned}$ |
|  |  | 12 | $a^{5}+5 a^{4} b+10 a^{3} b^{2}+10 a^{2} b^{3}+5 a b^{4}+b^{5}$ $\begin{array}{r} (2)^{5}+5(2)^{4}(-0.03)+10(3)^{3}(-0.03)^{2} \\ 32-2.4+0.072=29.672 \end{array}$ |
|  |  | 13 | Maximum numerator $=20-1.5$ <br> Minimum denominator $=10.5+1.5$ |
| 5 | $\begin{gathered} \hline 10^{2}=10^{2}+16^{2}-2(10 x 6) \operatorname{Cos} a \\ q=36.87^{0} \\ a=72.54^{0} \\ 36.87+72.54 \\ =109.41 \\ =109^{0} \end{gathered}$ |  | $\frac{20-1.5}{10.5+1.5}=1.5416666667=1.542$ |
|  |  | 14 | $\begin{gathered} \left(\begin{array}{ll} P & 4 \\ 3 & 2 \end{array}\right)\left(\begin{array}{ll} 1 & 2 \\ 3 & 4 \end{array}\right)=\left(\begin{array}{cc} P+12 & 2 P+16 \\ 9 & 14 \end{array}\right) \\ (P+12) 14-(2 p+16) 9=0 \\ P=6 \end{gathered}$ |
| 6 | $\begin{gathered} \frac{2000\left(1.15^{n}-1\right)}{1.15-1}=2028692 \\ 1.15^{n}-1=152.1519 \\ \log 1.15^{n}=\log 153.1519 \\ n=\frac{36}{12}, n=3 \text { yrs. } \\ \hline \hline \end{gathered}$ | 15 | $\begin{gathered} \hline\left(\frac{-6+2}{2}, \frac{-2-4}{2}\right) \Rightarrow(-2,-3) \\ \text { Radius }=\sqrt{-2--2^{2}+(-4--3)^{6}=\sqrt{17}} \\ (x+2)^{2}+(y+3)^{2}=(\sqrt{17})^{2} \\ x^{2}+4 x+4+y^{2}+6 y+9-17=0 \\ x^{2}+y^{2}+4 x+6 y-4=0 \\ \hline \end{gathered}$ |
| 7 | $\begin{gathered} \hline \hline 3(2 i+j-2 k)-(-3 i+4 j-k)+2(-5 i+3 j+2 k) \\ =-i+5 j-k \\ P=\sqrt{(-1)^{2}}+(5)^{2}+(-1)^{2} \\ =5.196152423,5.20 \end{gathered}$ | 16 | $\begin{aligned} & \hline A=x(200-2 x) \\ & A=200 x-2 x^{2} \\ & \frac{d A}{d x}=200-4 x=0 \end{aligned}$ |
| 8 | $\begin{aligned} & 2 \cos 3 \theta=\sqrt{3} \Rightarrow \cos 3 \theta=\frac{\sqrt{3}}{2} \\ & 3 \theta=\cos ^{-1}\left(\frac{\sqrt{3}}{2}\right) \\ & 3 \theta=30^{\circ}, 330,390 \\ & \theta=10^{\circ} 110^{\circ} 130^{\circ} \end{aligned}$ |  | $x=50$, dimension is length $=100 \mathrm{~m}$, width $=50 \mathrm{~m}$ |
|  |  |  |  |


| 17 | i) $111000 \times 48-36000000=$ Kshs $1,728,000$ <br> ii) $\frac{R x 3,600,000 \times 4}{100}=1,728,000$ $R=12 \%$ <br> b) $3,600,000\left(1+\frac{15}{100}\right)^{4}=K \operatorname{sh} 6296422.50=$ Kshs 6296400 <br> c) $3,600,000\left(1+\frac{15}{100}\right)^{n}=8327019$ <br> 8327019 |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
|  | $\begin{gathered} (1.15)^{n}=\overline{3600000} \\ \log (1.15)^{n}=\log \left(\frac{8327019}{3600000}\right) \\ n=\frac{\log \left(\frac{8327019}{3600000}\right)}{\log 1.15} \\ n=6 y r s \end{gathered}$ |  | 22 | Ptact |
| 18 | $\begin{aligned} & \text { a) } \quad \text { I) } \frac{12000}{n} \frac{14000}{n-5} \\ & \text { b) } \begin{array}{c} \frac{14000}{n-5}-\frac{12,000}{n}=100 \\ \quad 14,000 n-12,000 n+60,000 \\ =100 n(n-5) \\ \\ 2000 n+6000=100 n(n-s) \\ n^{2}-25 n-600=0 \\ \quad(n-40)(n+15)=0 \\ \quad n=40 \text { or } n=-15 \\ \therefore n \quad \end{array} \\ & \quad n \end{aligned}$ |  |  | c) $\frac{90}{360} \times 3 \times 3 \times \frac{22}{7}-\frac{1}{2} \times 3 \times 3=2.561428571$ |
|  | $-5=35$ <br> c) $\frac{14000}{35}=\operatorname{Shs} 400$ |  | 23 | a) Distance covered $120 \times 27=3240 \mathrm{~nm}$ $\begin{gathered} \theta \times 60 \cos 60=3240 \\ q=108^{0} \\ x+45=108, x=63^{0} \\ B\left(60^{0} N, 63^{0} W\right) \end{gathered}$ <br> b) $5 x 60=300 \mathrm{~nm}$ <br> c) Time difference between $A$ and $B$ $\frac{108 x 4}{60}=7 h r 12 \text { minutes }$ <br> $12.30-7 \mathrm{hrs} 12$ minutes $=5.18 \mathrm{am}$ Time taken from $B$ to $C$ $\frac{300}{\frac{120}{100} \times 27}=9 \mathrm{hrs} 16 \mathrm{mins}$ <br> $5.18+9 h r s 16$ min <br> $=1434 \mathrm{hrs}$ or 2.34 pm on Monday |
| 19 | a) $\angle C D E=180-74=106^{\circ}$ <br> Opposite angles in a cyclic quadrilateral add to $180^{\circ}$ <br> b) $\angle B D C=\angle B A C=90-42=48^{\circ}$ <br> Angles subtended by the same chord (BC) at the <br> circumference in the same segment <br> c) $\angle D C A=90-36=54^{\circ}$ <br> They are complimentary angles, I.e complentary angles add to54 ${ }^{0}$ <br> d) $\angle C O E=360-2(74)=212^{0}$ <br> Angle subtended by a chord at the centre is twice <br> the angle subtended by the same chord at the circumference in the same segments, <br> e) $\angle D G F=180-(36+138)=6^{0}$ <br> Angle of a triangle add to $180^{0}$ |  |  |  |
| 21 | $\begin{aligned} & \hline \hline A C=\sqrt{40^{2}+30^{2}} \\ & F H=\sqrt{20^{2-15^{2}}} \\ & H=\sqrt{25^{2}-12.5^{2}} \\ & H=21.65 \mathrm{~cm} \end{aligned}$ <br> b) $\begin{aligned} \tan \theta & =\frac{21.65}{37.5} \\ \theta & =29.83^{0} \end{aligned}$ <br> c) $\begin{aligned} \tan \alpha=\frac{21.65}{10} \text { or } \operatorname{Sin} \alpha & =\frac{21.65}{23.85} \\ \alpha & =65.21^{0} \quad \alpha \end{aligned}$ <br> d) $20^{2}=23.85^{2}+37^{2}-2(23.85 x 37) \cos \theta$ $\theta=29.39^{0}$ |  |  |  |



# KAJIADO COUNTY JOINT EVALUATION <br> KENYA CERTIFICATE OF SECONDARY EDUCATION <br> 121/1 <br> MATHEMATICS <br> PAPER 1 <br> SECTION 1(50 MARKS) <br> SECTION I: (50 MARKS) <br> Answer all the questions in this section 

1. Without using mathematical tables or calculators evaluate:

$$
\frac{\sqrt{1296}}{6+-18 \div+(5--3)}
$$

2. Use reciprocal and square tables to evaluate to 4 significant figures the expression:
3. Points $A(2,7)$ and $B(-4,3)$ are points on a straight line. Find the equation of the perpendicular bisector of the line $A B$.
(4 Marks)
4. Using a ruler and a pair of compasses only, construct a trapezium ABCD with AB parallel to $\mathrm{DC} . \mathrm{AB}=10 \mathrm{~cm}, \mathrm{BC}=5 \mathrm{~cm}$, $C D=4 \mathrm{~cm}$ and angle $\mathrm{ABC}=45^{\circ}$. Drop a perpendicular from $C$ to meet $A B$ to 0 . Measure $A D$ and the altitude of the trapezium.
(4 Marks)
5. Simplify completely:
(3 Marks)

$$
\frac{(x-3 y)^{2}-(x+3 y)^{2}}{4 x y}
$$

6. A mobile phone seller gets a commission of Shs. 250 on every mobile phone that he sells. In a given month, he got 33,000 shillings.
(a) How many phones did he sell that month.
(1 Mark)
(b) If this commission is $2 \%$. What is the sale price of each mobile phone?
(2 Marks)
7. Find the equation of the normal to the curve $y=x^{2}+3 x$ at the point $P$ where $x=1$.
8. A test is conducted for the purpose of employing a suitable typist with the following results.

| Speed words per minute | $30-34$ | $35-39$ | $40-44$ | $45-49$ | $50-54$ | $55-59$ | $60-64$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| No. of candidates | 2 | 4 | 8 | 10 | 12 | 3 | 1 |

Calculate the mean typing speed.
(3 Marks)
9. PQRS is a cyclic quadrilateral and O is the centre of the circle. $\angle \mathrm{QOS}=150^{\circ}$


While giving reasons find:
(a) $\angle \mathrm{QPS}$
(b) $\angle \mathrm{QRS}$
10. The angle subtended by the major arc at the centre of the circle 0 is twice the angle subtended by the minor arc at the centre. If the radius of the circle is 3.5 cm , find the length of the minor arc. (Take $\pi=\frac{22}{7}$ )
11. The image of $P(0,2)$ under an enlargement with the factor 3 is $P^{1}(4,6)$. Find the centre of enlargement. (3 Marks)
12. Given that x is an acute angle and $\sin \mathrm{x}=\frac{2 \sqrt{5}}{\sqrt{5}}$, find without using tables or calculator $\tan (90-\mathrm{x}) 0$ leaving your answer in its simplest form.
13. A regular polygon with 3 x sides has interior angle $40^{\circ}$ greater than the one with x sides. What is x ?
14. (a) Solve the following inequalities and hence illustrate your solution on a number line.
$x-12 \leq 4 x-15<13$
(b) List the integral values that satisfy the combined inequality above.
15. Determine the values of $m$ for which the matrix below has no inverse
16. A quantity $y$ is partly constant and partly varies as $x^{3}$. If $y=7$ when $x=10$ and $y=12 \frac{3}{80}$ when $x=20$, write an equation connecting $y$ and $x$.
(3 Marks)

## SECTION II: (50 MARKS)

## Answer only five questions in this section.

17. The figure below a frustum of a solid cone of base radius 48 cm and top radius 16 cm . The height of the frustum is 21 cm . (Take $\pi=\frac{22}{7}$ ) calculate:
(a) The height of the solid cone.
(b) The volume of the solid frustum.
(c) The total surface area of the frustum.

18. The following are masses of 25 people taken in a clinic.

| 20 | 35 | 29 | 45 | 60 |
| :--- | :--- | :--- | :--- | :--- |
| 66 | 56 | 29 | 48 | 37 |
| 59 | 64 | 24 | 28 | 32 |
| 35 | 45 | 48 | 52 | 55 |
| 54 | 55 | 36 | 39 | 35 |

(a) Using a class width of 8 and starting with the lowest mass of the people. Make a frequency distribution table for the data.
(b) Calculate the median mass of the people.
(c) On the grid provided, draw a histogram to represent the information.
19. In triangle $\mathrm{OAB}, \mathrm{OA}=\mathrm{a}, \mathrm{OB}=\mathrm{b}$ and P lies on AB such that $\mathrm{AP}: \mathrm{PB}=3: 5$.
(a) In terms of $\mathbf{a}$ and $\mathbf{b}$ the vectors.
(i) AB (1Mark)
(ii) AP
(iii) BP
(iv) OP
(b) Point $Q$ is on OP such that $A Q=-\frac{5}{8} a+\frac{9}{40} b$

Find the ratio $0 Q: Q P$
20. (a) Draw the curve $y=x^{2}$, for $0<x<3$.

Take 2 cm to represent 1 unit x -axis and 1 cm to represent 1 unit on the $y$-axis.
(b) Use the graph to estimate the area bounded by the curve $y=x^{2}$, the $x$-axis and the lines $x=0$ and $x=3$ using trapezia. (correct 3 d.p)
(3 Marks)
(c) Given the actual areas as $9 \mathrm{~cm}^{2}$ calculate the percentage error.
21. Town A and B are 24 km apart. Susan leaves town A at 10.00 a .m and cycles to town B at a steady speed if $12 \mathrm{~km} / \mathrm{h}$. She rests for exactly one hour and then runs back to town A at $8 \mathrm{~km} / \mathrm{h}$. Jane leaves town B at 11.45 a.m and rides straight to town A, where reaches 5 minutes after Susan.
(a) At what time did Susan leave town B.
(b) At what time did Jane reach town A.
(c) How fast did Jane ride?
(d) At what time did Susan overtake Jane?
22. In a bicycle rally, cyclists are to follow routes VWXY. W is 250 km from V on a bearing of $\mathrm{N} 75^{\circ} \mathrm{E}$ from V . X is on a bearing of $570^{\circ} \mathrm{E}$ from V and 275 km from W . Y is 300 km on a bearing of $\mathrm{N} 40^{\circ} \mathrm{E}$ from X . Using a scale of 1 cm to represent 50 km .
(a) Draw a diagram to show the relative positions of VWXY.
(4 Marks)
(b) Determine the distance in km
(i) $V X$
(ii) XY
(iii) WY
(c) (i) Determine the compass bearing of W from X
(ii) The compass bearing of Y from W
(iii) The compass bearing of $X$ from $Y$
23. AMREF Kenya decided to buy y bicycles for a total cost of 72,000 shillings. The seller agreed to offer a discount of 200 shillings per bicycle. AMFREF Kenya was able to buy 4 extra bicycles for the same amount of money.
(a) Write an expression in terms of $y$ for the:
(i) original price of each bicycle
(ii) price of each bicycle after the discount
(b) Form an equation in $y$ and hence determine the number of bicycles AMREF Kenya bought.
(c) Calculate the discount offered to AMREF Kenya as percentage.
24. Given that the curve $y=x^{3}-3 x^{2}$ find:
(a) The coordinate of the stationary points of the curve.
(b) Sketch the curve $y=x^{3}-3 x^{2}$

# KAJIADO COUNTY JOINT EVALUATION <br> KENYA CERTIFICATE OF SECONDARY EDUCATION <br> 121/2 <br> MATHEMATICS <br> PAPER 2 <br> SECTION 1(50 MARKS) 

## SECTION I: (50 MARKS)

Answer all the questions in this section.

1. $\sqrt[3]{\frac{\log 6}{0.988 \times 9100}}$
(4 Marks)
2. The volume $V \mathrm{~cm}^{3}$ of an object is given by $\mathrm{V}=\frac{2}{3} \pi^{3}\left(\frac{1}{s c^{2}}-2\right)$

Express $c$ in terms of $\pi, r, s$ and $v$
(3 Marks)
3. Simplify the express
$\frac{5}{\sqrt{7}-\sqrt{5}}-\frac{7}{\sqrt{5}+\sqrt{7}}$
4. A boy whose eye level when standing is 1.6 m stands infront of a storey building 30 m tall. He observes the top of the building at an angle of elevation of $42^{\circ} 36^{\prime}$. Find the distance between the boy and the building leaving your answer correct to 4 s.f.
5. Solve for $\theta$ in the equation
$\operatorname{Sin}\left(2 \theta-10^{\circ}\right)=-0.5$ for $\theta \leq 0 \leq 360^{\circ}$
6. Simplify: $\frac{12^{\frac{1}{3}} \div 2^{4}}{32^{-\frac{1}{5}}}$
7. In the figure below, $\mathrm{AB}=3 \mathrm{~cm}, \mathrm{BE}=6 \mathrm{~cm}$ and $\mathrm{DE}=5 \mathrm{~cm}$. Find CD .

8. Solve for x in $\left(\log _{2} \mathrm{x}\right)^{2}+\log _{2} 8=\log _{2} \mathrm{x} 4$
(3 Marks)
9. A steel ball has radius of 15.33 mm . Calculate the percentage error in its surface area correct to 2 s.f.
10. Expand $\left(1+\frac{x}{4}\right)^{5}$ up to the term $x^{3}$. Hence evaluate ( 0.95$)^{5}$ giving your answer to 4 significant figures. (4 Marks)
11. Each month for 30 months, Lemit deposited some money in a saving scheme. In the first month he deposited Sh. 500. Thereafter he increased his deposits by Sh. 50 every month. Calculate the:
(a) last amount deposited by Lemit
(2 Marks)
(b) total amount Lemit had saved in the 30 months
(2 Marks)
12. A pond holds 27000 litres of water. How many litres of water would a similar pond hold if its dimensions were double the first one?
13. Position vector of points $A$ and $B$ are $a=i+3 j+5 k$ and $b=u i-j+2 k$ respectively. Find the position vector of point $R$ which divides $A B$ in the ratio 4:-3
(3 Marks)
14. Juma, Peter and Jane shared KSh. 25,000 as follows: Juma and Peter in the ratio $1: 2$ and that of Peter to Jane in the ratio 4:1. How much did Peter get?
(3 Marks)
15. A circle whose centre is $(-2,5)$ has a diameter of 4 units. Find the equation of the circle in its expanded form. (3 Marks)
16. Two points on the surface of the earth are $A\left(40^{\circ} \mathrm{N}, 30^{\circ} \mathrm{W}\right)$ and $B\left(20^{\circ} \mathrm{S}, 30^{\circ} \mathrm{W}\right)$. Given that the radius of the earth is 6370 km , determination the shortest distance between the two points. (Take $\pi=\frac{22}{7}$ )
(3 Marks)

## SECTION II : (50 MARKS)

Answer only FIVE questions in this section.
17. (a) Given $A=\left(\begin{array}{ll}5 & 1 \\ 2 & 2\end{array}\right)$ find $A^{-1}$
(b) Omolo bought 5 bags of maize and 1 bag of beans for Sh. 14000. If Omolo bought 3 bags of maize less and twice the bags of beans, he would have saved two thousand shillings. If $x$ represents the price of a bag of maize and $y$ represents he price of a bag of beans.
(i) Form matrix equation to represent the information above.
(1 Mark)
(ii) Find the price of a bag of maize and a bag of beans using equation (i) above.
(c) Find the distance of the point of intersection of the lines $5 x+y=14$ and $2 y+2 x=12$ from the point $(11,-2)$
18. (a) Complete the table below giving your values correct to 1 decimal place $-180^{\circ} \leq x 360^{\circ}$.

| x | $-180^{0}$ | $-150^{0}$ | $-90^{0}$ | $-30^{0}$ | $0^{0}$ | $30^{0}$ | $90^{0}$ | $150^{0}$ | $180^{0}$ | $210^{0}$ | $270^{0}$ | $330^{0}$ | $360^{0}$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $\mathrm{y}=\operatorname{Sin} \mathrm{x}$ |  | -0.5 |  | -0.5 |  | 0.5 |  | 0.5 |  | -0.5 |  |  |  |
| $\mathrm{y}=-\operatorname{Sin} \mathrm{x}$ |  |  | 2 |  |  |  | -2 |  |  |  | 2 |  | 0 |

[^0](c) Use your graph in (b) above to solve the equation $\operatorname{Sin} x+2 \operatorname{Sin} x=0$
(d) What transformation maps $\mathrm{y}=\sin \mathrm{x}$ onto $\mathrm{y}=-2 \operatorname{Sin} \mathrm{x}$ in (b) above.
(2 Marks)
19. The figure below shows a shape of a roof with horizontal rectangular $A B C D$. The ridge EF is also horizontal. The measurements of the roof are $\mathrm{AB}=8 \mathrm{~cm}, \mathrm{BC}=5 \mathrm{~cm}, \mathrm{EF}=4.5 \mathrm{~cm}$ and $\mathrm{EA}=\mathrm{ED}=\mathrm{FB}=\mathrm{FC}=3.5 \mathrm{~cm}$.


## Calculate

(i) the length of the ridge EF above the base ABCD
(ii) the angle between the face AED and the base ABCD
(iii) the angle between the face ABFE and the base ABCD
20. For an in-service course in Mathematics, at least four but not more than nine teachers are to be chosen. The ratio of the number of male teachers to the number of female must be less than $2: 1$ and there must be more males than females.
If $x$ and $y$ represent the number of male teachers and female respectively.
(a) Write down the inequalities which $x$ and $y$ must satisfy.
(4 Marks)
(b) Plot the inequalities in (a) above in the grid provided.
(c) Use your graph in (b) above to find composition of the in-service group of:-
(i) the largest size
(ii) the smallest size
21. The table below shows month income tax rates for the year 2003

| Monthly taxable income in KSh. | Tax rates \% |
| :--- | :--- |
| $1-9680$ | 10 |
| $9681-18800$ | 15 |
| $18801-27920$ | 20 |
| $27921-37040$ | 25 |
| Over 37040 | 30 |

The PAYE of Ole Shege in 2003 was Sh. 5079. Ole Shege's earnings include a basic salary, house allowance of KSh. 120,000, a medical allowance of KSh. 2,880 and commuter allowance of KSH. 340 . He was entitled to a monthly tax relief of KSh. 1056. Calculate:
(i) Ole Shege's gross tax
(ii) his basic salary
(iii) Ole Shege's net salary if he deducted the following amount from his payslip:

- Cooperative loan KSh. 2050

22. A bag contains 7 red balls and 5 green balls. A ball is drawn at random three times.
(a) Calculate the probability of drawing three red balls if:
(i) the ball is replaced after each draw.
(ii) the ball is not replaced after each draw
(b) Calculate the probability of drawing at least two red balls when the ball is not replaced after each draw.
23. (a) The gradient function of a curve is given by $\frac{d y}{d x}=2 x^{2}-5$

Find the equation of the curve, given that $y=3$ and $x=2$
(c) The velocity, $\mathrm{Vm} / \mathrm{s}$ of a moving particle after t seconds is given by $\mathrm{V}=2 \mathrm{t}^{3}+\mathrm{t}^{2}-1$. Find the exact distance covered by the particle in the interval $1 \leq \mathrm{t} \leq 3$
(5 Marks)
24. Using ruler and a pair of compasses only, construct a triangle $A B C$ such that $\angle A B C=37 \frac{1}{2} 0, B C=8 \mathrm{~cm}$ and $A C=6 \mathrm{~cm}$. Locate a point $X$ in the triangle $A B C$ such that $X$ is equidistant from $A, B$ and $C$. Measure $A X, A B$ and $\angle A X C$. (10 Marks)

## KAJIADO COUNTY JOINT EVALUATION <br> kenya certificate of secondary education <br> 121/1 <br> MATHEMATICS <br> SECTION 1(50 MARKS)

1. $\sqrt{1296}=\sqrt{2^{4} \times 3^{2} \times 3^{2}}$
$=2^{2} \times 3 \times 3$
$=36$
$\frac{36}{6-18 \div 9+8}=\frac{36}{6-2+8}=\frac{36}{12}=3$
2. $\frac{1}{24.56}=0.04072$
$4.346^{2}=18.888$
$\frac{1}{24.56}=4.346^{2}=18.93$
3. Midpoint of line AB
$\left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}\right)=\left(\frac{2-4}{2}, \frac{7+3}{2}\right)$
$(-1,5)$
$\mathrm{g}_{1}$ of $\mathrm{AB}=\frac{\Delta y}{\Delta x}=\frac{7-3}{2--4}=\frac{4}{6}=\frac{2}{3}$
$\mathrm{g}_{2}=-\frac{3}{2}$
$\frac{y-5}{x+1}=\frac{-3}{2} \Rightarrow 2 \mathrm{y}-10=-3 \mathrm{x}-3$
$2 y=-3 x+7$
4. Length $\mathrm{AD}=4.2 \mathrm{~cm}$

Altitude (h) $=3.5 \mathrm{~cm}$

5. $\frac{(x-3 y)^{2}-(x+3 y)^{2}}{4 x y}$
$\frac{\left[x^{2}-6 x y+9 y^{2}\right]\left[x^{2}+6 x y+9 y^{2}\right]}{4 x y}$
$\frac{x^{2}-x^{2}-6 x y-6 x y+9 y^{2}-9 y^{2}}{4 x y}$
$\frac{-12 x y}{4 x y}=-3$
6. (a) Let the number of mobile phones be $x$

$$
250 x=3300 \text { Sh. }
$$

$\mathrm{x}=\frac{33000}{250}=132$
$\mathrm{x}=132$ phones
(b) $2 \%=250 \mathrm{sh}, 1 \%=\frac{250}{2}$
$100 \%=\frac{250}{2} \times 100$
Price of 1 mobile phone $=12,500 \mathrm{Sh}$.
7. $y=x 2+3 x$ at $x=1$
$y=(1)^{2}+3(1)=4$
$\mathrm{P}(1,4)$
$\mathrm{g}=\frac{d y}{d x}=2 \mathrm{x}+3$
g2 for perpendicular line $=-\frac{1}{5}$
$\frac{y-4}{x-1}=-\frac{1}{5}$
$5(y-4)=-1(x-1)$
$5 y-20=-x+1$
$5 y+x=20+1$
$5 y+x=21$

| 8. | Class | f | Midpoint x | fx |
| :---: | :---: | :---: | :---: | :---: |
|  | 30-34 | 2 | 32 | 64 |
|  | 35-39 | 4 | 37 | 148 |
|  | 40-44 | 8 | 42 | 336 |
|  | 45-49 | 10 | 47 | 470 |
|  | 50-54 | 12 | 52 | 624 |
|  | 55-59 | 3 | 57 | 171 |
|  | 60-64 | 1 | 62 | 62 |
|  |  | $\Sigma \mathrm{f}=40$ |  | $\Sigma \mathrm{fx}=1875$ |
|  | $\begin{aligned} \text { Mean } & =\frac{\Sigma F x}{\Sigma F} \\ & =\frac{1875}{40}=46.875 \end{aligned}$ |  |  |  |
|  |  |  |  |  |
|  |  |  |  |  |
| 9 | (a) $\angle \mathrm{QPS}=1050$ <br> Reflex $\angle \mathrm{SOQ}=210^{\circ} \Rightarrow \angle \mathrm{QPS}=\frac{1}{2} \angle \mathrm{SOQ}$ <br> (b) $\angle$ QRS $=750$ <br> (Opposite $\angle \mathrm{s}$ in a cycle quadrilateral are supplementary) |  |  |  |
| 10 | $\begin{aligned} & 2 \mathrm{x}+\mathrm{x}=360 \\ & \mathrm{x}=120^{0} \\ & \frac{120}{360} \times \frac{22}{7} \times 2 \times 3.5 \\ & \frac{1}{3} \times 22 \times 2 \times 0.5=7.33 \mathrm{~cm} \end{aligned}$ |  |  |  |
| 11. | Let C.O.E be ( $\mathrm{x}, \mathrm{y}$ )$\begin{aligned} & \frac{4-x}{6-y}=3\left(\frac{0-x}{2-y}\right) \\ & 4-x=-3 x \\ & x=-2 \\ & 6-y=6-3 y \\ & -2 y=0 \quad y=0 \end{aligned}$$\therefore \text { centre of enlargement }=(-2,0)$ |  |  |  |
| 12. | $\begin{aligned} & \operatorname{Adj}=\sqrt{5^{2}-(2 \sqrt{5})^{2}} \\ &=\sqrt{25-20} \\ &=\sqrt{5} \\ & \quad \therefore(90-x)=\frac{2 \sqrt{5}}{\sqrt{5}}=\frac{1}{2} \end{aligned}$ |  |  |  |
| 13 | $\begin{aligned} & \mathrm{Sn}=(2 \mathrm{n}-4) 90 \\ & \frac{(2(3 x)-4) 90}{3 x}=\frac{(2(x)-4) 90}{x}+40 \\ & \frac{(6 x-4) 90}{3 x}=\frac{(2 x-4) 90}{x}+40 \\ & \frac{540 x-360}{3 x}=\frac{180 x-360+40 x}{x} \\ & 540 \mathrm{x}-360=3(220 \mathrm{x}-360) \\ & 540 \mathrm{x}-360=660 \mathrm{x}-1080 \\ & 120 \mathrm{x}=720 \\ & \mathrm{x}=6 \end{aligned}$ |  |  |  |




| $24 \quad$ (a) $y=x^{3}-3 x^{2}$ |
| :--- | :--- |

$\frac{d y}{d x}=3 \mathrm{x}^{2}-6 \mathrm{x}=0$
$3 x^{2}-6 x=0$
$3 x(x-2)=0$
$3 \mathrm{x}=0$ and $\mathrm{x}-2=0$
$x=0$ and $x=2$
Statutory points when $x=0$
$\mathrm{y}=(0)^{3}-3(0)^{2}=0$
$(0,0)$
Statutory point when $\mathrm{x}=2$
$y=2^{3}-3(2)^{2}=0$
$=8-12=-4$
(2,-4)
(b) Sketching the curve $y=x^{3}-3 x^{2}$

Nature of point $(0,0)$

| x | -1 | 0 | 1 |
| :--- | :--- | :--- | :--- |
| $\frac{d y}{d x}$ | 9 | 0 | -3 |
|  | Maximum <br> point |  |  |

+ve/- $\backslash$-eve
alternatively by second derivative
$d^{2} y=6 x-6$
dx2
so when $\mathrm{x}=0 \Rightarrow 6(0)-6=0-6$
$\frac{d^{2} y}{d x^{2}}=-6<0$
hence it's a maximum point
Nature of point (2,-4)

| x | 1 | 2 | 3 |
| :--- | :--- | :--- | :--- |
| $\frac{d y}{d x}$ | -3 | 0 | 9 |

(b) Alternatively when $x=2$ by second derivative
$\frac{d^{2} y}{d x^{2}}=6 x-6=12-6=6$
$6>0$, hence the point is a minimum point
x intercept puty $=0$
$\mathrm{x}^{3}-3 \mathrm{x}^{2}=0$
$\mathrm{x}=0$ or $\mathrm{x}=3$
$(0,0)$ and $(3,0)$
$y-$ intercept $x=0$
$(0,0)$


## KAJIAD0 COUNTY JOINT EVALUATION

KENYA CERTIFICATE OF SECONDARY EDUCATION
121/2
MATHEMATICS
PAPER 2
SECTION 1(50 MARKS)

|  | 8. | $\begin{aligned} & \left(\log _{2} x\right)^{2}+\log _{2} 8=\log _{2} x^{4} \\ & \left(\log _{2} x+\log _{2} 2^{3}=\log _{2} x^{4}\right. \\ & \left(\log _{2} x\right)^{2}-4 \log _{2} x+3 \log _{2} 2=0 \\ & \operatorname{Let}^{\log _{2} x}=y \\ & y^{2}-4 y+3=0 \\ & (y-1)(y-3)=0 \\ & \text { either } y=4 \text { or } y=3 \\ & \log _{2} x=1 \text { or } \log _{2} x=3 \\ & x=2 \text { or } x=8 \end{aligned}$ |
| :---: | :---: | :---: |
| 2. $\begin{aligned} & \frac{3 V}{2 \pi r^{3}}=\frac{1}{s c^{2}-2} \\ & \frac{3 v}{2 \pi r^{3}}+2=\frac{1}{s c^{2}} \\ & \frac{1}{c^{2}}=\frac{3 v s}{2 \pi r^{3}}+2 \mathrm{~s} \\ & \mathrm{c}^{2}=\frac{2 \pi r^{3}}{3 v s+\pi r^{2} \mathrm{~s}} \\ & \mathrm{C}= \pm \sqrt{\frac{1}{5}\left(\frac{2 \pi r^{3}}{3 v+\pi r^{3}}\right)} \\ & \hline \hline \end{aligned}$ | 9 | $\begin{aligned} & \text { Surface area of sphere }=4 \mathrm{pr}^{2} \\ & \text { Max area }=4 \times \frac{22}{7} \times(5.335)^{2} \\ & =2956.3 \mathrm{~mm}^{2} \\ & \text { Working area }=4 \times \frac{22}{7} \times(15.33)^{2} \\ & =2954.4 \mathrm{~mm}^{2} \\ & \% \text { error }=\frac{\text { maxarea-working area }}{\text { working area }} \times 100 \\ & =\frac{2956.3-2954.4 \times 100}{2954.4} \\ & =0.064 \% \\ & =0.064 \% \end{aligned}$ |
| $\text { 3. } \frac{5(\sqrt{5}+\sqrt{7})-7(\sqrt{7}-\sqrt{5})}{(\sqrt{7})^{2}-(\sqrt{5})^{2}}$ |  |  |
| $\begin{aligned} & \frac{7-5}{5 \sqrt{5}+7 \sqrt{5}+7 \sqrt{5}-7 \sqrt{7}} \\ & \frac{2}{5} \\ & =\frac{12 \sqrt{5}-2 \sqrt{7}}{2} \\ & =6 \sqrt{5}-\sqrt{7} \end{aligned}$ | 10 | $\begin{aligned} & 1+\frac{5 x}{4}++\frac{10 x^{2}}{16}+\frac{10 x^{3}}{64} \ldots \ldots \ldots . . . . . \\ & 1+1.25+0.625 \mathrm{x}^{2}+0.15625 \mathrm{x}^{3} \\ & \left(1+\frac{x}{4}\right)^{5}=(1-0.05)^{5} \\ & \frac{x}{4}=-0.05 \\ & x=-0.2 \end{aligned}$ <br> Substituting $\begin{aligned} & 1+1.25(-0.2)+0.625(-0.2)^{2}+0.15625(0.2)^{3} \\ & \ldots . . \\ & 1-0.25+0.025-0.00125 \ldots \ldots . . \\ & =0.77384 \text { s.f } \end{aligned}$ |
| 4. $36^{1}=0.6^{0}$ $\operatorname{Tan} 42.6^{\circ}=\frac{28.4}{x}$ |  |  |
| $\begin{aligned} & x=\frac{28.4}{0.9195} \\ & x=30.88 \mathrm{~m} \end{aligned}$ | 11 |  |
| $\begin{array}{ll} \hline \hline \text { 5. } & \text { Sin }\left(2 \theta-10^{0}\right)=-0.5 \\ \text { Sin-1 }(-0.5)=-300 \\ & \text { Hence } \sin -1(-0.5)=210^{0}, 330^{0}, 570^{\circ}, 600^{0} \\ & 2 \theta=2200,3400,5800,700 \\ & \theta=110^{0}, 170^{\circ}, 290^{\circ}, 350^{\circ} \\ \hline \hline \end{array}$ |  |  |
| 6. $\frac{\left(3^{3}\right)^{\frac{1}{3}} \div 2^{4}}{}$ |  |  |
| $\begin{aligned} & \left(2^{5}\right)^{-\frac{1}{5}} \\ = & \frac{3 \div 2^{4}}{2^{-1}} \\ = & \frac{3}{16} \times 2=\frac{3}{8} \end{aligned}$ | 12 | $\begin{aligned} & \hline \text { L.S.F }=1: 2 \\ & \text { V.S.F }=1: 8 \end{aligned}$ <br> Vol of water held by new tank $\begin{aligned} & =27000 \times 8 \\ & =21600 \text { litres } \end{aligned}$ |
| $\begin{array}{ll} \hline \text { 7. } & \text { Let } \mathrm{CD}=\mathrm{x} \\ & 9 \times 6=(x+5) 5 \\ \text { i.e. } \mathrm{AE} . \mathrm{BE}=\mathrm{CE} . \mathrm{DE} \\ 54=5 \mathrm{x}+25 \\ & x=\frac{54-25}{5} \\ x=5.8 \end{array}$ |  |  |
|  | 13 | Using ratio theorem $\begin{aligned} & -3\left(\begin{array}{l} 1 \\ 3 \\ 5 \end{array}\right)+4\left(\begin{array}{c} 4 \\ -1 \\ 2 \end{array}\right) \\ & =\left(\begin{array}{c} -3 \\ -9 \\ -15 \end{array}\right)+\left(\begin{array}{c} 16 \\ -4 \\ 8 \end{array}\right)=\left(\begin{array}{c} 13 \\ -13 \\ -7 \end{array}\right) \\ & \therefore r=13 \mathrm{i}=13 \mathrm{j}=7 \mathrm{k} \end{aligned}$ |




| 23 | 8. $\begin{aligned} & \hline \hline \text { (a) } \mathrm{y}=\frac{2 x^{3}}{3}-5 \mathrm{x}+\mathrm{c} \\ & \frac{2 x 2^{3}}{3}-5+2+\mathrm{c}=3 \\ & \frac{16}{3}-10+\mathrm{c}=3 \\ & \mathrm{c}=3+10-\frac{16}{3} \\ & \mathrm{c}=13-5 \frac{1}{3} \\ & \mathrm{c}=7 \frac{2}{3} \\ & \mathrm{c}=\frac{23}{7} \\ & \therefore \mathrm{y}=2 \mathrm{x} 3-5 \mathrm{x}+\frac{23}{7} \\ & \left.(\mathrm{~b}) \int_{1}^{3}\left(2 t^{3}\right)+\mathrm{t}^{2}-1\right) \mathrm{dt} \\ & {\left[\frac{2 t^{4}}{4}+\frac{t^{3}}{3}-t\right]_{1}^{3}} \\ & \left.\left[\frac{t^{4}}{2}+\frac{t^{3}}{3}-t\right]\right]_{1}^{3} \\ & \left(\frac{3^{4}}{2}+\frac{3^{3}}{3}-3\right)-\left(\frac{1}{2}+\frac{1}{3}-1\right) \\ & (40.5+9-3)-\left(-\frac{1}{6}\right) \\ & 40 \frac{1}{2}--\frac{1}{6} \\ & 42 \frac{1}{2}+\frac{1}{6}=46 \frac{2}{3} \end{aligned}$ |
| :---: | :---: |
| 24 |  |
|  | $\begin{aligned} & \hline \mathrm{AX}=4.9 \mathrm{~cm} \pm 0.1 \\ & \mathrm{AB}=9.7 \mathrm{~cm}+0.1 \\ & \angle \mathrm{AXC}=76^{0}+1^{0} \end{aligned}$ <br> Note: <br> There are two possible points of A hence two possible x where $\mathrm{AB}=\mathrm{A}, \mathrm{B}=9.7 \mathrm{~cm}$ or $\mathrm{AB}=\mathrm{A}_{2} \mathrm{~B} 28 \mathrm{~cm} \pm 0.1$ Accept if A2 is hence different values of AX and $\angle \mathrm{AXC}$ (follow thro) |

## SUNSHINE <br> kenya certificate of secondary education (k.c.s.e.) <br> MATHEMATICS <br> PAPER 1 <br> TIME: 21122 HOURS

1. Evaluate:
$\left(\frac{\left(1 \frac{3}{7}-\frac{5}{8}\right) x \frac{2}{3}}{\frac{3}{4}+1 \frac{5}{7} \div \frac{4}{7} \text { of } 2 \frac{1}{3}}\right)$
2. Mr. Kamau son and daughter needed clothes. The son clothes were costing Ksh 324 while the daughter clothes were costing Ksh 220. Mr Kamau wanted to give them equal amounts of money. Calculate the least amount of money he would spend on the two and how many clothes each will buy.
(3 mks)
3. Use reciprocal tables to find the value of $(0.325)^{-1}$ hence evaluate $\frac{(\sqrt[3]{0.000125})}{0.325}$, give your answer to 4 s.f. (3 mks)
4. A type of paper is 40 cm long, 32 cm wide and 0.8 mm thick. The paper costs $\mathrm{sh} 10 \mathrm{per}^{2}$. Find the total cost of a pile of such paper of height 4.8 m .
( 4 mks )
5. A square based brass plate is 2 mm high and has a mass of 1.05 kg . The density of the brass is $8.4 \mathrm{~g} / \mathrm{cm}^{3}$. Calculate the length of the plate in centimeter.
(3 mks)
6. Solve for x in the equation:
$\frac{x-3}{4}-\frac{x+3}{6}=\frac{x}{3}$
7. A salesman earns $3 \%$ commission for selling a chair and $4 \%$ commission for selling a table. A chair fetches $K £ 75$. One time, he sold ten more chairs than tables and earned seven thousand, two hundred Kenya shillings as commission. Find the number of tables and chairs sold.
8. Using the three quadratic identities only factorise and simplify:

$$
\frac{(x-y)^{2}-(x+y)^{2}}{\left(x^{2}+y^{2}\right)^{2}-\left(x^{2}-y^{2}\right)^{2}}
$$

9. Two numbers are in the ratio 3: 5 . When 4 is added to each the ratio becomes $2: 3$. What are the numbers? ( 3 mks )
10. Given that $\operatorname{Sin}\left(x+4^{0}\right)=\operatorname{Cos}(3 x)^{0}$. Find $\tan \left(x+40^{\circ}\right)$ to 4 s.f.
11. In a regular polygon, the exterior angle is $1 / 3$ of its supplement. Find the number of sides of this polygon. (3 mks)
12. Find the area of a segment of a circle whose arc subtends an angle of $221 / 2^{0}$ on the circumference of a circle, radius 10 cm .
(3 mks)
13. An airplane leaves point $A\left(60^{\circ} \mathrm{S}, 10^{\circ} \mathrm{W}\right)$ and travels due East for a distance of 960 nautical miles to point B. determine the position of $B$ and the time difference between points $A$ and $B$.
(3 mks)
14. Mr. Onyango's piece of land is in a form of triangle whose dimensions are $1200 \mathrm{M}, 1800 \mathrm{M}$ and 1500 M respectively. Find the area of this land in ha. (Give your answer to the nearest whole number).
( 3 mks )
15. Two men each working for 8 hours a day can cultivate an acre of land in 4 days. How long would 6 men, each working 4 hours a day take to cultivate 4 acres?
16. Find the equation of a straight line which is perpendicular to the line $8 x+2 y-3=0$ given that they intersect at $y=0$ leaving your answer in a double intercept form.
(3 mks)

## SECTION B

17. (a) Use the mid-ordinate rule to estimate the area bounded by the curve $y=x+3 x^{-1}$, the $x$ - axis, lines $x=1$ and $x=6$.
(b) Find the exact area of the region in (a) above.
(4 mks)
(c) Calculate the percentage error in area when mid-ordinate rule is used.
(3 mks)
18. A car whose initial value is Ksh 600,000 depreciates at a rate of $12 \%$ p.a. Determine:
(a) Its value after 5 years.
(4 mks)
(b) Its value of depreciation after 5 years.
(2 mks)
(c) The number of year it will take for the value of the car to be Ksh 300,000
(3 mks)
19. A square whose vertices are $P(1,1) Q(2,1) R(2,2)$ and $S(1,2)$ is given an enlargement with centre at $(0,0)$. Find the images of the vertices if the scale factors are:
(3 mks)
(i) -1
(ii) $1 / 2$
(iii) 3
(b) If the image of the vertices of the same square after enlargement are $P^{1}(1,1), Q^{1}(5,1), R^{1}(5,5)$ and $S^{1}(1,5)$ find:
(i) the centre of enlargement
(2 mks)
(ii) the scale factor of the enlargement
20. On the graph paper provided plot the point $P(2,2) Q(2,5)$ and $R(4,4)$.
(a) Join them to form a triangle PQR.
(b) Reflect the triangle $P Q R$ in the line $X=0$ and label the image as $P^{1} Q^{1} R^{1}$.
(c) Triangle $P Q R$ is given a translation by vector. $T\binom{2}{2}$ to $P^{11} Q^{11} R^{11}$. Plot the triangle $P^{11} Q^{11} R^{11}$.
(d) Rotate triangle $\mathrm{P}^{11} \mathrm{Q}^{11} \mathrm{R}^{11}$ about the origin through $-90^{\circ}$. State the coordinates of $\mathrm{P}^{111} \mathrm{Q}^{111} \mathrm{R}^{111}$.
(e) Identify two pair of triangles that are direct congruence.
21. Three warships $P, Q$ and $R$ are at sea such that ship $Q$ is 400 km on a bearing of $N 30^{\circ} E$ from ship $P$. ship $R$ is 750 km from ship $Q$ and on a bearing of $S 60^{\circ} E$ from ship $Q$. an enemy warship is sighted 1000 km due south of ship $Q$.
(a) Use scale drawing to locate the position of ships $P, Q, R$ and $S$.
(b) Find the compass bearing of:
(i) Ship P from ship S
(ii) Ship S from ship R
(c) Use scale drawing to determine:
(i) The distance of $S$ from $P$
(ii) The distance of $R$ from $S$
(d) Find the bearing of:
(2 mks)
(i) $\quad \mathrm{Q}$ from R
(ii) $\quad P$ from $Q$
22. The table below shows the amount in shillings of pocket money given to students in a particular school.

| Pocket <br> money <br> (Kshs) | $201-219$ | $220-229$ | $230-239$ | $240-249$ | $250-259$ | $260-269$ | $270-279$ | $280-289$ | $290-299$ |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| No. of <br> students | 5 | 13 | 23 | 32 | 26 | 20 | 15 | 12 | 4 |

(a) State the modal class.
(b) Calculate the mean amount of pocket money given to these students to the nearest shilling.
(c) Use the same axes to draw a histogram and a frequency polygon on the grid provided.
3. Given that points $X(0,-2), Y(4,2)$ and $Z(x, 6)$;
(a) Write down the column vector $\overrightarrow{X Y}$.
(b) (i) Find $|\overrightarrow{X Y}|$ leaving your answer in index form.
(ii) Given that $|\overrightarrow{X Z}|=11.3170$, find the coordinates of Z .
(c) Find the mid-point of the line YZ .
24. A bus and a matatu left Voi from Mombasa, 240 km away at 8.00 am . They travelled at $90 \mathrm{~km} / \mathrm{h}$ and $120 \mathrm{~km} / \mathrm{h}$ respectively. After 20 minutes the matatu had a puncture which took 30 minutes to mend. It then continued with the journey.
(a) How far from Voi did the catch up with the bus.
(b) At what time did the matatu catch up with the bus?
(c) At what time did the bud reach Mombasa?

## SUNSHINE

kenya certificate of secondary education (k.c.s.e.)
MATHEMATICS
PAPER 2
TIME: $21 / 2$ HOURS

1. Without using logarithm tables or calculator, solve $3^{2 x+3}-28\left(3^{x}\right)+1=0$.
2. Use a mathematical table to evaluate:
$\left(\frac{4.28 \times 0.01677}{\tan 20}\right)^{\frac{1}{5}}$
3. Simply and leave answer in surd form.
$\frac{-9}{\sqrt{13}+\sqrt{3}}-\frac{5}{\sqrt{3}-\sqrt{13}}$
4. The sides of triangles were measured and recorded as $8.4 \mathrm{~cm}, 10.5 \mathrm{~cm}$ and 15.3 . Calculate the percentage error in perimeter correct to 2 d.p.
5. Simplify:
$\frac{\log 16+\log 81}{\log 8+\log 27}$
6. Simplify the expression:

$$
\frac{\left(-36+9 x^{2}\right)+(-6 y+3 x y)}{3 x-6}
$$

7. Given that $\frac{x\left(x^{2}-1\right)}{x+1}$, find $d y / d x$ at the point $(2,4)$.
8. (a) Expand and simplify the expression $\left(10+\frac{2}{x}\right)^{5}$
(b) Use the expression in (a) above to find the value of $14^{5}$.
9. John buys and sells rive in packets. He mixes 30 pockets of rive A costing sh 400 per packet with 50 packets of another kind of rive B costing sh 350 per packet. If he sells the mixture at a gain of $20 \%$, at what price does he sell a pocket?
10. A chord of $A B$ of length 13 cm subtends an angle of 670 at the circumference of a circle centre 0 . find the radius of the circle.
11. Find the coordinates of the image of a point ( $5,-3$ ) when its rotated through $180^{\circ}$ about $(3,1)$. ( 3 mks )
12. Two points $P(-3,-4)$ and $Q(2,5)$ are the points on a circle such that $P Q$ is the diameter of the circle. Find the equation of the circle in the form $a x^{2}+b^{2}+c x+d y+e=0$ where $a, b, c$ and e are constants.
13. Two metal spheres of radius 2.3 cm and 2.86 cm are melted. The molten material is used to cast equal cylindrical slabs of radius 8 mm and length 70 mm . If $1 / 20$ of the meal is lost during casting. Calculate the number of complete slabs cast.
14. A right pyramid has a rectangular base of 12 cm by 16 cm . its slanting lengths are 26 cm . Determine:
(a) The length of AC
(b) The angle AV makes with the base ABCD.
15. Determine the inverse, $\mathrm{T}^{-1}$ of the matrix $\mathrm{T}\left(\begin{array}{cc}4 & 6 \\ 6 & -2\end{array}\right)$ hence solve :
$2 x+3 y=30$
$3 x-y=10$
16. Use squares, square roots and tables to evaluate:

$$
3.045^{2}+(49.24)^{-1 / 2}
$$

## SECTION B

17. The table below shows the frequency distribution of diameter for 40 tins in millimeters.

| Diameter $(\mathrm{mm})$ | $130-139$ | $140-149$ | $150-159$ | $160-169$ | $170-179$ | $180-180$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| No of tins | 1 | 3 | 7 | 13 | 10 | 6 |

Using a suitable working mean calculate:
(a) The actual mean for the grouped lengths.
(b) The standard deviation of the distribution.
18. $\mathrm{A}^{3} / 2$ Bao yearly plan is a school pocket money (SPM) saving scheme requiring 12 months payments of a fixed amount of money on the same data each month. All savings earn interest at a rate of $\mathrm{p} \%$ per complete calendar month.

Lewis Kamau decides to invest $\mathrm{K} £ 30$ per month in this scheme as advised by Gumbo and Oteinde 4Q and 4P class governors a.k.a class secretaries and witnesses by very determined mathematics. Martine Mutua Mukumbu ( $\mathrm{M}^{3}$ ) and makes no withdrawals during the year.
(a) Show that after 12 compelete calendar months, Lewis first payment has increased in value to $\mathrm{K} £ 30 \mathrm{r}^{12}$, where $\mathrm{r}=$ $1+\frac{P}{100}$
(b) Show that the total value, after 12 complete calendar months, of all 12 payments is $\mathrm{K} £ 30 \mathrm{r}=\frac{\mathrm{r}\left(r^{12}-1\right)}{(r-1)}$ (3 mks)
(c) Hence calculate the total interest received during the 12 months when the monthly rate of interest is $1 / 2$ per cent.
(3 mks)
19. A mobile dealer sells phones of two types: Nokia and Motorola. The price of one nokia and one Motorola phone is Ksh 2000 and Ksh 16000 respectively. The dealers wishes to have al least fifty mobile phones. The number of Nokia phones should be at least the same as those of Motorola phones. He has Ksh 120,000 to spend on phones. If he purchases x Nokia phones and y Motorola phones;
(a) Write down all the inequalities to represent the above information.
(b) Represent the inequalities in part (a) above on the grid pro\vided.
(c) The profit on a nokia phone is Ksh 200 and that on a Motorola phone is Ksh 300. Find the number of phones of each type he should stock so as to maximize profit.
20. The vertices of parallelogram are $0(0,0), A(5,0) B(8,3)$ and $C(3,3)$. Plot on the same axes:
(i) Parallelogram $O^{\prime} A^{\prime} B^{\prime} C^{\prime}$, the image of $O A B C$ under reflection in the line $x=4$
(ii) Parallelogram $0^{\prime \prime} A^{\prime \prime} B^{\prime \prime} C^{\prime \prime}$ the image of $0^{\prime} A^{\prime} B^{\prime} C^{\prime}$ under a transformation described by the matix $\left[\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right]$ Describe the transformation.
(iii) Parallelogram 0 "'A'" $B^{\prime \prime \prime} C^{\prime \prime \prime}$ under the enlargement, centre $(0,0)$ and scale factor $1 / 2$
21. A particle moving with acceleration $a=(10-t) \mathrm{m} / \mathrm{s}^{2}$. When $\mathrm{t}=1$ velocity $\mathrm{V}=2 \mathrm{~m} / \mathrm{s}$ and when $\mathrm{t}=0$ displacement $\mathrm{S}=$ OM.
(a) Express displacement and velocity in terms of t .
(b) Calculate the velocity when $\mathrm{t}=35$
(c) What is the displacement when $t=5$
(d) Calculate maximum velocity.
22. (a) Three quantities $x, y$ and $t$ were such that the square root of $y$ varies directly as $x$ and inversely as $t$. find the percentage change in $t$ if $x$ decreases in ratio $4: 5$ and $y$ increases by $44 \%$.
(b) If $y$ varies as the square root of $x$ and the sum of the vale of $y$ when $x=4$ and $y=100$ is 2 :
(i) Find $y$ in terms of $x$
(ii) Find $x$ correct to one d.p when $y=14$
23. Use a ruler and pair of compasses only in this question. ABC is a fixed triangle in which $\mathrm{AB}=\mathrm{AC}=6 \mathrm{~cm}$ and angle BAC $=90^{\circ}$. Show clearly on a two dimensional drawing the locus of $Q$ in each case below.
(b) When $Q$ is equidistant from both lines $C A$ and $C B$.
(c) When the area of triangle $\mathrm{ABC}=$ areas of triangle QBC .
24. Two fair dice are tossed once. The event $A$ and $B$ are defined as follows:

A: the score on the two dices are the same
B: at least one die shows a 4.
(a) Draw a probability space representing the tossing.
(b) Calculate:

| (i) | The probability of even A | $(1 \mathrm{mk})$ |
| :--- | :--- | :--- |
| (ii) | The probability of even B | $(2 \mathrm{mks})$ |
| (iii) | The probability of even A and B | $(2 \mathrm{mks})$ |

(c) If the two dice are tossed three time
(i) Draw a tree diagram showing the event A happening for the three tosses.
(ii) Calculate the probability that A occurs:
(a) Exactly once
(1 mk)
(b) At least once
(2 mks)
(c) At most once

## SUNSHINE

kenya certificate of secondary education (k.c.s.e.)
MATHEMATICS
PAPER 1
TIME: 2112 HOURS



SUNSHINE
kenya certificate of secondary education (k.c.s.e.)
MATHEMATICS
PAPER 2
TIME: $2 ½$ HOURS


| 18 | (a) After 1month, the initial payment of $\mathrm{K} £ 30$ has a volume of $K £ 30+K £ 30 \times \frac{P}{100}$ $=K £ 30\left(1+\frac{P}{100}\right)$ <br> K£30r <br> After 12 months $=K £ 30 r^{12}$ <br> (b) Total value of all 12 payments $=\mathrm{K} £\left(20 \mathrm{r} 12+30 \mathrm{r}^{11}+30 \mathrm{r}^{10}+\ldots \ldots . .+30 \mathrm{r}\right.$ $\text { Hence } \mathrm{Sn}=\frac{\left(r^{n}-1\right)}{r-1}$ $\frac{30 r\left(r^{12}-r\right)^{r}}{r-1_{P}}$ <br> (c) $\begin{aligned} & \mathrm{r}=1+\frac{P}{100} \\ & \mathrm{P}=\frac{1}{2} \\ & \text { So } \mathrm{r}=1+\frac{0.5}{100} \\ & \mathrm{~S}_{12}=\frac{30(1.005)\left(1.005^{12}-1\right)}{1.005-1}=\mathrm{K} £ 371.92 \end{aligned}$ |  | (b) $\begin{aligned} & \mathrm{v}=10 \mathrm{t}-\frac{t^{2}}{2} 7.5 \mathrm{t}=35 \\ & 350-612-7.5=-270 \mathrm{~m} / \mathrm{s} \end{aligned}$ <br> (c) $\mathrm{s}=5(5)-\frac{1}{6} \times 125-37.5=66 \frac{2}{3} \mathrm{~m}$ <br> (d) Max vel is when $\frac{d v}{d t}=0$ $\begin{aligned} \mathrm{a} & =10-\mathrm{t} \\ \mathrm{t} & =10 \\ \mathrm{~V} & =10 \times 10-\frac{100}{2}-7.5=42.5 \mathrm{~m} / \mathrm{s} \end{aligned}$ |
| :---: | :---: | :---: | :---: |
|  |  | 22 | $\text { (a) } \begin{aligned} & \text { ( } \sqrt{y}=\frac{k x}{t} \\ & t=\frac{k x}{\sqrt{y}} \\ & t=\frac{k \sqrt{2}}{\sqrt{1.44 y}} \\ & \frac{\frac{0.8 k x}{}-k x}{\frac{\sqrt{1.44 y} \sqrt{\sqrt{y}}}{\frac{k x}{\sqrt{y}}}} \end{aligned}$ |
| 19 | (a) $2000 x+600 y \leq 120,000$ $20 x+16 y \leq 1200$ <br> $5 \mathrm{x}+4 \mathrm{y} \leq 300$ $\qquad$ $\begin{equation*} x-y \geq 50 \tag{ii} \end{equation*}$ $\begin{aligned} & x \geq y \ldots \\ & y>0 \end{aligned}$ <br> (b) $5 x+4 y \leq 300$ <br> (c) $\begin{aligned} & \mathrm{P}=200 \mathrm{x}+300 \mathrm{y} \\ & (20,25) \\ & \mathrm{P}=200(24)+200(25)=12300 \\ & \mathrm{P}=200 \mathrm{x}+300 \mathrm{y} \\ & (33,34) \\ & \mathrm{P}=200(33)+300(34)=16800 \\ & \text { Nokia }=33 \end{aligned}$ <br> Motorola $=34$ |  | $\begin{align*} & \frac{\frac{k x}{\sqrt{y}}-\frac{0.8 k x}{\sqrt{1.44}} \times 100}{\frac{k x}{\sqrt{y}}}  \tag{i}\\ & =33.33 \% \end{align*}$ <br> Increase $\begin{aligned} & \text { (b) (i) } \mathrm{y} \alpha \sqrt{x} \\ & \mathrm{y}=\mathrm{kx} \\ & 100=2 \mathrm{k} \\ & \mathrm{k}=50 \\ & \text { (ii) } \mathrm{y}=50 \sqrt{x} \\ & 14=50 \sqrt{x} \\ & \sqrt{x}=\frac{14}{50} \\ & \sqrt{x}=0.28 \\ & x=(0.28)^{2} \\ & =0.0784 \\ & =0.1 \end{aligned}$ |
| 20 | (ii) Rotation $\rightarrow$ Positive q leaves turn about origin |  |  |
| 21 | $\begin{aligned} & \text { (e) } \begin{array}{l} \mathrm{a}=\frac{d v}{d t} \\ \frac{d v}{d t}=10-\mathrm{t} \\ \mathrm{v}=10 \mathrm{t}-\frac{t^{2}}{2}+\mathrm{c} \\ \mathrm{c}=-7 \frac{1}{2} \\ \mathrm{v}=10 \mathrm{t}-\frac{t^{2}}{2}-7 \frac{1}{2} \\ \mathrm{v}=\frac{d s}{d t}=10 \mathrm{t}-\frac{t^{2}}{2}-71 / 2 \\ \mathrm{~s}=5 \mathrm{t} 2-\frac{t^{3}}{6}-7.5 \mathrm{t}+\mathrm{c} \\ \text { when } \mathrm{t}=0 \mathrm{~s}=0 \text { then } \mathrm{c}=0 \\ \mathrm{~s}=5 \mathrm{t} 2-\frac{t^{3}}{6}-7.5 \mathrm{t} \end{array} \end{aligned}$ |  |  |


| 24 |  | 1 | 2 | 3 | 5 | 6 |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 1 | $(1,1)$ | 1,2 | 1,3 | 1,4 | 1,5 | 1,6 |
|  | 2 | 2,1 | 2,2 | 2,3 | 2,4 | 2,5 | 2,6 |
|  | 3 | 3,1 | 3,2 | 3,3 | 3,4 | 3,5 | 3,6 |
|  | 4 | 4,1 | 4,2 | 4,3 | 4,4 | 4,5 | 4,6 |
|  | 5 | 5,1 | 5,2 | 5,3 | 5,4 | 5,6 | 5,7 |
|  | 6 | 6,1 | 6,2 | 6,3 | 6,4 | 6,5 | 6,6 |

b) (i) $\mathrm{P}(\mathrm{A})=\frac{6}{36}=\frac{1}{6}$
(ii) $\mathrm{P}(\mathrm{B})=\frac{11}{36}$
(iii) $\mathrm{P}(\mathrm{A}$ and B$)=\mathrm{P}(4,4)=\frac{1}{36}$

(ii) (a) P (A occurs exactly once) $3\left(\frac{1}{6} x \frac{5}{6} x \frac{5}{2}\right)=\frac{25}{72}$
(b) P (A occurs at most once) $\mathrm{PQ} 1-\mathrm{P}$ (A doesn't occur
$\left.=1-\left(\frac{5}{6} x \frac{5}{6} x \frac{5}{6}\right)-1-\frac{125}{216}\right)=\frac{91}{216}$
(c) P (A occurs at most once $=\mathrm{P}(\mathrm{A}$ occurs once or zero

## Times

$=\frac{25}{72}+\frac{125}{216}=\frac{200}{216}=\frac{25}{27}$

KISII CENTRAL FORM FOUR JOINT EVALUATION
Kenya Certificate of Secondary Education
MATHEMATICS
Paper 1
July/August 2015
Time $21 / 2$ hours
SECTION 1 (50 MARKS)
Answer all the questions in this section in the spaces provided.

1. Evaluate

$$
\frac{4 \times 6+\frac{1}{5} \div 0.05+\frac{1}{5}}{(-3) \div(-6)+(23)-6 \text { of } 3}
$$

2. When a certain number is divided by 30,45 or 54 , there is always a remainder of 21 . Find the least number.(3 marks)
3. Without using calculators of mathematical tables, find the value of
$\frac{\sqrt{45} \times(2.04)^{2}}{\sqrt{0.05} \times 2.89}$
4. Solve for $b$ in the equation
(4 marks)
$5^{2 b}-\frac{126}{5}\left(5^{b}\right)=-5$
5. A trader imported a camera for which she paid import duty at $40 \%$ of the purchase price. She later sold it to a customer giving $8 \%$ discount. If the customer paid shs 18,032 for the camera, find the purchase price.
6. Solve the simultaneous equations:

$$
\begin{aligned}
& \frac{1}{a}+\frac{1}{b}=1 \\
& \frac{2}{a}+\frac{4}{b}=\frac{10}{3}
\end{aligned}
$$

7. Half of the interior angles of an irregular hexagon are in the ratio $2: 3: 4$, while the other half are in the ratio $4: 3: 5$.

List the interior angles of the hexagon.
(3 marks)
8. A translation $T$ maps $P(5,3)$ onto $P^{1}(2,-5)$. Find the length of $P^{1} R^{1}$ if point $R^{1}$ is the image of $R(-2,-3)$ under the same translation $T$.
9. Use reciprocal and square root tables to evaluate to 4 significant figures, the expression.

$$
\frac{5}{0.04796} \times \sqrt{583.6}
$$

10. Working together two taps A and B can fill a tank in 6 hours. By itself tap A can fill the tank in 8 hrs .
a) How long can tap $B$ take to fill the tank by itself.
(1 mark)
b) Tap A and B are opened at the same time and after running for 2 hours, an outlet tap which can drain the full tank by itself in 12 hours is opened. How much longer will it take the tank to be filled.
(3 marks)
11. Find the equation of a line passing through $(2,-3)$ and is perpendicular to the line $4 y-6 x+5=0$
12. 



The diagram above shows an open cuboid. Find the distance between points $C$ and $X$ on the surface of the net if $t$ he cuboids is opened up into a net by cutting along $\mathrm{BC}, \mathrm{HF}, \mathrm{GE}$ and AD given the GX is 6 cm .
(3 marks)
13. A flower garden is in the form of the trapezium shown below. Find the area of the garden in $m^{2}$

14. Given the vectors $a=6 i+8 j$

$$
\begin{aligned}
& \\
& \text { and } \quad \mathrm{b}=3 \mathrm{i}-9 \mathrm{j} \\
& \mathrm{c}=4 \mathrm{i}+\mathrm{j}
\end{aligned}
$$

Find the value of $h$ and $k$ such that $h a+k b=c$.
15. The figure below shows a sketch of a plot of land showing the baseline $X Y=300 \mathrm{~m}$ and offsets drawn against it. If all measurements are in metres. Transfer the information on the sketch to field book (all measurements are in metres.

16. Solve the simultaneous inequalities, $1-2 x \leq \frac{2}{3} x-5<4-\frac{3}{4} x$, Hence represent your solution on a number line. (3 marks)

## SECTION 11 (50 MARKS)

## Answer ANY FIVE questions in this section in the spaces provided.

17. The football team in school decided to raise shs 3600 for a party. Each student was to contribute the same amount. However before the contributions were made five members of the football team decided to transfer to other schools This meant that the remaining contributors had to pay more to meet the same target.
a) If the increase in contribution per student was shs 24 . Taking the original number of footballers to be $n$
i) Give an expression for the initial amount that each should have contributed. (1 mark)
ii) Give an expression for the contribution after the transfer. (1 mark)
iii) Form an equation hence find the number of members in the football team originally ( 5 marks)
b) Calculate the percentage increase in the contribution per student caused by the transfer. (3 marks)
18. The table below shows the distribution of marks scored by 100 candidates in an examination.

| Marks | $0-9$ | $10-19$ | $20-29$ | $30-39$ | $40-49$ | $50-59$ | $60-69$ | $70-79$ | $80-89$ | $90-99$ |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| No. of candidates | 2 | 5 | $k$ | $2 k+3$ | 24 | 18 | 10 | 6 | 5 | 3 |

a) Find k.
(1 mark)
b) Using an assumed mean of 44.5 calculate.
i) The mean
ii) The standard deviation.
c) Calculate the median
19. Below is a quadrilateral inscribed in a circle of centre 0 and radius 6 cm . Angle $\mathrm{CDE}=60^{\circ}$

a) Giving reasons find.
i) Angle ABC
(2 marks)
ii) Angle CAO
(2 marks)
iii) Angle ACD given angle CAD $=20^{\circ}$
b) Find the area of the major segment subtended by the major arc ABC (Use $\pi=3.142$ )
20. A boat at point $X$ is 200 m to the south of point $Y$. The boat sails from $X$ to another point $Z$. Point $Z$ is 200 m on a bearing of $310^{\circ}$ from X . Point $\mathrm{X}, \mathrm{Y}$ and Z are on the same horizontal plane.
a) Calculate the bearing and distance of Z from Y .
b) W is the point on the path of the boat nearest to point Y . Calculate the distance WY.
c) A vertical tower stands at point Y. The angle of depression of point $x$ from the top of the tower is $6^{\circ}$. Calculate the angle of elevation of the top of the tower from point W.
21. A bus left Nairobi at 7.00 am and travelled towards Eldoret at an average speed of $80 \mathrm{~km} / \mathrm{hr}$. At 7.45 am a car left Eldoret towards Nairobi at an average speed of $120 \mathrm{~km} / \mathrm{hr}$. The distance between Nairobi and Eldoret is 300 km .

Calculate
a) the time the bus arrived at Eldoret.
b) the time of the day the two met (4 marks)
c) the distance from Nairobi where the two met.
d) the distance of the bus from Eldoret when the car arrived at Nairobi.
22. A solid cylinder has a radius of 21 cm and a height of 18 cm . A conical hole of radius $r$ is drilled in the cylinder on one of the end faces. The conical hole is 12 cm deep. If the material removed from the hole is $2^{2} / 3 \%$ of the volume of the cylinder, find: (Use $\pi=22 / 7$ )
a) the surface area of the hole.
b) the radius of a spherical balls made out of the material.
c) the surface area of the spherical ball.
23. a) Sketch the curve $y=-2 x^{2}-4 x+6$
b) Use trapezium rule taking intervals of 0.5 units to find the area under the curve. $\mathrm{y}=-2 x^{2}-4 x+6$ within the range $-2 \leq x \leq 4$
c) Obtain the exact area in (b) above hence calculate the percentage error introduced by using the Trapezium rule.
(3 marks)
24. The triangle $A B C$ below is such that $A B=b$ and $A C=c$. $M$ is on $A B$ such that $3 A M=A B$ and $N$ is on $A C$ such that $A C$ : NC $=4: 1$

a) Write the following in terms of $b$ and $c$
i) $\overrightarrow{B C}$
ii) $\overrightarrow{M N}$
iii) $\overrightarrow{B N}$
b) Given further that $B C$ produced intersects $M N$ produced at $L$ and $M L=h M N$ while $B L=k B C$ where $h$ and $k$ are constants write ML in two ways hence find the values of $h$ and $k$.
c) Show the M, N and L are collinear.

## KISII CENTRAL FORM FOUR JOINT EVALUATION

Kenya Certificate of Secondary Education

## MATHEMATICS

## Paper 2

July/August 2015
Time $21 / 2$ hours
SECTION 1 (50 MARKS)

## Answer all the questions in this section in the spaces provided.

1. Using logarithms evaluate $\left(\frac{0.3289 \times 5.937}{\log 827.4}\right)^{\frac{1}{7}}$ leaving your answer to 4 significant figures.
2. Simplify $\frac{\sqrt{75}}{\sqrt{5}+\sqrt{3}}$ leaving your answer in the form of $a+b \sqrt{c}$ where $\mathrm{a}, \mathrm{b}$ and c are integers.
3. Using mid-ordinate rule of 5 strips, determine the area under the curve $y=3 x^{2}+10$, the lines $x=1, x=6$ and $x$-axis.
4. Find the value of $k$ if $4 x^{2}+25 x+5+k$ is a perfect square.
5. Make $x$ the subject if $Y=\left(\frac{a x^{2}+b}{b x^{2}-x}\right)^{\frac{1}{2}}$
6. $\mathrm{OA}=2 \mathrm{i}+3 \mathrm{j}+4 \mathrm{k}$ while $\mathrm{OB}=5 \mathrm{i}+9 \mathrm{j}-2 \mathrm{k}$. P divides AP externally in the ratio $2: 1$. Find he coordinates of P . ( 3 marks)
7. In the figure blow, DC is the tangent of the circle at $\mathrm{D} . \mathrm{BC}=8 \mathrm{~cm}, \mathrm{AF}=6 \mathrm{~cm}, \mathrm{DF}=8 \mathrm{~cm}$ and $\mathrm{FE}=3 \mathrm{~cm}$. Find the length FB and DC.

(4 marks)
8. The probability of three students John, Ken and Faith passing exam are $0.8,0.7$ and 0.6 respectively. Find the probability of any two of them passing exam.
9. Expand and simplify $(2-x)^{5}$ hence evaluate $1.98^{5}$ using the first 4 terms of the expansion.
10. Solve the equation: $2 \operatorname{Cos} 2 x=\sqrt{3}$ for $0^{\circ} \leq x \leq 360^{\circ}$
11. Find the centre and radius of a circle whose equation is given as :
$2 x^{2}+2 y^{2}+8 x-20 y=40$
(3 marks)
12. Find the percentage error in calculating the volume of the cuboid whose dimensions are 8.2 cm by 6.2 cm by 5.7 cm
13. $P\left(60^{\circ} \mathrm{N}, 32^{\circ} \mathrm{E}\right)$ and $\mathrm{Q}\left(60^{\circ} \mathrm{N}, 118^{\circ} \mathrm{W}\right)$. Find the shortest distance along parallel latitude PQ .
14. The cost of two brands of coffee $A$ and $B$ are shs 120 and shs 150 per kg respectively. If $A$ and $B$ are mixed in ratio $3: 7$ respectively, and the selling price of the mixture is $30 \%$ above the cost, find the selling price per 500 g packet of coffee.
15. On the line below, draw the locus of $P$ on the upper side of $A B$ such that angle $A P B$ is $65^{\circ}$
16. Income tax on all income earned were taxed as follows.

| Income p.m in Kshs | Rate in percentage |
| :--- | :---: |
| $1-13,500$ | 10 |
| $13,501-27,000$ | 15 |
| $27,001-45,000$ | 20 |
| $45,001-72,000$ | 25 |
| 72,001 and above | 30 |

John earns a monthly salary of shs 62,400 . He is entitled to a family relief of 1,056 p.m. Find his net tax p.m in kshs. SECTION 11 (50 MARKS)

## Answer ANY FIVE questions in this section in the spaces provided.

17. Two businessmen $P$ and $Q$ invested shs $2,400,000$ each in separate banks. $P$ invested in a bank which paid an interest of $12 \%$ p.a. compounded semi-annually. While $Q$ invested in a bank which paid simple interest of $20 \%$ p.a.
a) Find:
i) the compound interest earned by P after 10 years to the nearest hundreds.
ii) the total interest earned by Q after 10 years to the nearest hundreds.
b) How long will it take $P$ to get an amount equivalent to Kshs 6,000,000.
c) How long does it take Q to reach the amount of Kshs $6,000,000$
(2 marks)
18. a) Complete the table below for

| x | $0^{\circ}$ | $30^{\circ}$ | $60^{\circ}$ | $90^{\circ}$ | $120^{\circ}$ | $150^{\circ}$ | $180^{\circ}$ | $210^{\circ}$ | $240^{\circ}$ | $270^{\circ}$ | $300^{\circ}$ | $330^{\circ}$ | $360^{\circ}$ |
| :--- | :---: | :--- | :---: | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $2 \operatorname{Sin} 2 \mathrm{x}$ | 0 |  | 1.73 |  |  | -1.73 | 0.00 |  |  | 0.00 | -1.73 |  |  |
| $3 \operatorname{Cos} \mathrm{x}$ | 3 |  | 1.50 |  |  | -2.60 | -3.00 |  |  | 0.00 | 1.50 |  |  |

$$
y=2 \operatorname{Sin} 2 x \text { and } y=3 \operatorname{Cos} x .
$$

(2 marks)
b) Draw the graph $y=2 \operatorname{Sin} 2 x$ and $y=3 \operatorname{Cos} x$ using 1 cm to represent $30^{\circ}$ horizontal axis and 2 cm to represent 1unit on the vertical axis.
c) Use the graph to
i) solve $2 \operatorname{Sin} x-3 \operatorname{Cos} x=0$
(1 mark)
ii) Find the amplitude and period of the curve $y=2 \operatorname{Sin} 2 x$.
(2 marks)
19. The first, the 7 th and the 25 th terms of an arithmetic progression are the first three consecutive terms of a geometrical progression. The 20th term of the arithmetic progression is 22 . Find:
a) i) The first term and common difference of the arithmetic progression. (4 marks)
ii) The sum of the first 40 terms of the arithmetic progression.
b) i) The 10th term of the geometric progression.
ii) The sum of the first 10 terms of the geometric progression.
(2 marks)
20. a) The volume of a solid varies partly as a constant and partly as the square of the radius of its base. When volume (v) is $95 \mathrm{~cm}^{3}$, its radius ( r ) is 5 cm . When its volume is $167 \mathrm{~cm}^{3}$, its radius is 7 cm . Find the volume when its radius is 10 cm .
b) A variable $P$ varies as the square of $R$ and inversely at $T$.
i) When R is increased by $20 \%, \mathrm{~T}$ is reduced by $10 \%$. Find the percentage change in value of R .
(4 marks)
(3 marks)
ii) When $P=12, R=6, T=9$. Find the law connecting $P, R$ and $T$.
(3 marks)
21. A triangle $A B$ has vertices $A(2,1), B(5,1)$ and $C(4,-2)$. $A^{1}(4,1) B^{1}(10,1)$ and $C^{1}(8,-2)$ is the image of triangle $A B C$ under a given transformation.
a) Draw ABC and triangle $\mathrm{A}^{1} \mathrm{~B}^{1} \mathrm{C}^{1}$ on the grid provided.
b) Determine a single matrix of transformation that maps $A B C$ onto $\mathrm{A}^{1} \mathrm{~B}^{1} \mathrm{C}^{1}$ hence describe fully the matrix of transformation.
(3 marks)
c) $A^{2} B^{2} C^{2}$ is the image of $A B C$ under positive $90^{\circ}$ about the origin. Determine the co-ordinates of vertices $A^{2} B^{2} C^{2}$ on the grid provided.
(3 marks)
d) $\mathrm{A}^{3} \mathrm{~B}^{3} \mathrm{C}^{3}$ is the image of $\mathrm{A}^{1} \mathrm{~B}^{1} \mathrm{C}^{1}$ under a transformation given by $M=\left(\begin{array}{ll}1 & 2 \\ 0 & 1\end{array}\right)$, Determine the co-ordinates of the vertices $A^{3} B^{3} C^{3}$.
(2 marks)
22. The gradient of a curve is given as $6 x^{2}+8 x+5$. If the curve passes through $(1,28)$, determine the equation of the curve.
(3 marks)
b) The distance (s) moved by a particle after $t$ (seconds) is given as $S=6 t^{2}-t^{3}+9 t$ metres. Determine
i) Displacement after 2 seconds.
(1 mark)
ii) The time when the particle is momentarily at rest.
(3 marks)
iii) The velocity when $t=5$ seconds
23. The figure below represents a solid when is partly a cuboid and partly a right pyramid with rectangular base and measurements as shown below.
a) Determine the length AF .

b) Find the vertical height of the pyramid part.
(2 marks)
c) Find the angle:
i) HV makes with the base ABCD
ii) HEV makes with the base HGFE.
iii) AF makes with base ABCD
24. The table below shows the marks scored by 50 students in a mathematics test.

| Marks | $20-29$ | $30-39$ | $40-49$ | $50-59$ | $60-69$ | $70-79$ | $80-89$ | $90-99$ |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| No. of candidates | 3 | 5 | 8 | 12 | 9 | 7 | 4 | 2 |

a) On the grid provided below draw an ogive to represent the information above.
b) Use the graph to determine.
i) The interquartile range.
ii) The pass mark if $30 \%$ of students passed.
iii) The percentage pass if pass mark is 53 marks.

## KISII CENTRAL FORM FOUR JOINT EVALUATION

Kenya Certificate of Secondary Education

## MATHEMATICS

## Paper 1

## July/August 2015

Time $21 / 2$ hours

| 1 | BODMAS $\begin{aligned} & \frac{4 \times 6+\frac{4}{5}+\frac{1}{5}}{\frac{1}{2}+5}=\frac{24+1}{\frac{11}{2}}=\frac{25}{11} \times 2 \\ & =\frac{50}{11}=4 \frac{6}{11} \end{aligned}$ | 8 | Let the translation $T=\binom{x}{y}$ $\begin{aligned} & \binom{5}{-3}+\binom{x}{y}=\binom{2}{-5} \Rightarrow x=-3, y=-2 \\ & T=\binom{-3}{-2} \end{aligned}$ <br> R $\begin{aligned} & \binom{-2}{-3}+\binom{-3}{-2}=\binom{-5}{-5} \Rightarrow R^{1}(-5,-5) \\ & P^{1} R^{1}=\binom{-5}{-5}-\binom{2}{-5}=\binom{-7}{0} \end{aligned}$ <br> Length $P^{1} R^{1}=\sqrt{(-7)^{2}+(0)^{2}}=7$ units |
| :---: | :---: | :---: | :---: |
| 2 <br>  <br> 3. | $\left.\begin{array}{l} 30=2 \times 3 \times 5 \\ 45=3^{2} \times 5 \\ 54=2 \times 3^{3} \\ \text { LCM }=2 \times 3^{3} \times 5=270 \end{array}\right\}$ <br> The number is $270+21=291$ $\frac{\sqrt{45}}{\sqrt{0.05}} \times \frac{(2.04) \times 2.04 \times 10000}{2.89 \times 10000}$ |  |  |
|  | $\begin{aligned} & =\frac{\sqrt{900} \times 204 \times 204}{289 \times 100} \\ & =\frac{30 \times 204 \times 204}{289 \times 100}=\frac{3 \times 12 \times 12}{10}=\frac{216}{5} \\ & =43 \frac{1}{5} \end{aligned}$ | 9 | $\begin{aligned} & 5\left(10^{2} \times \text { Reciprocal of } 4.796\right)+\sqrt{100} \times \sqrt{5.836} \\ & 5(100 \times 0.2085)+10 \times 2.416 \\ & 5(20.85)+10 \times 2.416 \\ & 5(20.85)+24.16=128.41 \end{aligned}$ |
| 4 | $\left(5^{b}\right)^{2}+\frac{126}{5}\left(5^{b}\right)+5=0$ <br> Let $5^{b}=\mathrm{m}$ $m^{2}-126 m+25=0$ $\begin{aligned} & m=\frac{126 \pm \sqrt{126^{2}-4(5)(25)}}{2(5)}=\frac{126 \pm 124}{10} \\ & m=25=5^{b} \Rightarrow b=2 \\ & m=\frac{1}{5}=5^{b} \Rightarrow b=-1 \end{aligned}$ | 10 | a) Both fill $1 / 6$ per hr A fills $1 / 8$ per hr B fills $\quad \frac{1}{6}-\frac{1}{8}=\frac{1}{24}$ <br> B takes 24 hours to fill the tank <br> b) After 2 hours A and B fill $1 / 3$ of $\operatorname{tank} 2 / 3$ <br> remaining. <br> Rate of flow $=\frac{1}{6}-\frac{1}{12}=\frac{1}{12}$ <br> $1 / 2$ fills in $1 / 2$ <br> $2 / 3$ will fill in $\quad \frac{2}{3} \times \frac{12}{1}=8 \mathrm{hrs}$ <br> It will take 8 hours more to fill the tank |
| 5 | Let the purchase price be $x$ $\begin{aligned} & \left(\frac{140}{100} x\right) \times \frac{92}{100}=18032 \\ & 1.288 \mathrm{x}=18032 \\ & x=\frac{18032}{1.288}=14,000 \end{aligned}$ | 11 | $\begin{aligned} & \text { Gradient of } 4 \mathrm{y}-6 \mathrm{x}+5=0 \\ & y=\frac{3}{2} x-5 \\ & m_{1}=\frac{3}{2}, m_{2} \times \frac{3}{2}=-1 \Rightarrow M_{2}=-\frac{2}{3} \\ & \frac{y+3}{x-2}=\frac{-2}{3} \Rightarrow 3 y+9=-2 x+4 \\ & 3 \mathrm{y}+2 \mathrm{x}+5=0 \end{aligned}$ |
| 6 | let $\begin{aligned} & \frac{1}{a}=x, \frac{1}{b}=y \\ & x+y=1 \ldots .(i) \times 6 \\ & 2 x+4 y=\frac{10}{3} \ldots(i i) \times 3 \\ & 6 x+6 y=6 \\ & \frac{6 x+12 y=10}{6 y=4} \\ & y=\frac{2}{3} \Rightarrow \frac{1}{a}=\frac{1}{3} \Rightarrow a=3 \\ & x=\frac{1}{3} \Rightarrow \frac{1}{a}=\frac{1}{3} \Rightarrow a=3 \\ & \Rightarrow a=3, h=1.5 \\ & \hline \end{aligned}$ | 12 |  |
| 7 | $\begin{aligned} & \text { Sum }=(2 \mathrm{n}-40) 90^{\circ} \\ & \text { For Hexagon } \mathrm{n}=6 \\ & \text { Sum }=\{2(6)-4\}=720^{\circ} \\ & \text { Half }=360^{\circ} \\ & 2: 3: 4 \Rightarrow \frac{2}{9} \times 360=80^{\circ}, \frac{3}{9} \times 360=120^{\circ}, \frac{4}{9} \times 360=160^{\circ} \\ & \text { Half }=360 \\ & 4: 3: 5 \Rightarrow \frac{4}{2} \times 360=120^{\circ}, \frac{3}{12} \times 360=90^{\circ}, \frac{5}{12} \times 360=150^{\circ} \\ & \text { The angles are } \\ & 80^{\circ}, 120^{\circ}, 160^{\circ}, 120^{\circ}, 90^{\circ}, 150^{\circ} \end{aligned}$ |  | $\mathrm{CX}=\sqrt{7^{2}+17^{2}}=\sqrt{338}=18.38 \mathrm{~cm}$ |


| 13 | $\begin{aligned} & \mathrm{h}^{2}=17^{2}-(21-\mathrm{x})^{2}=10^{2}-\mathrm{x}^{2} \\ & =>289-\left(441-42 \mathrm{x}+\mathrm{x}^{2}\right)=100-\mathrm{x}^{2} \\ & -152+42 \mathrm{x}=100 \\ & 42 \mathrm{x}=252 \\ & \mathrm{x}=6 \mathrm{~cm} \\ & h=\sqrt{100-36}=8 \mathrm{~cm} \\ & \text { Area }=1 / 2(\mathrm{a}+\mathrm{b}) \mathrm{h} \\ & \quad=1 / 2(12+33) \times 8=180 \mathrm{~m}^{2} \end{aligned}$ | 19 | a) i) $\angle \mathrm{ABC}=60^{\circ}$ (opposite interior angle in a cyclic quadrilatera <br> ii) $\angle \mathrm{CAO}=60 \times 2=120^{\circ}$ (Angle at the centre is twice that at the circumference) <br> iii) $\angle \mathrm{ACD}=60^{\circ}-20^{\circ}=40^{\circ}$ <br> b) Area $\begin{aligned} & =\frac{01}{360} \pi^{2}+\frac{1}{2} r^{2} \operatorname{Sin} \theta_{2} \\ & =\frac{240}{360} \times 3.14 \times 6^{2}+\frac{1}{2} \times 6^{2} \operatorname{Sin} 120^{\circ} \\ & =75.408+15.59 \\ & =90.998 \text { Square units } \end{aligned}$ |
| :---: | :---: | :---: | :---: |
|  |  | 20 |  |
| 14 | $\begin{aligned} & \hline h(6 i+8 j)+k(3 i-9 j)=4 i+j \\ & 6 h+3 k=4 \ldots \ldots 3 \\ & 8 h-9 k=1 \\ & \frac{18 h+9 h=12}{26 h=13=>h=1 / 2, k=1 / 3} \end{aligned}$ |  | a) XYZ is isosceles $\operatorname{Sin} 25^{\circ}=\frac{x}{200}$ |
| 15 |  Y  <br>  300  <br> TO C 80 $240(\mathrm{~S})$ 70 TO D <br>  $170(\mathrm{R})$  <br> TO A 60 $70(\mathrm{Q})$ 60 TO B <br>  $50(\mathrm{P})$  <br> X   <br>    |  | $\mathrm{x}=2 \mathrm{x}=169.04 \mathrm{~km}$ <br> Bearing 360-115 $=245^{\circ}$ <br> Z is 169.04 km on a bearing of $245^{\circ}$ <br> b) To get YW $\sin 65^{\circ}=\frac{h}{169.04}$ |
| 16 | $\begin{aligned} & 1-2 x \leq 2 / 3 x=5 \\ & 3-6 x \leq 2 x-15 \\ & 18 \leq 8 x \\ & x \geq 9 / 4 \\ & x \geq 2.24 \\ & 2 / 3 x-5<4-3 / 9 x \\ & 8 x-60<48-9 x \\ & 17 x<108 \\ & x<6.353 \end{aligned}$ |  | $\begin{aligned} \mathrm{h} & =169.04 \operatorname{Sin} 65^{\circ} \\ & =153.2 \\ \mathrm{WY} & =153.2 \mathrm{~km} \end{aligned}$ <br> C) <br> $\operatorname{Tan} 6^{\circ}=\frac{H}{200} \Rightarrow H=200 \tan 6^{\circ}=21.02 m$ |
| 17 | a) i) $\frac{3600}{n}$ <br> ii) $\frac{3600}{n-5}$ <br> iii) $\frac{3600}{n-5}-\frac{3600}{n}=24$ $\begin{aligned} & 3600 n-3600(n-5)=24 n(n-5) \\ & 150 n-150 n+750=n^{2}-5 n \\ & n^{2}-30 n+25 n-75=0 \\ & n(n-30)+25(n-30)=0 \\ & (n+25)(n-30)=0 \\ & n=30, n=-25 \end{aligned}$ <br> The original number was 30 members <br> b) Original contribution $\frac{3500}{30}=120$ $\% \text { Inverse } \frac{24}{120} \times 100=20 \%$ |  | The angle of elevation of the top of the toners from $W$ is $7.81^{\circ}$ |




By trapezium rule $\quad A=\frac{1}{2} h\{e n d s+2$ middle $\}$
$A=\frac{1}{2} \times 0.5\{(0+0)+2(3.5+6+7.5+10+7.5+6+3.5)\}$
$=\frac{1}{4} \times 88=22$ sq units
c) Actual Area

$$
\begin{aligned}
& \int_{-3}^{1}\left(-2 x^{2}-4 x+6\right) d x=\left[\frac{-2 x^{3}}{3}-2 x^{2}+6 x\right. \\
& =\left[\frac{-2}{3}-2+6\right]-\left[\frac{54}{3} \times 8-18\right] \\
& =\frac{10}{3}-(-18)=21 \frac{1}{3} \\
& \text { \% Error }=\frac{22-21 \frac{1}{3}}{21 \frac{1}{3}} \times 100=3.125 \%
\end{aligned}
$$

## 24


i) $\mathrm{BC}=\mathbf{c}-\mathbf{b}$
ii) $\quad \mathrm{MN}=3 / 4 \mathrm{c}-1 / 3 \mathrm{~b}$
iii) $\quad \mathrm{BN}=3 / 4 \mathbf{c}-\mathbf{b}$
b) $\mathrm{ML}=\mathrm{hMN}$

$$
\begin{equation*}
=3 / 4 \mathrm{hc}-1 / 3 \mathrm{hb} \tag{i}
\end{equation*}
$$

$M L=M B+B L$

$$
\begin{equation*}
=2 / 3 \mathbf{b}+\mathrm{kc}-\mathrm{kc} \tag{ii}
\end{equation*}
$$

$3 / 4 h=k \in(3 / 3-k) b+k c)$
Comparing (i) and (ii)

$$
-4 h=0
$$

$\left(\frac{2}{3}-k\right)=\frac{-1}{3} h$
$2-3 k=h \Rightarrow h-3 k=-2 \ldots . \times 3$
$3 h-4 k=0$
$3 h-9 k=-6$
$5 k=6$
c) $\quad$ Sum $M L \overline{=} \mathbf{6} \mathrm{hM}$

It means that ML is parallel to MN but $m$ is common
therefore $\mathrm{M}, \mathrm{N}$ and L are collinear

## KISII CENTRAL FORM FOUR JOINT EVALUATION

Kenya Certificate of Secondary Education

## MATHEMATICS

## Paper 2

## July/August 2015

Time $21 / 2$ hours

| 1 |  | 7. | $\begin{aligned} & (F B)(6)=8 \times 3 \\ & F B=4 \mathrm{~cm} \\ & D C^{2}=8 \times 18 \\ & D C=12 \mathrm{~cm} \end{aligned}$ |
| :---: | :---: | :---: | :---: |
|  | NO $\quad$ log $\quad$ Working |  |  |
|  | 0.3289 1.5171 $\overline{1} .8256$ <br> 5.937 0.7736 $\frac{1}{3}$ |  |  |
|  | Log827.4 0.2907 $\overline{3}$ <br> 2.918 0.4651 $\frac{2}{3}+\frac{2.8256}{3}$ |  |  |
|  | 8.748  <br> $\times 10-1$ $\frac{\overline{1} .8256}{3}$ <br> $\overline{1} .9419$  <br> $=8.748 \times 10^{-1}=0.8748$ | 8 | $\begin{array}{\|l} \hline \mathrm{JKF}^{1} \text { or JK }{ }^{1} \text { F or J }{ }^{1} \mathrm{KF} \\ 0.8 \times 0.7 \times 0.4+0.8 \times 0.3 \times 0.6 \times 0.2 \times 0.7 \times 0.6 \\ 0.224+0.144+0.084=0.452 \end{array}$ |
| 2. | $\begin{aligned} & \frac{\sqrt{75}(\sqrt{5}-\sqrt{3})}{(\sqrt{5}+\sqrt{3})(\sqrt{5}-\sqrt{3})} \\ & =\frac{5 \sqrt{15}-15}{5-3} \\ & =-7.5-2.5 \sqrt{15} \end{aligned}$ | 9 | $\begin{aligned} & \hline \hline 32+5 \times 16(-x)+10(8)\left(x^{2}\right)+10 \times 4\left(x^{3}\right)+5 \times 2 x^{4}-x^{5} \\ & 32-80 x+80 x^{2}-40 x^{3}+10 x^{4}+10 x^{4}-x^{5} \\ & 32-80(0.02)+80(0.02)^{2}-40(0.02)^{3}=30.43168 \end{aligned}$ |
| 3 | X 1.5 2.5 3.5 4.5 5.5 <br> $3 \mathrm{l}^{2}+10$ 16.75 28.75 46.75 70.75 100.75 | 10 | $2 \mathrm{x}=30^{\circ}, 330^{\circ}, 390^{\circ}, 690^{\circ}$ |
|  | $3 \mathrm{x}^{2}+10$ 16.75 28.75 46.75 70.75 100.75 |  | $x=15^{\circ}, 165^{\circ}, 195^{\circ}$ and $345^{\circ}$ |
|  | $\begin{aligned} & \text { Area }=1[16.75+28.75+46.75+70.75+100.75] \\ & =263 \end{aligned}$ |  |  |
| 4 | $\begin{aligned} & b^{2}=4 a c \\ & 25^{2}=4 \times 4(5+k) \ldots . \end{aligned}$ <br> $a, b$ and $c$ $\begin{aligned} & 5+k=\frac{625}{16} \\ & k=39 \frac{1}{16}-5 \\ & =34 \frac{1}{16} \end{aligned}$ | 11 | $\begin{aligned} & x^{2}+y^{2}+4 x-10 y=20 \\ & x^{2}+4 x+y^{2}-10 y=20 \\ & (x+2)^{2}+(y-5)^{2}=20+25+4=49 \\ & \text { centre }(-2,5) \\ & \text { Radius }=7 \end{aligned}$ |
| 5 | $\begin{aligned} & y^{3}=\frac{a x^{2}+b}{b x^{2}-c} \\ & y^{3} b x^{2}-y^{3} c=a x^{2}+b \\ & y^{3} b x^{2}-a x^{2}=b-y^{3} c \end{aligned}$ | 12 | $\begin{aligned} R . E & =\frac{0.05}{8.2}+\frac{0.05}{6.2}+\frac{0.05}{5.7} \\ & =0.02293 \\ P . E & =0.02293 \times 100 \\ & =2.293 \end{aligned}$ |
|  | $\begin{aligned} & x^{2}\left(y^{3} b-a\right)=b-y^{3} c \\ & x^{2}=\frac{b-y^{3} c}{y^{3} b-a} \\ & x= \pm \sqrt{\frac{b-y^{3} c}{y^{3} b-a}} \end{aligned}$ | 13 | $\begin{aligned} & \text { Long diff. }=32+118=150^{\circ} \\ & \text { Length PQ } \\ & =\frac{150}{360} \times 2 \times \frac{22}{7} \times 6370 \operatorname{Cos} 60 \\ & \\ & =30,030 \end{aligned}$ |
| 6 | $\begin{aligned} & O P=-1\left(\begin{array}{l} 2 \\ 3 \\ 4 \end{array}\right)+2\left(\begin{array}{c} 5 \\ 9 \\ -2 \end{array}\right) \\ & =\left(\begin{array}{l} -2+10 \\ -3+18 \\ -4+-4 \end{array}\right)=\left(\begin{array}{c} 8 \\ 15 \\ -8 \end{array}\right) \\ & P(8,15,-8) \end{aligned}$ | 14 | $\begin{aligned} \text { Selling price } & =\frac{120+3+150 \times 7}{3+7}=\operatorname{shs} 141 \\ & =\frac{500}{1000} \times \frac{130}{100} \times \operatorname{shs} 141 \\ & =91.65 \end{aligned}$ |


| 15 | base angle drawn $25^{\circ} \pm 1^{\circ}$ locus P is drawn and correctly locate d . |  | b.) $\begin{aligned} & S_{40}=\frac{40}{2}[2 a+(n-1) d] \\ & =20[2 \times 3+39 \times 1] \\ & =900 \end{aligned}$ <br> c) i) $a r^{9}=3(3)^{9}$ |
| :---: | :---: | :---: | :---: |
| 16 | $\left.\begin{array}{ll}\begin{array}{ll}1-13500=13,500 \times 10 / 100 & \begin{array}{l}\text { Kshs } \\ = \\ 1350 \\ 13501-27000=13,500 \times 15\end{array} 100\end{array} \\ \left.\begin{array}{ll}27001-45000=18000 \times 20\end{array}\right\} \\ & =3600 \\ 45001-62400=17400 \times 25 \\ & =\frac{4350}{11,325} \\ & \frac{1,056}{10,269}\end{array}\right\}$ |  | = 59,049 $\text { ii) } \begin{aligned} & a\left(\frac{r^{n}-1}{r-1}\right)=\frac{3\left(3^{10}-1\right)}{3-1} \\ = & \frac{3}{2}(59048) \\ = & 88,572 \end{aligned}$ |
| 17 | i) $\begin{array}{ll} \hline \hline \text { mount } \quad & =2,400,000(1+6 / 100)^{20} \\ & =7,697,100 \\ \text { Compound interest } \quad & =7,697,000-2,400,000 \\ & =5,297,100 \end{array}$ <br> ii) $\begin{aligned} \text { Interest }=\text { PRT }=2,400,000 & \times \underline{20} \times 10 \\ & 100 \\ = & 4,800,000 \end{aligned}$ <br> b) $6,000,000$ $=2,400,00(1.06)^{2 n}$ $2 n=\frac{\log 2.5}{\log 1.06}=15.73$ $\mathrm{n} \quad=7.865 \text { years }$ <br> c) $\begin{aligned} & \text { Interest }= 6,000,000-2,400,000 \\ &= \text { shs } 3,600,000 \\ & 2,400,000 \times \frac{20}{} T=3,600,000 \\ & 100 \\ & T=7.5 \mathrm{yrs} \end{aligned}$ | 20 | a) $\begin{aligned} & \hline \mathrm{V}=\mathrm{k}+\mathrm{mr}^{2} \\ & 95=\mathrm{k}+25 \mathrm{~m} \\ & 167=\mathrm{k}+49 \mathrm{~m} \\ & 72=24 \mathrm{~m} \\ & \mathrm{~m}=3 \\ & \mathrm{k}=95-75=20 \\ & \mathrm{v}=20+3(10)^{2}=320 \end{aligned}$ <br> b) i $\begin{aligned} & P_{1}=\frac{K R^{2}}{T} \\ & P_{2}=\frac{1 \times 1.2^{2}}{0.9}=1.6 \\ & \text { \%age }=\left(\frac{1.6-1}{1}\right) \times 100 \\ & =60 \% \end{aligned}$ |
| 19. | $\begin{aligned} & a, a+6 d, a+24 d \ldots \ldots \\ & \frac{a+6 d}{a}=\frac{a+24 d}{a+6 d} \\ & a^{2}+12 a d+36 d^{2}=a^{2}+24 a d \end{aligned}$ |  | $\text { ii) } \begin{aligned} & 12=\frac{36}{9} k, \\ & k=2 \\ & P=\frac{3 R^{2}}{T} \end{aligned}$ |
|  | $\begin{align*} & 12 a d=36 d^{2} \\ & \\ & a=3 d \ldots \ldots \text { (i) }  \tag{ii}\\ & a+19 d=22 \ldots . . \\ & \\ & 3 d+19 d=22 \\ & 22 d=22 \\ & d=1 \\ & a=3 \end{align*}$ |  |  |




## NYERI COUNTY FORM 4 JOINT ASSESSMENT <br> Kenya Certificate of Secondary Education

## MATHEMATICS

Paper 1
July/August 2015
Time: $2 ½$ Hours

1. Evaluate: $\quad \frac{[32-(-60) \div 4] \times 18-12}{25 \div 5 \times 2+23-6 \div 2}$
2. Simplify: $\frac{18 x^{2}-32 y^{2}}{6 x^{2}-5 x y-4 y^{2}}$
3. Two types of coffee cost sh. 250 per kg and sh .200 per kg are mixed so that their masses are in the ratio $3: 5$ respectively. Otieno sold the mixture at sh.262.50. Calculate his percentage profit.
(3 marks)
4. Two towns A and B are 220 km apart. A bus left town A at 11.00a.m and travelled towards town B at $60 \mathrm{~km} / \mathrm{h}$. At the same time, a matatu left town B for town A and travelled at $80 \mathrm{~km} / \mathrm{h}$. The matatu stopped for 45 minutes on the way before meeting the bus. Calculate the distance covered by the bus before meeting the matatu.
5. The figure below represents a swimming pool. Calculate the volume of the swimming pool in litres.
(3 marks)

6. A line $P$ has its $x$ and $y$ intercept as -2 and -3 respectively.
a) Find the gradient of line $P$
b) Line $Q$ passes through $(5,-2)$ and is parallel to line $P$. Write the equation of line $Q$ in the form $y=m x+c$
7. Solve for $x$ and $y$ in the equation.
$\left(2^{2 x}\right)^{3} \times\left(3^{4 y}\right)^{1 / 2}=108$
8. The figure below represents a net with a path marked on it, drawn accurately.

a) What solid does the net represent?
b) Draw the solid and clearly show the path.
9. Write down the three inequalities which define the region $R$.

10. The angle of elevation of the top of a tree from a boy's eye positioned at point A is $20^{\circ}$. The boy moves 100 metres closer to the tree and the angle of elevation becomes $32^{\circ}$. Find the height of the tree. (Disregard the height of the boy)
(4 marks)
11. Two churches have a total of 500 members, the difference between members of the two churches is 200 . How many members are there in each church ?
(3 marks)
12. A certain regular polygon has its interior angle $144^{\circ}$ greater than its exterior angle. Find the number of sides of the polygon.
13. Use reciprocal tables to find the reciprocals of 0.4346 and 0.9182 .

Hence, evaluate $\left(\frac{100}{0.4346}-\frac{50}{0.9182}\right)^{2}$. Give your answers to 4 significant figures.
(3 marks)
14. In the figure below, AB is parallel to $\mathrm{DE} . \mathrm{AB}=10 \mathrm{~cm}, \mathrm{AD}=2 \mathrm{~cm}, \mathrm{BE}=1 \mathrm{~cm}, \mathrm{DC}=3 \mathrm{~cm}$.

a) Calculate the lengths of DE and EC.
b) Hence calculate the ratio of the area of DCE : ADEB
15. A Kenyan bank buys and sells Nigerian neira and Canadian dollar at the following rates.

|  | Buying (Kshs) | Selling (Kshs) |
| :---: | :---: | :---: |
| 1 Nigerian neira | 32.58 | 36.42 |
| 1 Canadian dollar | 91.52 | 98.99 |

Mrs. Emenike, a Nigerian arrived in Kenya with 46,000 neira. She exchanged the whole amount to Kenya shillings and spent a total of Kenya shillings 720,000 . She later changed the remainder to Canadian dollars on her way to Canada. How much did she receive to 2d.p.
16. Line segment $A B$ is given below: Mark point $D$ on line $A B$ produced, such that $A D: D B=7:-2$

$$
\bar{A} B
$$

## SECTION II : (50 MARKS)

## Answer only five questions from this section.

17. Three worships $P, Q$ and $R$ are at sea such that ship $Q$ is 400 km on a bearing of $030^{\circ}$ from ship $P$. Ship $R$ is 750 km from ship $Q$ and on a bearing of $S 60^{\circ} E$ from ship $Q$. Ship $Q$ is 1000 km and to the north of an enemy worship $S$.
a) Taking a scale of 1 cm to represent 100 km , locate the position of ships $P, Q, R$ and $S$.
(4 marks)
b) Find the compass bearing of:
i) ship P from ship $S$
ii) ship $S$ from ship $R$
c) Use the scale drawing to determine
i) the distance of $S$ from $P$
ii) the distance of $R$ from $S$
d) Find the bearing of:
i) $Q$ from $R$
ii) $P$ from $R$
18. A conical glass contains water to a height of 14 cm and has a water surface of radius 12 cm . A student wishes to determine the radius, volume and surface area of a spherical pebble. When he drops the pebble in the water, the water level rises by 8 cm and its surface on the glass has a radius of 16 cm as shown below.
a) Find $x$
b) Find the volume of the pebble

c) Find the radius of the pebble
d) Find the surface area of the pebble
19. A certain number of people agreed to contribute equally to buy books worth shs. 1200 for a school library. Five people pulled out and so that others agreed to contribute an extra sh. 40 each. Their contribution enabled them to raise the sh. 1200 expected.
a) If the original number of people was x , write an expression of how much each was originally going to contribute.
b) Write down the expression of how much each contributed after the five people pulled out.
c) Calculate how many people made the contribution.
d) If the prices of books before buying went up in the ratio 5:4 how much extra did each contributor give.(3 marks)
20. The masses to the nearest kilogram of some students were recorded in the table below.

| Mass (kg) | $41-50$ | $51-55$ | $56-65$ | $66-70$ | $71-85$ |
| :--- | :---: | :---: | :---: | :---: | :---: |
| Frequency | 21 | 62 | 55 | 50 | 12 |
| fd |  |  |  |  |  |

a) Determine the frequency densities to 1 decimal place.
b) On the grid provided, draw a histogram to represent the above information.
c) Use the histogram above to find:
i) the median
ii) the mode
(2 marks)
21. a) On the cartesian plane given below, draw the quadrilateral $A B C D$ with vertices $A(6,6), B(2,2)$, $C(4,-6)$ andD $(8,0)$.
(1 mark)

b) Draw the image $A^{1} B^{1} C^{1} D^{1}$ of $A B C D$ under an enlargement scale factor $1 / 2$, centre origin.

State the coordinates of $\mathrm{A}^{1} \mathrm{~B}^{1} \mathrm{C}^{1} \mathrm{D}^{1}$
(3 marks)
c) Describe the transformation that maps $\mathrm{A}^{1} \mathrm{~B}^{1} \mathrm{C}^{1} \mathrm{D}^{1}$ onto the given image $\mathrm{A}^{11} \mathrm{~B}^{11} \mathrm{C}^{11} \mathrm{D}^{11}$
(2 marks)
d) Rotate $\mathrm{A}^{11} \mathrm{~B}^{11} \mathrm{C}^{11} \mathrm{D}^{11}$ with centre $(-2,-1)$ through a positive quarter turn to get $\mathrm{A}^{111} \mathrm{~B}^{111} \mathrm{C}^{111} \mathrm{D}^{111}$. State the coordinatesof $\mathrm{A}^{111} \mathrm{~B}^{111} \mathrm{C}^{111} \mathrm{D}^{111}$.
e) State a pair of quadrilaterals that are oppositely congruent.
(1 mark)
22. $P Q R S$ is a trapezium where $P Q$ is parallel to $S R$. $P R$ and $S Q$ intersect at $X$, so that $S X=k S Q$ and $P X=h P R$ where $k$ and $h$ are constants.
Vectors $P Q=\underset{\sim}{3 q}$ and $P S=\underset{\sim}{s}, S R=\underset{\sim}{q}$
a) Show this information on a diagram.
(1 mark)
b) Express vector SQ in terms of s and $\underset{\sim}{q}$
(1 mark)
c) Express $\underset{\sim}{S X}$ in terms of $\mathrm{k}, \mathrm{q}$ and ${ }_{\mathrm{s}}$
(2 marks)
d) Express $\underset{\sim}{\tilde{S}} X$ in terms of $h, \underset{\sim}{\underset{\sim}{q}}$ and $\underset{\sim}{\tilde{s}}$
(2 marks)
e) Obtain h and k
(2 marks)
f) In what ratio does $X$ divide $S Q$ ?
23.


In the figure above, ABC is a tangent to the circle, centre 0 . DOG is a diameter and angle $\mathrm{DGF}=60^{\circ}$, angle $\mathrm{DBC}=48^{\circ}$ and angle $\operatorname{DFE}=25^{\circ}$. Giving reasons, find the size of angles :
i) FED
(2 marks)
ii) Obtuse FOB
(2 marks)
iii) EBD
(2 marks)
iv) BCD
(2 marks)
v) $O B E$
(2 marks)
24. A particle starts from rest and moves in a straight line. Its velocity $V m s^{-1}$ is given by $V=t^{2}-3 t+2$, where $t$ is the time in seconds moved from a point 0 .
Find :
a) i)the velocity when $t=3$
ii) the displacement from 0 when $t=3$
(3 marks)
iii) the acceleration of the particle when $t=3$
(2 marks)
b) At what time is the particle momentarily at rest?
(3 marks)

## NYERI COUNTY FORM 4 JOINT ASSESSMENT <br> Kenya Certificate of Secondary Education

## MATHEMATICS

Paper 2
July/August 2015
Time: $2 \underline{1} 2$ Hours

1. Use logarithms to evaluate

$$
\sqrt{\frac{0.456 \tan 81.2}{\log 8293}} \quad \text { correct to } 4 \text { significant figures. }
$$

(4 marks)
2. $R$ is partly constant and partly varies as the square of $q$. When $R=5, q=1$ and $R=21$ when $q=3$. Find the value of $R$ when $\mathrm{q}=5$ ( 3 marks)
3. a) Determine the inverse of the matrix $\mathrm{T}=\left(\begin{array}{cc}1 & 2 \\ 1 & -1\end{array}\right)$
(1 marks)
b) Hence find the coordinates of the point of intersection of the lines $x+2 y=7$ and $-y+x=1$
(2 marks)
4. Grade A tea is mixed with grade B tea. The cost per kg of grade A is Ksh. 60 and that of grade B is Ksh.80. Find the ratio in which the two grades should be mixed inorder to make a profit of $20 \%$ by selling 1 kg of the mixture at Ksh. 90 .
5. Solve for $\mathrm{x} .\left(\log _{2} \mathrm{x}\right)^{2}-\log _{2} \mathrm{x}^{2}=15$
6. The length and width of a rectangle measured to the nearest centimetre are 10 cm and 6 cm respectively. Calculate the percentage error in the area giving your answer to 1 decimal place.
(3 marks)
7. Find in terms of $\pi^{C}$ the values of $x$ in the interval $0^{\circ} \leq x \leq 2 \pi^{C}$ for which $2 \sin ^{2} x-\cos x=1$.
(Give your answer in radians)
(3 marks)
8. Expand $\left(2-\frac{1}{2} x\right)^{5}$
hence use the expansion upto the fourth term to evaluate (1.98) ${ }^{5}$
(2 marks)
9. The coordinates of the ends of a diameter of a circle are $(6,4)$ and $(-2,2)$. If the centre of the circle is $Q$, determine:
a) the coordinates of centre $Q$
(1 mark)
b) the equation of the circle expressing it in the form $x^{2}+y^{2}+a x+b y+c=0$ where $a, b$ and $c$ are constants.
10. a) Complete the following table for the function $y=6+3 x-2 x^{2}$
(1 mark)

| x | -1.5 | -1 | 0 | 0.5 | 1 | 1.5 | 2 | 2.5 | 3 | 3.5 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| y |  |  |  |  | 7 |  |  |  | -3 |  |

b) Using the completed table and the trapezoidal rule with 10 strips, estimate the area bounded by the curve and the lines $y=-8$ and $x=-1.5$
11. Simplify leaving your answer in surd form
(2 marks)

$$
\frac{1}{\sqrt{22}-2 \sqrt{3}}-\frac{1}{\sqrt{22}+2 \sqrt{3}}
$$

12. Two students are selected at random from a class of 15 boys and 10 girls. Find the probability that
a) they are both boys
(2 marks)
b) one is a boy and the other is a girl
(2 marks)
13. An aeroplane took off from an airport at $\left(68^{\circ} \mathrm{N}, 86^{\circ} \mathrm{E}\right)$ and flew due West for a distance of 1000 nautical miles before landing. Find to the nearest degree, the coordinates of the place where the plane landed.
(3 marks)
14. The table below is part of the tax table for monthly income for the year 2007.

| Monthly income (Ksh) | Rate (\%) |
| :--- | :---: |
| Under Ksh. 10165 | 10 |
| From Ksh.10,165 but under 19741 | 15 |
| From Ksh.19741 but under Ksh. 29317 | 20 |

In that year, Adan's monthly gross tax was Ksh.2,885. Calculate his monthly income.
16. Given $\underset{\sim}{O X}=4 \underset{\sim}{i}+\underset{\sim}{j}+3 \underset{\sim}{k}$ and $\underset{\sim}{O Y}=7 \underset{\sim}{i}-5 \underset{\sim}{j}+\underset{\sim}{k}$. If $M$ is the mid-point of line $X Y$, determine the modulus of $X M$.
(3 marks)
16. In the figure below, $A B$ is a diameter of the circle. Chord $P Q$ intersects $A B$ at $N$. $B R$ which is a tangent to the circle at $B$ meets $P Q$ produced at R.


Given that $\mathrm{PN}=14 \mathrm{~cm}, \mathrm{NB}=5 \mathrm{~cm}$ and $\mathrm{BR}=6.5 \mathrm{~cm}$.
Calculate :
a) NR
(1 mark)
b) AN
(3 marks)

## SECTION II : (50 MARKS)

Answer only FIVE questions from this section.
17. In 2001 the salaries of Gitonga and Cherop were sh. 252000 per annum and sh. 216000 per annum respectively. Their employers decided to increase their salaries as follows.
Gitonga's employer decided to give him fixed annual increments throughout his employment period, with first increment in January 2002.
Cherop's employer decided to give her increments of 8\% compounded annually throughout her employment period with the first increment in January 2002.
a) If Gitonga annual salary in 2009 was sh. 346080 , calculate his annual increment.
b) How much money in total did Gitonga earn from is salaries from 1st January 2001 to 31st December 2009 ?
(2 marks)
c) Determine Cherop's monthly salary of August 2009.
(2 marks)
d) How much money in total did Cherop earn from her salaries from 1st January 2001 to 31st December 2009.
e) Determine the difference between Gitonga's and Cherop's average yearly earnings from 1st January 2001 to 31st December 2009.
(2 marks)
18. A triangle $P Q R$ whose vertices are $P(2,2), Q(5,3)$ and $R(4,1)$ is mapped onto triangle $P^{1} Q^{1} R^{1}$ by a transformation whose matrix is $\left(\begin{array}{cc}1 & -1 \\ -2 & 1\end{array}\right)$
a) On the grid provided below, draw triangle $P Q R$ and triangle $P^{1} Q^{1} R^{1}$
(4 marks)
b) Triangle $P^{1} Q^{1} R^{1}$ is mapped onto a triangle whose vertices are $P^{11}(-2,-2), Q^{11}(-5,-3)$ and $R^{11}(-4,-1)$
i) Draw triangle $\mathrm{P}^{11} \mathrm{Q}^{11} \mathrm{R}^{11}$ on the same grid.
(1 mark)
ii) Find the matrix representing transformation that maps triangle $P^{1} Q^{1} R^{1}$ onto triangle $P^{11} Q^{11} R^{11}$
(2 marks)
c) Describe the transformation that maps $P Q R$ onto triangle $P^{11} Q^{11} R^{11}$
(3 marks)
19. a) $M N Q R$ is a rectangle in which $M N=5 \mathrm{~cm}$ and $N Q=8 \mathrm{~cm}$. Construct the locus of a point $P$ within the rectangle which is such that $P$ is equidistant from sides $N M$ and $N Q$
c) The locus of $P$ in (a) above cuts MR at T. Draw a circle whose centre $O$ is equidistant from the three sides of triangle MNT and its radius is OM
c) In rectangle MNQR above, construct the locus of a variable point $V$ such that $40^{\circ} \leq \mathrm{QVR} \leq 90^{\circ}$
20. Mrs Mureithi has 20 acres of land. She intends to grow maize and beans. She requires sh. 2000 to plant an acre of maize and sh. 4000 for an acre of beans. Twice the area to be planted with maize should not be less than one of beans. The total capital available is sh. 60000 . The estimated profit is sh. 5000 for an acre of maize and sh. 7000 for an acre of beans.
By letting $x$ and $y$ to represent the area to be planted with maize and beans respectively.
a) Find the inequalities to represent the information.
b) On the grid provided, represent the inequalities and show the region which satisfy the condition.
c) Determine the expected maximum profit.
21. In the figure below, ABCDEF is a wedge. $\mathrm{BC}=6 \mathrm{~cm}, \mathrm{DC}=8 \mathrm{~cm}$ and $\mathrm{ED}=15 \mathrm{~cm}$.


Find the:
a) length BE
b) angle between $B E$ and the plane EDCF
c) angle between plane ABDE and the plane EDCF
d) volume of the wedge
22. The sketch below shows curve $y=2 x^{2}+4 x+3$ and a straight line intersecting the curve at points $A$ and $B$.


If the $x$-intercepts is -3.5 and the $y$-intercept is 7 , find :
a) the equation of the straight line.
b) the coordinates of $A$ and $B$
c) the area of the shaded region
23. The table shows marks scored by 40 candidates in an examination.

| Marks | Frequency |
| :---: | :---: |
| $11-20$ | 1 |
| $21-30$ | 5 |
| $31-40$ | 8 |
| $41-50$ | 9 |
| $51-60$ | 8 |
| $61-70$ | 4 |
| $71-80$ | 2 |
| $81-90$ | 3 |

a) Using an assumed mean of 45.5 estimate :
i) Mean
ii) Standard deviation
(3 marks)
b) Calculate the quartile deviation.
24. a) Complete the table below for the values of $\sin 2 x$ and $2 \cos \left(x-30^{\circ}\right)$

| x | $0^{\circ}$ | $15^{\circ}$ | $30^{\circ}$ | $45^{\circ}$ | $60^{\circ}$ | $75^{\circ}$ | $90^{\circ}$ | $105^{\circ}$ | $120^{\circ}$ | $135^{\circ}$ | $150^{\circ}$ | $165^{\circ}$ | $180^{\circ}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\sin 2 \mathrm{x}$ |  |  | 0.87 | 1 |  | 0.5 |  |  |  |  |  | -0.5 |  |
| $2 \cos (\mathrm{x}-30)^{\circ}$ | 1.73 |  |  | 1.93 |  |  |  | 0.52 |  |  | -1 | -1.41 |  |

b) On the grid provided, use a suitable scale to draw the graphs of $y=\sin 2 x$ and $y=2 \cos \left(x-30^{\circ}\right)$ for $0^{\circ} \leq x \leq 180^{\circ}$
(4 marks)
c) Using the graph in part (b) above.
i) Estimate the solution to the equation $2 \cos \left(\mathrm{x}-30^{\circ}\right)-\sin 2 \mathrm{x}=0$ for $0^{\circ} \leq \mathrm{x} \leq 180^{\circ}$
ii) Estimate the value of x for which $4 \cos \left(\mathrm{x}-30^{\circ}\right)+3=0$

## NYERI COUNTY FORM 4 JOINT ASSESSMENT <br> Kenya Certificate of Secondary Education

MATHEMATICS
Paper 1
July/August 2015
Time: $2 ½$ Hours

| 1. | $\begin{aligned} & \text { Num } 47 \times 18-12=834 \\ & \text { Den } 10+23-3=30 \\ & \frac{834}{30}=27.8 \end{aligned}$ | 10 | $\begin{array}{cc} \hline \hline \text { Tan } 20^{\circ}=\underset{\mathrm{h}}{100+\mathrm{x}} & \mathrm{~h}=(100+\mathrm{x}) \tan 20 \\ \operatorname{Tan} 32^{\circ}=\underline{\mathrm{h}} & \mathrm{~h}=\mathrm{x} \tan 30^{\circ} \\ \mathrm{x} & \\ 0.2609 \mathrm{x}=36.4 & \mathrm{x}=139.52 \end{array}$ |
| :---: | :---: | :---: | :---: |
| 2. | $\frac{2(3 x+4 y)(3 x-4 y)}{(2 x+y)(3 x-4 y)}=\frac{2(3 x+4 y)}{2 x+y}$ |  | $\mathrm{h}=87.18 \mathrm{~m}$ |
| 3 | $\begin{aligned} & 3 \times 250+5 \times 200=1750 \\ & 262.50 \times 8=2100 \\ & \% \text { profit }=\frac{350 \times 100}{1750} \\ &=20 \% \end{aligned}$ | 11 | $\begin{aligned} & \hline x+y=500 \\ & \frac{x-y=200}{2 x=700} \\ & x=350 \\ & y=150 \\ & \hline \end{aligned}$ |
| 4 | $\begin{aligned} & \text { Distance by bus } \\ & 3 / 4 \times 60=45 \mathrm{~km} \\ & 220-45=175 \mathrm{~km} \\ & 175 \mathrm{~km}=1^{1} / 4 \mathrm{hr} \\ & 140 \mathrm{~km} / \mathrm{hr} \\ & 5 / 4 \times 60=75 \mathrm{~km}+45 \mathrm{~km}=120 \mathrm{~km} \end{aligned}$ | 12 |  |
| 5 | $\begin{aligned} & \hline 1 / 2(4.5+1.5) \times 60 \times 12=2160 \mathrm{~m}^{3} \\ & 2160 \times 10,000 \mathrm{~m}^{3} \\ & 2160000 \text { litres } \end{aligned}$ | 13 | $\begin{aligned} & \frac{1}{0.4346}=2.3010 \\ & \frac{1}{0.9182}=1.0890 \\ & 230.10-54.455=175.64 \\ & 1.756^{2} \times 10^{4}=3.084 \times 10^{4} \text { or } 30,840 \end{aligned}$ |
| 6. | $\begin{aligned} & \text { Gradient }=\frac{-3}{2} \\ & \frac{y+2}{x-5}=\frac{-3}{2} \\ & y=\frac{-3 x}{2}+51 / 2 \end{aligned}$ |  |  |
| 7. | $\begin{array}{cc} \left.\left(2^{2 x}\right)^{3} \times 3^{4 y}\right)^{1 / 2}=2^{2} \times 3^{3} \\ 6 x=2 & 2 y=3 \\ x=1 / 3 & y=1^{1} / 2 \\ \hline \hline \end{array}$ | 14 | L.S.F $=\underline{5}=\underline{10} \frac{\mathrm{DE}}{\mathrm{D}}$ 6 cm <br> $\underline{5}=\underline{1+E C}$ $E C=1.5 \mathrm{~cm}$ |
| 8 | a) Triangular prism |  | $\begin{aligned} & \\ & \mathrm{LSF}=3: 5 \Rightarrow \mathrm{ASF}=9: 25 \\ & \text { DCE }: \text { ADBE } \\ & 9: 16 \end{aligned}$ |
|  |  | 15 | $\begin{aligned} & 46000 \times 32.58 \\ & 1498680 \\ & \frac{1498680-720000}{98.99} \quad 7866.25 \end{aligned}$ |
| 9 | $\begin{array}{ll} L_{1} & y=-1 / 3 x+3 \Rightarrow y+1 / 3 \geq 3 \\ L_{2} & x<6 \\ L_{3} & \text { gradient }=1 / 2 \quad y=1 / 2 x+3 \quad y-1 / 2 x \leq 3 \end{array}$ | 16 |  |


| 17 |  <br> b) i) Bearing of P from $\mathrm{S}=\mathrm{N} 18^{\circ} \mathrm{W}$ <br> ii) Bearing of $S$ from $R=S 48^{\circ} \mathrm{W}$ <br> c) i) Distance of $S$ from $P=6.5 \mathrm{~cm} \times 100=$ 650km <br> ii) Distance of R from $\mathrm{S}=9.1 \mathrm{~cm} \times 100=$ | 20 | 26) |
| :---: | :---: | :---: | :---: |
|  | d) i) Bearing of Q from $\mathrm{R}=\mathrm{N} 62^{\circ} \mathrm{W}$ <br> ii) Bearing of $P$ from $R=$ due West | 21 |  |
| 18 | $\text { a) } \begin{gathered} 22+x, \quad 14+x \\ \frac{22+x}{14+x}=\frac{16}{12} \\ 66+3 x=56+x \\ x=10 \end{gathered}$ <br> b) volume of pebble volume of whole cone $1 / 3 \times 22 / 7 \times 16^{2} \times 32$ <br> vol of pebble $\begin{aligned} & 1 / 3 \times 22 / 7 \times 16^{2} \times 32-1 / 3 \times 22 / 7 \times 12^{2} \times 24 \\ & 8582.10-3620.57 \\ & 4961.53 \end{aligned}$ <br> c) $\begin{gathered} 4961.53=4 / 3 \mathrm{x}^{22} / 7 \times r^{3} \\ r^{3}=4961.53 \times 21 \\ r=10.58 \end{gathered}$ <br> d) $4 \mathrm{x}^{22} / 7 \times 10.58^{2}$ $1407.20 \mathrm{~cm}^{2}$ |  |  <br> (3) A $\mathrm{A}^{(3 \cdot 3)}$ <br> $b(1,1) \quad c(2-3) \quad \Delta(4,0) b$ <br> 9) kectation in the line yr-x bi <br>  <br> E $A^{\prime} b^{\prime} C^{\prime} A^{\prime}$ an $A^{\prime} A^{\prime} B^{\prime} C^{\prime} A^{\prime \prime}$ <br> B, |
| 19 | a) $\frac{1200}{x}$ <br> b) $\frac{1200}{x-5}$ <br> c) $\begin{aligned} & \frac{1200}{x-5}-\frac{1200}{x}=40 \\ & 30 x-30 x+150=x^{2}-5 x \\ & x^{2}-15 x+10 x-150=0 \\ & (x+10)(x-15)=0 \\ & x=-10 \text { or } 15 \end{aligned}$ <br> 10 pple actually contributed <br> d) $\frac{1200}{10}$ $\frac{5}{4} \times 120-120$ <br> sh. 30 | 22 |  |



## NYERI COUNTY FORM 4 JOINT ASSESSMENT

Kenya Certificate of Secondary Education

## MATHEMATICS

Paper 2
July/August 2015
Time: 21122 Hours




## BUSIA COUNTY FORM 4 JOINT EXAMINATION

Kenya Certificate of Secondary Education

## MATHEMATICS

PAPER 1

## SECTION I (50 MARKS)

Answer ALL the questions in this Section in the spaces provided
Evaluate without using tables or a calculator.

$$
100^{-1.5} \times 32^{0.2}
$$

1. A line $L$ is perpendicular to $3 y-4 x=7$. Determine the acute angle between $L$ and the $x$-axis.
(3 Marks)
2. Two trucks $P$ and $Q$ approach each other at $52 \mathrm{~km} / \mathrm{h}$ and $61 \mathrm{~km} / \mathrm{h}$ respectively. Truck P is 12.5 m long and $Q$ is 13 m long. If they are 5 m apart how many seconds elapses before the two completely pass each other. Give your answer to 2d.p.
(4 marks)
3. Find a scalar $K$ such that
(2 marks)

$$
\binom{4}{3}+K\binom{-2}{1}=\binom{0}{5}
$$

5. The ratio of Omondi and Kamau's earning was $4: 3$. Omondi's earning rose to $\mathrm{Sh} .22,800$ after an increase of $14 \%$. Calculate the percentage increase in Kamau's earnings given that the sum of their earnings was ksh 39600 of each got an increment.
6. The interior angles of an irregular polygon are $70^{\circ}$ and $110^{\circ}$ and the rest are each $144^{\circ}$. Determine the number of sides of the polygon.
(3 marks)
7. Either by striding 48 cm or 54 cm , Joan takes an exact number of steps to cross the road. Find the least width of the road in metres. (3 marks)
8. Use logarithms to $4 \mathrm{~d} . \mathrm{p}$ to evaluate:
9. The present ages of two children are 3 years and 5 years respectively. After how long will the sum of the squares of their ages be 130?
10. Pamba bought 4 mobile phones and 2 laptops for ksh, 108,000. Rebecca bought 3 mobile phones and 5

11. Using a pair of compasses construct a trapezium $A B C D$ such that $A B$ is parallel to $D C$. $A B=8.5 \mathrm{~cm} \mathrm{BC}$ distance from $C$ to line $A B$.
(3 marks)
12. The angle of elevation of the top of a flag post from a point $A$ on the level ground is $12^{\circ}$. The angle of elevation of the top of the flag post from another point B nearer to the flag post and 98 m away from A is $34^{\circ}$. B is in between A and the bottom of the flag post and the three points are collinear. Find the height of the flag post to the nearest metre.(3 marks)
13. Find a 2 x matrix m such that;
14. A car dealer buys a car for Ksh $1,500,000$ and hires it for 24 weeks at a charge of ksh 3000 per day. Insurance costs Ksh 42,000 during the entire period. He sold the car through a dealer at sh 800,000 . If the dealer was paid a commission of $2 \frac{1}{2} \%$ calculate the percentage profit made.
15. Given that $5 x=4 y$, evaluate

$$
\frac{\frac{1}{4} x^{2}-4 x y+y^{2}}{4 x^{2}+y^{2}}
$$

16. $\int_{-1}^{2} x(x-1)(x+2) d x$

## SECTION II (50 MARKS)

## Answer only FIVE questions from this section in the spaces provided

17. A ship sails from A to D through B and C. B is 500 km on a bearing of $N 50^{\circ} \mathrm{E}$ from $\mathrm{A} . \mathrm{C}$ is on a bearing of $340^{\circ}$ from $B$ and at a distance of 620 km . The bearings of D from A and C are $\mathrm{N} 20^{\circ} \mathrm{W}$ and $560^{\circ} \mathrm{W}$ respectively.
(a) Using the scale 1 cm to rep 100 km , show the relative positions of A, B, C and D.
(4 marks)
(b) Find the distance of D from:
(i) A
(ii) C
(c) Find the bearing of $D$ from $B$.
(1 mark)
(d) If the ship was sailing at an average of $500 \mathrm{~km} / \mathrm{h}$. Find how long the journey took. Give the answer to the nearest hour.
18. (a) Complete the table below for $y=8-10 x-3 x^{2}$.

| $x$ | -5 | -4 | -3 | -2 | -1 | 0 | 1 | 2 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $y$ |  |  |  |  |  |  |  |  |

(b) On the grid provided, draw the graph of $y=8-10 x-3 x^{2}$
(c) State the equation of the line of symmetry of $y=8-10 x-3 x^{2}$
(d) Use your graph to solve:
(i) $3 x^{2}+10 x-8=0$
(ii) $3 x^{2}+11 x+6=0$
19. In the figure below $A O D$ is a diameter of the circle centre $O$. BC is a chord parallel to AD and FE is a tangent to the circle at E .


Given that OF bisects $\angle \mathrm{AOB}$ and M is the intersection of BC and OE and $\angle \mathrm{EBC}=\mathrm{BOE}=20^{\circ}$. Giving reasons find the following angles.
(i) $\angle \mathrm{COE}$
(ii) $\angle \mathrm{BEC}$
(2 marks)
(iii) $\angle \mathrm{BEF}$
(2 marks)
(iv) $\angle \mathrm{OMB}$
(2 marks)
(v) $\angle \mathrm{OFE}$
20. The table below gives the marks scored by a group of students in an exam.

| Marks | $10-19$ | $20-24$ | $25-29$ | $30-34$ | $35-39$ | $40-49$ |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| No. of students | 3 | 4 | x | 10 | 9 | 7 |

(a) Given that the mean mark was 32.125 , find x .
(4 marks)
(b) State the modal class.
(c) Calculate the interquartile range.
21. The equation of a curve is given by
$y=x^{3}-5 x^{2}+2 x+9$
(a) Find the gradient function of the curve and its value when $x=-2$.
(b) Determine
(i) the equation of the tangent to the curve at $x=-2$.
(3 marks)
(ii) the equation of the normal to the curve at $x=-2$.
(c) The values of $x$ at the turning points of the curve.
22. A glass is in the shape of a frustum of a cone.


The bottom of the glass is a curve of radius 2 cm . A father pours water into the glass to a height of 9 cm , while the surface of the water is a circle of radius 6 cm .
(a) Calculate the volume of the water in the glass.
(b) The son who is playing with marbles drops two spherical balls into the water. The water level in the glass rises by 1.5 cm as a result. Calculate:
(i) the volume of one marble.
(ii) the radius of a marble.
23. Two circles centres $O$ and $C$ have radii 7.2 cm and 6.5 cm respectively. The two circles intersect at $P$ and $Q$ and $P Q$ $=10 \mathrm{~cm}$.

(a) Find (i) $\angle \mathrm{POQ}$
(2 marks)
(ii) $\angle \mathrm{PCQ}$
(2 marks)
(b) The area of the shaded part. Give answer to 4 s.f.
(4 marks)
(c) Express $\angle \mathrm{POQ}$ in radians.
24. On a certain day Mwema bought plates worth Ksh 120. On another day Mrs Mwema spent the same amount of money but bought the plates at a discount of $20 \%$ per plate.
(a) If Mwema bought a plate at sh x write down a simplified expression for the total number of plates bought by the two people.
(b) If Mrs. Mwema bought 6 plates more than her husband find how much each spent on a plate.
(5 marks)
(c) Find the total number of plates bought by the family.
(2 marks)

## BUSIA COUNTY FORM 4 JOINT EXAMINATION <br> Kenya Certificate of Secondary Education <br> MATHEMATICS

PAPER 2

## SECTION I (50 MARKS)

## Answer ALL the questions in this Section.

1. Evaluate without using tables or calculator.
$\frac{\left(\frac{4}{11}\right)^{2} \text { of }\left(\frac{3}{5}-\frac{1}{20}\right)}{\left(1 \frac{4}{5}+1 \frac{2}{5}\right) \div\left(\frac{1}{5}+\frac{9}{10}\right)}$
2. Using a calculator, simplify;

$$
\frac{1.32 \times 1.62+2.64 \times 1.19}{0.66 \times 7.27-0.66 \times 2.27}
$$

3. (a) Given that $P=\left(\begin{array}{cc}3 & -1 \\ 2 & 4\end{array}\right)$ and $Q=\left(\begin{array}{cc}4 & 1 \\ -2 & 3\end{array}\right)$ Find $P Q$.
(b) Hence, find the point of intersection of the lines $4 x+y=9$ and $3 y=2 x-1$
4. Solve for $x$,
$\left(\log _{2} x\right)^{2}+\log _{2} 8=\log _{2} x^{4}$
5. $\quad \mathrm{P}$ and Q are the points on the ends of the diameter of the circle below.

(a) Write down in terms of $x$ and $y$ the equation of the circle in the form;
$a x^{2}+b y^{2}+x+y+c=0$
(b) Find the equation of the tangent at $Q$ in the form $a x+b y+c=0$.
6. Expand $(1-1 / 2 x)^{9}$ up to the fourth term, hence use your expansion to evaluate $0.995^{9}$, correct to 4 decimal places.
7. Simplify the expression.
$\frac{2 x^{2}-3 x y-2 y^{2}}{4 x^{2}-y^{2}} \div \frac{2 x+y}{2 x-y}$
8. The cost per kg of two brand of tea $x$ and $y$ are Sh. 60 and Sh. 80 . The two brands are mixed and sold at a profit of $20 \%$ above the cost. if 1 kg mixture was sold at Sh. 78, determine the ratio in which the two brands were mixed.(3 marks)
9. Make $P$ the subject of the formula.
(3 marks)

$$
Y P-X+\frac{Q}{P}=O
$$

10. A farmer wishes to enclose a rectangular nursery against a long straight wall. He has 40 m of fencing wire. What is the largest area he can fence using the wire.
11. In the figure below, not drawn to scale, $\mathrm{AX}=3 \mathrm{~cm}, \mathrm{XB}=3 \mathrm{~cm}$ and $Đ С X B=90^{\circ}$. Given that the circle has a radius of 4.5 cm . Calculate the length CD.
12. Given that $\mathbf{O A}=3 \mathbf{i}+2 \mathbf{j}-4 \mathbf{k}$ and $\mathbf{O B}=4 \mathbf{i}+5 \mathbf{j}-2 \mathbf{k}$. P divides AB externally in the ratio 3 : -2 . Determine the position vector of $P$ in terms of $\mathbf{i}, \mathbf{j}$ and $\mathbf{k}$.
13. Find the sum of the first six terms of the progression given;
$\log 2 x+\log 4 x+\log 8 x+\log 16 x+$ $\qquad$
leaving your answer in the form a $\log b x^{2}$ where $a$ and $b$ are integers.
(3 marks)
14. A varies as $b$ and inversely as the square root of $C$. When $B$ is increased by $26 \%, C$ is reduced by $19 \%$. Find the percentage change in the value of $A$.
15. Solve the equation $4-4 \operatorname{Cos}^{2} x=4 \operatorname{Sin} x-1$ for the range $0^{\circ} \leq x \leq 360^{\circ}$.
16. Find the quartile deviation of the following set of scores.

SECTION II (50 MARKS)

## Answer only FIVE questions from this section.

17. The table below shows the rates of taxation in a certain year.

| Income in $K £$ p.a | Rate of taxation in Sh. per $K £$ |
| :--- | :--- |
| $1-3900$ | 2 |
| $3901-7800$ | 3 |
| $7801-11,700$ | 4 |
| $11,701-15,600$ | 5 |
| $15,601-19,500$ | 7 |
| Above 19,500 | 9 |

In that period, Mr. Omoit a teacher at Mundika Boys earning a basic salary of Ksh. 21,000 per month. In addition, he was entitled to a house allowance of Kshs 9,000 p.m and a personal relief of Kshs 1056 /per month.
(a) Calculate how much income tax Mr. Omoit paid per month.
(b) Mr. Omoit's .other deductions per month were co-operative society contributions sh 2,000 loan sh $2,500 /$ - Calculate his net salary per month.
(5 marks)
repayment,
(2 marks)
(c) Later in the same year, Mr. Omoit was transferred to Katira Secondary School where he earned hardship allowance equivalent to $30 \%$ of his basic salary. If on top of deductions in (b) above he also had deduction of sh 2,700 p.m to KCT. Calculate the percentage change in his net salary per month.
18. A dealer wishes to purchase cookers and refrigerators. he can buy at most 60 of both items. On average, a cooker and a refrigerator costs sh 24,000 respectively. He must spend at least sh 480,000 . The number of refrigerators should be at most four times the number of cookers. He must buy more than 10 refrigerators. Taking the number of cookers to be x and the number of refrigerators to be $y$ :
(a) Form all inequalities to represent the above information and graph them.
(b) If the dealer makes a profit of sh 1200 and sh 2000 per cooker and refrigerator respectively, find the maximum profit he will make.
(2 marks)
(c) During a sales promotion week, the dealer declared a discount of $10 \%$ and $5 \%$ on the display prices of each other cooker and refrigerator respectively. Determine his new maximum profit.
19. The diagram below shows a right pyramid with a horizontal rectangular base PQRS and vertex V. The area of the base is $60 \mathrm{~cm}^{2}$ and the volume of the pyramid is $280 \mathrm{~cm}^{3}$.

(a) Calculate the height of the pyramid.
(b) Given the ratio of the sides PQ: QR is 3:5 find the lengths of
(i) $P Q$
(2 marks)
(ii) $Q R$
(c) Find the length of the slanting height.
(d) Calculate the angle between the planes VRQ and PQRS.
20. Use ruler and compasses only for all the constructions in this question.
(a) Construct a triangle ABC in which $\mathrm{AB}=6 \mathrm{~cm}, \mathrm{BC}=7 \mathrm{~cm}$ and angle $\mathrm{ABC}=75^{\circ}$. Measure:
(i) the length of AC
(ii) the angle of ACB
(b) Locus of P is such that $\mathrm{BP}=\mathrm{PC}$. Construct P .
(c) Construct locus of $Q$ such that $Q$ is on one side of $B C$ opposite $A$ and angle $B C Q=30^{\circ}$.
(d) (i) the locus of P and locus of Q meet at X . Mark X.
(ii) Construct the locus of R in which angle $\mathrm{BRC}=120^{\circ}$.
(iii) Show the locus of $S$ inside the triangle $A B C$ such that $X S \geq S R$.
21. I own a motorcycle. Out of the 21 working days in a month, I only ride to work for 18 days. If I ride to work the probability that I am bitten by a rapid dog is $4 / 15$, otherwise it is only $1 / 3$ when I am bitten by the dog, the probability that I will get treatment is $4 / 5$ and if I do not get treatment, the probability that I will get rabies is $5 / 7$.
(a) Draw a tree diagram to show the events.
(b) Musing the tree diagram (a) above determine the probability that:
(i) I will not be bitten by a rapid dog.
(2 marks)
(ii) I will get rabies

(2 marks)
22. The diagram below shows two intersecting circles with centres $X$ and $Y$. HG is a tangent to the circle centre $X$ at $C$.

(a) Determine:
(i) Angle DXE
(2 marks)
(ii) Length DE
(2 marks)
(b) Hence, calculate the area of the shaded region.
(6 marks)
23. Two places $P$ and $Q$ are on the parallel of latitude $26^{\circ} \mathrm{N}$. The two points lie on $10^{\circ} \mathrm{W}$ and $30^{\circ} \mathrm{E}$ longitudes respectively.
(a) Find the distance between $P$ and $Q$ along their parallel of latitude in
(i) km (Taking $\mathrm{R}=6370 \mathrm{~km}$ and $\pi=3.142$ )
(2 marks)
(ii) nm
(2 marks)
(b) Find in km the distance between points P and Q along a great circle.
(c) Two planes $X$ and $Y$ left $P$ for $Q$ at an average speed of 1200 knots and 5000 knots respectively. If $X$ flew along the great circle and $Y$ along the parallel of latitude, which one arrived earlier and by how much time?
(4 marks)
24. Triangle $P Q R$ is the image of triangle $A B C$ under the transformation where $A, B$ and $C$ maps onto $P, Q$ and $R$ respectively.
(a) Given the points $A(5,-1) B(6,-1)$ and $C(4,-0.5)$. Draw the triangle $A B C$ and its image triangle $P Q R$ on the grid provided below.
(b) Triangle PQR in part (a) above is to be enlarged by scale factor 2 with centre at $(11,-6)$ to map onto $\mathrm{P}^{1} \mathrm{Q}^{1} \mathrm{R}^{1}$. Construct and label triangle $P^{1} Q^{1} R^{1}$ on the grid above.
(c) By construction, find the co-ordinates of the centre and angle of rotation which can be used to rotate triangle $P^{1} Q^{1} R^{1}$ onto $P^{11} Q^{11} R^{11}$ whose vertices $P^{11}(-3,-1) Q^{11}(-7,-1)$ and $R^{11}(-3,-3)$
(3 marks)
(d) Find the co-ordinates of the vertices of the triangles LMN, the image of triangle $\mathrm{P}^{1} \mathrm{Q}^{1} \mathrm{R}^{1}$ under a stretch scale factor 2 , line $y=2$, invariant $L, M$ and $N$ to map onto $P^{1} Q^{1}$ and $R^{1}$ respectively.
(2 marks)

BUSIA COUNTY FORM 4 JOINT EXAMINATION
Kenya Certificate of Secondary Education
MATHEMATICS
PAPER 1

| 1. | $100^{-\frac{3}{2}} \times 32^{\frac{1}{5}}=0.002$ | 10. | $\begin{aligned} & 4 m+2 p=108000 \\ & 3 m+5 p=22800 \end{aligned}$ |
| :---: | :---: | :---: | :---: |
| 2. | $\begin{aligned} & 3 y=7+4 x \\ & y=\frac{7+4 x}{3} \\ & \tan \theta=4 / 3 \\ & \operatorname{tangent} \theta=53.13^{\circ} \end{aligned}$ |  | $\begin{gathered} 12 m+6 p=324000 \\ 12 m+20 p=912000 \\ \hline-14 p=-588000 \\ p=\operatorname{sh} 42,000 \\ m=\operatorname{sh} 6000 \end{gathered}$ |
| 3. | $\begin{aligned} & \text { R. Speed }=52+61 \\ & =113 \mathrm{~km} / \mathrm{h} \\ & \text { T. distance }=12.5+5+13 \\ & =30.5 \mathrm{~m} \\ & \mathrm{t}=\frac{30.5 \mathrm{~h}}{113 \times 1000} \\ & =\frac{30.5}{113 \times 1000} \times 60 \times 60 \\ & =0.97 \mathrm{~s} \end{aligned}$ |  | $\begin{aligned} & \text { Juma pays: } 6000+2(42,000) \\ & =\text { Ksh } 90,000 \end{aligned}$ |
|  |  | 11. |  |
|  |  | 12 |  |
| 4. | $\begin{aligned} & 4+-2 \mathrm{k}=0 \text { or } 3+\mathrm{k}=5 \\ & \mathrm{k}=2 \end{aligned}$ |  |  |
| 5. | $\begin{array}{r} 114 \%-22800 \\ 100 \%-\frac{22800 \times 100}{114} \\ =\operatorname{ksh} 20000 \end{array}$ <br> Kamau's original earnings <br> 4 $\qquad$ 20,000 <br> 3 $\qquad$ $\frac{3 \times 20,000}{4}$ $=\operatorname{sh} 15,000$ <br> Kamau's new earnings $\begin{aligned} & 39600-22,800 \\ = & \operatorname{sh} 16,800 \end{aligned}$ $\begin{array}{r} \% \text { increase }=\frac{16800-15,000}{15,000} \times 100 \% \\ =12 \% \end{array}$ |  | $\begin{aligned} & \frac{98}{\operatorname{Sin} 22}=\frac{\mathrm{x}}{\operatorname{Sin} 146} \\ & =146.2892 \\ & \mathrm{~h}=146.2892 \operatorname{Sin} 12^{\circ} \end{aligned}$ |
|  |  | 13 | $\begin{aligned} & \left(\begin{array}{cc} 1 & 3 \\ 2 & -1 \end{array}\right) \underset{\sim}{m}=\left(\begin{array}{cc} -3 & 13 \\ 1 & -2 \end{array}\right) \\ & m=-\frac{1}{7}\left(\begin{array}{cc} -1 & -3 \\ -2 & 1 \end{array}\right)\left(\begin{array}{cc} -3 & 13 \\ 1 & -2 \end{array}\right) \\ & m=\left(\begin{array}{cc} 0 & \frac{19}{7} \\ -1 & \frac{24}{7} \end{array}\right) \end{aligned}$ |
| 6. | $\begin{aligned} & 110+70+36 \mathrm{n}=360^{\circ} \\ & 36 \mathrm{n}=180 \\ & \mathrm{n}=5 \\ & \text { No of sides } 5+2=7 \text { sides } \end{aligned}$ | 14 | $\begin{aligned} & \text { Income } 3000 \times 7 \times 24 \\ & =540,000 \\ & \text { Sales } \frac{97.5}{100} \times 800,000 \end{aligned}$ |
| 7. | 2 48 54 <br> 2 24 27 |  | $\begin{aligned} & =780,000 \\ & (780,000+540,000)-(1,500,000+42,000) \\ & =258,000 \end{aligned}$ |
|  | $\begin{array}{\|l\|ll} \begin{array}{\|l\|ll} 2 & 12 & 27 \\ 2 & 6 & 27 \\ 2 & 3 & 27 \\ 3 & 1 & 9 \\ \text { LCM }=2^{4} \times 3^{3} \\ =432 & =4.32 \mathrm{~m} \\ \hline \end{array} \end{array}$ | 15. | $\begin{aligned} & y=5 / 4 x \quad=1.25 x \\ & \frac{1 / 4 x^{2}-4 x(1.25 x)+(1.25 x)^{2}}{4 x^{2}+(1.25 x)^{2}} \\ & =\frac{-3.1875 x^{2}}{5.5625 x^{2}} \\ & =-0.573 \end{aligned}$ |
| 8. | $\begin{aligned} & 36.19 \rightarrow 1.5586 \\ & 0.58^{2} \rightarrow-0.2366 \times 2 \\ & =-0.4732 \\ & 273.62 .4371 \\ & 1.5586+-0.4732-2.4371 \\ & =-1.3517 \div 3 \\ & =-0.4506 \\ & =0.3543 \end{aligned}$ | 16. | $\begin{aligned} & \int_{-1}^{2} x^{3}+x^{2}-2 x d x \\ & \left.\frac{x^{4}}{4}+\frac{x^{3}}{3}-\frac{2 x^{2}}{2}\right]_{-1}^{2} \end{aligned}$ |
| 9. | $\begin{aligned} & (3+x)^{2}+(5+x)^{2}=130 \\ & 2 x^{2}+16 x-96=0 \\ & x^{2}+8 x-48=0 \\ & (x+12)(x-4)=0 \\ & x=4 \text { years } \end{aligned}$ |  | $\begin{aligned} & \left.\left(4+2^{2} / 3-4\right)-1 / 4-1 / 3-1\right) \\ & =33 / 4 \end{aligned}$ |



|  | $\begin{gathered} \text { Vol }=1 / 3 \mathrm{p} \times 6.667^{2} \times 15-1 / 3 \mathrm{p} \times 2^{2} \times 4.5 \\ =679.44 \mathrm{~cm}^{3} \\ \text { Vol of one marble }=\frac{679.44-490.152}{2} \\ =94.644 \mathrm{~cm}^{2} \\ \left(\text { ii) }{ }^{4} /{ }_{3} \mathrm{pr}^{3}=94.644\right. \\ \mathrm{r}^{3}=22.59166 \\ \mathrm{r}=2.827 \mathrm{~cm} \end{gathered}$ | 24. | (a) Plates bought by Mwema $=\frac{1200}{x}$ <br> Plates bought by Mrs. Mwema $=\frac{1200}{0.8 \mathrm{x}}$ <br> Total $\frac{1200}{x}+\frac{1200}{0.8 x}$ <br> (b) $\frac{120}{0.8 \mathrm{x}}-\frac{1200}{\mathrm{x}}=6$ |
| :---: | :---: | :---: | :---: |
| 23. | (a) (i) $10^{2}=7.2^{2}+7.2^{2}-2(7.2)(7.2) \operatorname{Cos} q$ $\mathrm{q}=87.97^{\circ}$ <br> (ii) $10^{2}=6.5^{2}+6.5^{2}-2(6.5)(6.5) \operatorname{Cos} q$ $\mathrm{q}=100.57^{\circ}$ $\begin{aligned} & \text { (b) } \frac{87.97}{360} \times \mathrm{p} \times 7.2^{2}-1 / 2 \times 7.2 \times 7.2 \sin 87.97 \\ & =13.898 \\ & \begin{aligned} & \frac{100.57}{360} \times \mathrm{p} \times 6.5^{2}-1 / 2 \times 6.5 \times 6.5 \operatorname{Sin} 100.57 \\ &=16.319 \end{aligned} \\ & \text { Total area }=13.898+16.319 \\ & =30.217 \\ & =30.22 \end{aligned}$ <br> (c) $\begin{aligned} & \frac{87.97 \times 2(3.142)}{360} \\ & =1.536 \end{aligned}$ |  | $\begin{gathered} 1200 \mathrm{x}-1200(0.8 \mathrm{x})=6\left(0.8 \mathrm{x}^{2}\right) \\ 240 \mathrm{x}=4 . \mathrm{x}^{2} \\ 4.8 \mathrm{x}^{2}-240 \mathrm{x}=0 \\ \mathrm{x}(4.8 \mathrm{x}-240)=0 \\ \mathrm{x}=50 \end{gathered}$ <br> Mwema: sh 50 per plate <br> Mrs Mwema: sh 40 per plate $\begin{aligned} & \text { (c) } \frac{1200}{50}+\frac{1200}{40} \\ & =54 \end{aligned}$ |

BUSIA COUNTY FORM 4 JOINT EXAMINATION
Kenya Certificate of Secondary Education
MATHEMATICS
PAPER 2

| No |  |  |  |
| :---: | :---: | :---: | :---: |
| 1. | $\begin{aligned} & \frac{\left(\frac{4}{11}\right)^{2} \text { of } \frac{3}{5}-\left(\frac{1}{20}\right)}{\left(1 \frac{4}{5}+1 \frac{2}{5}\right) \div\left(\frac{1}{5}+\frac{9}{10}\right)} \\ & =\frac{\left(\frac{4}{11}\right)^{2} \times \frac{11}{20}}{\frac{16}{5} \div \frac{11}{10}} \end{aligned}$ |  | $\begin{aligned} & M_{2}=\frac{-4}{3} \\ & y-8=\frac{-4}{3} \\ & x-9 \\ & 3 y-24=-4+36 \\ & 4 x+3 y-60=0 \end{aligned}$ |
|  | $\begin{aligned} & =\frac{\frac{16}{121} \times \frac{11}{20}}{\frac{16}{5} \times \frac{10}{11}} \\ & =\frac{4}{5} \times \frac{11}{32} \\ & 1 \end{aligned}$ | 6 | $\begin{aligned} & \hline 1-\underline{9}+\underline{9}-\underline{21} \\ & \frac{21}{2} x^{2} \\ & x=100 \\ & 0.9959=1-9 / 200+9 /(100)^{2}-21 / 2(100)^{3} \\ & =1-0.045+0.0009-0.0000105 \\ & =0.95588 \\ & =0.9559(4 \mathrm{~d} . \mathrm{p}) \end{aligned}$ |
|  | 40 | 7. | $\begin{aligned} & \frac{2 x^{2}-3 x y-2 y^{2}}{4 x^{2}-y^{2}} \div \frac{2 x+y}{2 x-y} \\ & \frac{2 x^{2}-4 x y+x y-2 y^{2} x}{} \underline{2 x-y} \end{aligned}$ |
| 2. | $\begin{gathered} 1.32 \times 1.62+2.64 \times 1.19 \\ 0.66 \times 7.27-0.66 \times 2.27 \\ =1.6 \end{gathered}$ |  | $\begin{aligned} & \frac{2 x-4 x y+x y-2 y-x}{(2 y-y)(2 x+y)} 2 x+y \\ & \frac{2 x(x-2 y)+y(x-2 y)}{(2 x-y)(2 x+y) \quad 2 x+y} \end{aligned}$ |
| 3. | $P Q=\left(\begin{array}{cc} 14 & 0 \\ 0 & 14 \end{array}\right)$ |  | $\begin{aligned} & \frac{(x-2 y)(2 x-y)(2 x-y)}{(2 x-y)(2 x+y)(2 x+y)} \\ & =\frac{x-2 y}{2 x+y} \end{aligned}$ |
|  | $\begin{aligned} & \left(\begin{array}{ll} -2 & 3 \end{array}\right)\left(\begin{array}{l} y \end{array}\right)=\left(\begin{array}{l} -1 \end{array}\right) \\ & \frac{1}{14}\left(\begin{array}{cc} 3 & -1 \\ 2 & 1 \end{array}\right)\left(\begin{array}{cc} 4 & 1 \\ 1 \end{array}\right)=\frac{1}{14}\left(\begin{array}{cc} 3 & -1 \\ 2 & 1 \end{array}\right)\binom{9}{1} \end{aligned}$ | 8. | $\begin{aligned} & \hline \text { Cost per kg of mixture }=\frac{100}{120} \times 78 \\ &=\operatorname{sh} 65 \\ & \text { Ratio of mixture }=15: 5=3: 1 \end{aligned}$ |
|  | $\begin{aligned} & =\binom{x}{y}=\binom{2}{1} \\ & \text { Points }=(2,1) \end{aligned}$ | 9 | $\begin{gathered} \hline \hline \mathrm{YP}-\mathrm{x}+\underset{\mathrm{Q}}{\mathrm{Q}}=0 \\ \mathrm{P} \\ \mathrm{Y}^{2}-\mathrm{XP}+\mathrm{Q}=0 \\ \mathrm{P}^{2}-\mathrm{XPQ}=0 \\ \mathrm{P}^{2}-\frac{\mathrm{XP}}{\mathrm{Y}}+\frac{\mathrm{Q}}{\mathrm{Y}}=0 \\ \mathrm{P}^{2}-\underline{\mathrm{X}} \mathrm{P}=\frac{-\mathrm{Q}}{\mathrm{Y}} \\ \mathrm{Y} \\ \mathrm{P}^{2}-\frac{\mathrm{XP}}{\mathrm{Y}}+\underline{(-\mathrm{x})^{2}}=\underline{2 \mathrm{Q}}+\mathrm{Q}+(-\mathrm{x})^{2} \\ \sqrt{\frac{(P-x)^{2}}{2 Y}}= \pm \sqrt{\frac{x^{2}}{4 Y^{2}}-\frac{Q}{Y}} \\ P=\frac{x}{2 y} \pm \sqrt{\frac{x^{2}}{4 Y^{2}}-\frac{Q}{Y}} \\ P=\frac{x \pm \sqrt{x^{2}-4 Y Q}}{2 y} \\ \hline \end{gathered}$ |
| 4. | $\begin{gathered} \left.\hline \hline \log _{2} \mathrm{x}\right)^{2}+\log _{2} 8=\log _{2} \mathrm{x} 4 \\ \left(\log _{2} \mathrm{X}^{2}+3=4 \log _{2} \mathrm{x}\right. \\ \operatorname{Let}^{\log _{2} \mathrm{x}}=\mathrm{t} \\ \mathrm{t}^{2}-4 \mathrm{t}+3=0 \\ (\mathrm{t}-1)(\mathrm{t}-3)=0 \\ \mathrm{t}=1 \text { or } 3 \\ \log _{2} \mathrm{x}=1, \mathrm{x}=2 \\ \log _{2} \mathrm{x}=3, \mathrm{x}=8 \end{gathered}$ |  |  |
| 5. | (a) Centre $\begin{aligned} & \left(\frac{9+1}{2}, \frac{8+2}{2}\right) \\ & (5,5) \\ & r=\sqrt{(9.5)^{2}+(8-5)^{2}} \\ & r=\sqrt{25} \\ & r=5 \text { units } \\ & (x-5)^{2}+(y-5)^{2}=5^{2} \\ & \mathrm{x}^{2}-10 \mathrm{x}+25+\mathrm{y}^{2}-10 \mathrm{y}+25=25 \\ & \mathrm{x}^{2}+\mathrm{y}^{2} \quad 10 \mathrm{x}-10 \mathrm{y}+25=0 \end{aligned}$ <br> (b) $M_{1}=\frac{8-5}{9-5}=\underline{3}$ | 10. | $\begin{gathered} \text { Area }=\mathrm{X} \times(\underline{40-\mathrm{x})} 2 \\ \mathrm{X} \times(20-1 / 2 \mathrm{x}) \\ \mathrm{A}=20 \mathrm{x}-1 / 2 \mathrm{x} \\ \text { At max. area } \\ \frac{\mathrm{dA}}{\mathrm{dX}} 20-\mathrm{x}=0 \\ \therefore \mathrm{X}=20 \mathrm{~cm} \\ \text { Max. area }=20 \times(40-20) \\ =20 \times 10 \\ = \end{gathered}$ |


| 11. | $C D$ is a bisector of chord $A B$ <br> $\therefore \mathrm{CD}$ is diameter $\begin{aligned} & C D=2 r=2 \times 4.5 \\ & =9 \mathrm{~cm} \end{aligned}$ | 16. | $\begin{aligned} & \text { 101, 106, 107, 111, 120, 121, 137, 138, 140, 141, } \\ & \qquad \begin{array}{c} 143 \\ \text { Q1 }=1 / 4(11+1)^{\text {th }} \text { measure }=107 \\ \text { Q3 }=3 / 4(11+1)^{\text {th }} \text { measure }=140 \end{array} \\ & \text { Quartile deviation }=\frac{140-107}{2} \\ & =16.5 \end{aligned}$ |
| :---: | :---: | :---: | :---: |
| 12. | $\begin{aligned} \mathbf{O P}= & -2 \mathbf{a}+3 \mathbf{b} \\ & =-2(3 \mathbf{i}+2 \mathbf{j}-4 \mathbf{k})+3(4 \mathbf{i}+5 \mathbf{j}-2 \mathbf{j}) \\ & =-6 \mathbf{i}-4 \mathbf{j}+8 \mathbf{k}+12 \mathbf{i}+15 \mathbf{j}-6 \mathbf{k} \\ & =6 \mathbf{i}+11 \mathbf{j}+2 \mathbf{k} \end{aligned}$ | 17. | $\begin{aligned} & \text { (a) T.I }=\frac{(30,000 \times 12) \mathrm{k} £ \mathrm{p} . \mathrm{a}}{20} \\ & \quad=18,000 \mathrm{k} £ \mathrm{p} \cdot \mathrm{a} \\ & \text { Slab 1: } 3900 \times 2=\operatorname{sh} 7,800 \\ & \text { Slab2: } 3900 \times 3=\operatorname{sh} 11,700 \\ & \text { Slab 3: } 3900 \times 4=\operatorname{sh} 15,600 \\ & \text { Slab 4: } 3900 \times 5=\operatorname{sh} 19,500 \\ & \text { Slab 5: }(18,000-15,600) 7=\operatorname{sh} 16,800 \\ & \text { Gross tax }=\text { sh } 71,400 \mathrm{p} . \mathrm{a} \\ & \quad=\operatorname{sh} 5950 \mathrm{p} . \mathrm{m} \\ & \text { Net tax }=5950-1056 \end{aligned}$ |
| 13. | $\begin{aligned} & \hline \hline \log 2 x+\log 4 x+\log 8 x \\ & d=\log 2 \\ & a=\log 2 x \\ & S n=n / 2(2 a+(n-1) d) \\ & S_{6}=6 / 2(2 \log 2 x+(6-1) \log 2) \\ & =3\left(\log 4 x^{2}+5 \log 2\right) \\ & =3\left(\log 4 x^{2}+\log 2^{5}\right) \\ & =3 \log \left(4 x^{2} \times 2^{5}\right) \\ & =3 \log \left(4 x^{2} x 32\right) \\ & =3 \log 128 x^{2} \end{aligned}$ |  |  |
| 14. | $\begin{aligned} & A \alpha \frac{B}{\sqrt{C}} \\ & A=\frac{-B}{\sqrt{C}} \\ & A^{1}=\frac{1.26 B K-K B}{0.9 \sqrt{C} \sqrt{C} \times 100} \end{aligned}$ |  | $\begin{aligned} & \quad=\text { sh } 7,479 \mathrm{p} \cdot \mathrm{~m} \\ & \text { Net salary }=36,300-(14,679) \\ & \quad=\text { sh } 21,621 \mathrm{p} . \mathrm{m} \\ & \quad \% \text { increase }=\frac{21,621-20,606}{20,606} \times 100 \\ & \quad=4.926 \% \end{aligned}$ |
|  | $=\frac{\frac{K B}{\sqrt{C}}}{\frac{K B}{\sqrt{C}}\left(\frac{1.26}{0.9}-1\right)} \frac{\frac{K B}{\sqrt{C}}}{} \times 100$ | 18. | $\begin{array}{\|l\|l} \text { a) } x+y \leq 60 \\ x+3 y \geq 60 \\ y \leq 4 x \\ y & >10 \\ \text { b) For max P: }=12, y=48 \\ P=1200(12)+2000(4=\operatorname{sh} 110,400 \end{array}$ |
| 15. | $\begin{aligned} & A \alpha \frac{B}{\sqrt{C}} \\ & A=\frac{-B}{\sqrt{C}} \\ & A^{1}=\frac{1.26 B K-K B}{\frac{0.9 \sqrt{C}}{\sqrt{C} \times 100}} \\ & \frac{K B}{\sqrt{C}} \end{aligned}{ }_{=\frac{\frac{K B}{\sqrt{C}}\left(\frac{1.26}{0.9}-1\right)}{\frac{K B}{\sqrt{C}}} \times 100}^{=(1.4-1) 100} \begin{aligned} & =40 \% \end{aligned}$ |  |  |


|  | $\begin{aligned} & \hline \hline \text { (b) For max P: }=12, y=48 \\ & P=1200(12)+2000(48) \\ & =\operatorname{sh} 110,400 \\ & \text { (c) S.P for } \\ & \text { Cooker }=\underline{90} \times 9200 \checkmark \\ & =\operatorname{sh} 8280 \\ & \text { Refrigerator }=\underline{95} \times 26,000 \checkmark \\ & 100 \\ & =\operatorname{sh} 24,700 \\ & \text { Profit }=280(12)+700(48) \\ & =\operatorname{sh} 36,960 \\ & \hline \end{aligned}$ | 21. | (a) <br> (b) i) $\mathrm{p}(1$ will not be bitten) $\begin{aligned} & =\mathrm{p}\left(\mathrm{RB}^{1}\right)+\mathrm{P}\left(\mathrm{R}^{1} \mathrm{~B}^{1}\right) \\ & =18 / 21 \mathrm{x}^{11} / 15+{ }^{3} / 2 \mathrm{x}^{12} / 13 \\ & =198 / 315+{ }^{36} / 273=242 / 3185={ }^{246} / 455 \end{aligned}$ $\text { ii) } \mathrm{p}(1 \text { will get rabies })$ |
| :---: | :---: | :---: | :---: |
| 19. | (a) $\begin{gathered} 1 / 3 \times 60 \mathrm{~h}=280 \\ 20 \mathrm{~h}=280 \\ \mathrm{~h}=14 \mathrm{~cm} \end{gathered}$ <br> (b) L $\begin{aligned} & \mathrm{PQ}=\mathrm{x}, \mathrm{QR}=5 / 3 \mathrm{X} \\ & \mathrm{x} .5 / 3 \mathrm{x}=60 \text { (follow through any procedure) } \\ & \mathrm{x}^{2}=36 \end{aligned}$ |  |  |
|  | (c) $\begin{gathered} \mathrm{x}=6 \mathrm{~cm} \\ \mathrm{PQ}=6 \mathrm{~cm} \\ \mathrm{QR}=10 \mathrm{~cm} \\ \mathrm{~L}^{2}=14^{2}+5^{2} \\ \mathrm{~L}^{2}=221 \\ \mathrm{~L}=14.866 \mathrm{~cm} \end{gathered}$ <br> (d) Tan $\mathrm{q}=14 / 3$ (accept other trig ratios) $\begin{aligned} & =4.6^{\circ} \\ q & =77.91^{\circ} \end{aligned}$ | 22. | $\begin{aligned} & \text { (a) } \text { i) } \angle \mathrm{CDE}=70^{\circ} \\ & \angle \mathrm{DEC}=50^{\circ} \\ & \therefore \angle \mathrm{DCE}=180^{\circ}-\left(70^{\circ}+50^{\circ}\right)=60^{\circ} \\ & \text { hence } \angle \mathrm{DXE}=2 \times 60^{\circ}=120^{\circ} \\ & \text { ii) } \mathrm{AC} \times \mathrm{AB}=\mathrm{AE} \times \mathrm{AD} \\ & 9 \times 4=12 \times \mathrm{AD} \\ & \therefore \mathrm{AD}=\frac{9 \times 4}{12} \\ & =3 \mathrm{~cm} \end{aligned}$ |
| 20. |  |  | $\begin{aligned} & \text { DE }=12-3=9 \mathrm{~cm} \\ & \text { (b) } \mathrm{H}=6-4.52 \\ & \mathrm{H}=3.969 \mathrm{~cm} \\ & \mathrm{~A}=97.18^{\circ} \times 3.142 \times 36-1 / 4 \times 9 \times 3.696 \\ & =360^{\circ} \\ & =30.53-17.86 \\ & =12.67 \mathrm{~cm}^{2} \\ & \quad \text { Total shaded area }=16.58+12.67 \\ & \\ & =29.25 \mathrm{~cm}^{2} \end{aligned}$ |
|  |  | 23. | $\begin{gathered} \text { (a)(i) } 40 / 360 \times 2 \times 3.142 \times 6370 \operatorname{Cos} 26^{\circ} \\ =3997.5 \mathrm{~km} \\ \text { (ii) } 40 \times 60 \operatorname{Cos} 26^{\circ} \\ =2157.11 \mathrm{~nm} \\ \text { (b) } 128 / 360 \times 2 \times 3.142 \times 6370 \\ =14,232.56 \mathrm{~km} \\ \text { (c) } \mathrm{x}: 128 \times 60 \\ =7,680 \mathrm{~nm} \\ \mathrm{t}=\frac{7680}{1200}==6.4 \mathrm{hrs} \\ \mathrm{Y}: \underline{2157.11} \quad 500 \\ =4.31 \mathrm{hrs} \\ \text { Y arrived earlier by } 2 \mathrm{~h} 05 \text { minutes } \end{gathered}$ |
|  |  | 24 | $\left(\begin{array}{ll}(\mathrm{b} & 4 \\ 0 & 2\end{array}\right)\left(\begin{array}{ccc}5 & 6 & 4 \\ -1 & -1 & -0.5\end{array}\right)=\left(\begin{array}{ccc}6 & 8 & 6 \\ -2 & -2 & -1\end{array}\right)$ <br> $P(6,-2) Q(8,-2) R(6,-1)$ <br> c) Centre ( $-1,0.5$ ) <br> Angle $=180^{\circ}$ <br> d) $\mathrm{L}(1,2) \mathrm{M}(5,2) \mathrm{N}(1,6)$ |

KIMA JOINT EVALUATION TEST - 2015
Kenya Certificate of Secondary Education

## MATHEMATICS

Paper - 121/1
July/August 2015
Time: $21 / 2$ hours
SECTION 1 (50 MARKS)
Answer all the questions in this section in the spaces provided.

1. Evaluate

$$
\frac{8 \times \frac{1}{3} \text { of } 9 \div 2}{(12+2 \times 3)-\frac{2}{3} \text { of } 144 \div 12}
$$

(3 marks)
2. Find the least number of biscuits that can be packed into carton boxes which contain either 9 or 15 or 20 or 24 with none left over.
3. Find the integral values that satisfy the inequality
$2 x+3 \geq 5 x-3>-8$
4. Simplify the expression $\frac{4 x^{2}-x y-3 y^{2}}{32 x^{2}-18 y^{2}}$
5. The diagram below represents a parallelogram. Calculate the area of the shaded region.

6. A tourist arrived from USA and changed his US $\$ 1500$ to Kshs. He spent Kshs 3,000 per night in a hotel for 20 nights and a further Kshs 5,000 daily for entire period. He left for South Africa having changed the balance to South African Rand.
Calculate the amount of South African Rands he was left with, if the bank buys and sells currencies using the table below.
(3 marks)

| Currency | Buying | Selling |
| :--- | ---: | ---: |
| 1 Us Dollar (\$) | 78.4133 | 78.4744 |
| I sterling pound (£) | 114.1616 | 114.3043 |
| 1 South African Rand | 7.8842 | 7.9141 |

7. $x(4,-3)$ and $y(-3,-4)$ are points on a straight line. Find the equation of a line perpendicular to $x y$, passing through $y$. Giving your answer in the form $\mathrm{ax}+\mathrm{by}+\mathrm{c}=0$ ( 3 marks)
8. The figure below shows a frustum. Find its volume.

(4 marks)
9. Each interior angle of a regular polygon is 100 larger than the exterior angle. Determine the number of sides of the polygon.
10. The market price of revision book in a certain bookshop is Kshs 850 . Wilson bought two dozens of the revision at a discount of $15 \%$. He sold all of them on the streets making a profit of $25 \%$. Determine the total sales.
11. Solve for $x$ in $125^{x}+5^{3 x}-3=47$
12. a) Using the line given below construct the locus of a point $P$ one side such that $\angle A P B=60^{\circ}$

b) On the same diagram locate the position of point $C$ on the Locus of $P$ and is equidistance from $A$ and $B$. (1 mark)
13. $A$ point $P$ divides $A B$ in the ratio $7:-5$ where $A(2,-3,4)$ and $B(-4,7,-2)$. Find the coordinates of $P$.
14. Use reciprocals, cubes and square root tables to evaluate.
(4 marks)

$$
\frac{2}{0.9272}+\sqrt[3]{20.7726}-\sqrt{0.2643}
$$

15. In the figure below $\angle \mathrm{EHF}=\angle \mathrm{EFH}=90^{\circ}$. $\mathrm{HF}=5 \mathrm{~cm}$ and $\mathrm{EF}=12 \mathrm{~cm}$. Calculate the length of FG leaving your answer as a mixed fraction.
(3 marks)

16. A bus travelling at a an average speed of $63 \mathrm{~km} / \mathrm{h}$, left the station at $8: 15 \mathrm{am}$. A car left the same station at $9: 00$ am and caught up with the bus at 10:45. Find the average speed of the car.
SECTION II (50 marks)
Answer any five questions
17. The marks obtained by 10 students in a maths test were
$25,24,22,23, x, 26,21,23,22$, and 27
The sum of the squares of the marks, $\Sigma x^{2}=5154$
a) Calculate the
i) value of $x$. (2 marks)
ii) Standard deviation.
(5 marks)
b) If each is increased by 3, write down the
i) New mean
(2 marks)
ii) New Standard deviation.
18. A bus left Kisumu for Nairobi at an average speed of $60 \mathrm{~km} / \mathrm{hr}$. After $1 \frac{1}{2}$ hours another car left Kisumu for Nairobi along the same route at an average speed of $100 \mathrm{~km} / \mathrm{hr}$. If the distance between Kisumu and Nairobi is 500 km , determine:
a) i) The distance of the bus from Nairobi when the car took off.
ii) The distance the car travelled to catch up with the bus.
b) Immediately the car caught up with the bus, the car stopped for 25 minutes. Find the new average speed of which the car travelled in order to reach Nairobi at the same time at the bus. (to the nearest whole number).
(4 marks)
19. Three towns $X, Y$ and $Z$ are such that $X$ is on a bearing of $120^{\circ}$ and 20 km from $Y$. Town $Z$ is on a bearing of $220^{\circ}$ and 12 km from $X$.
a) Using a scale of 1 cm to represent 2 km , show the relative position of the places.
b) Find;
i) The distance between Y and Z
ii) The bearing of $X$ from $Z$
iii) The bearing of $Z$ from $Y$.
iv) The area of the figure bounded by XYZ.
20. Triangle PQR whose vertices are $P(2,2), Q(5,3)$ and $R(4,1)$ is mapped onto triangle $P^{1} Q^{1} R^{1}$ by a transformation whose matrix is $\left(\begin{array}{cc}1 & -1 \\ -2 & 1\end{array}\right)$
a) On the grid provided draw triangle $P Q R$ and $P^{1} Q^{1} R^{1}$
b) The triangle $P^{1} Q^{1} R^{1}$ is mapped onto triangle $P^{11} Q^{11} R^{11}$ whose vertices are $P^{11}(-2,-2), Q^{11}(-5,-3), R^{11}(-4,-1)$
i) Find the matrix of transformation which maps triangle $P^{1} Q^{1} R^{1}$ onto triangle $P^{11} Q^{11} R^{11} \quad$ (2 marks)
ii) Draw the image $P^{11} Q^{11} R^{11}$ on the same grid and fully described the transformation that maps PQR onto $P^{11} Q^{11} R^{11}$
c) Find a single matrix of transformation which will map triangle PQR onto triangle $P^{11} Q^{11} R^{11}$
21. A right conical frustum of base radius 7 cm , top radius 4 cm and height 5 cm is stuck onto a cylinder or base radius 7 cm and height 6 cm and further attached to the hemisphere to form a closed solid as shown below. (Take $\pi=2{ }^{22} / 7$ )

a) Find the volume of the solid.
b) Given that the mass or the solid is 2430 g find its density.
22. a) Complete the table below for the function.

| x | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| y |  |  |  |  |  |  |  |

b) Use the mid-ordinate rule with six ordinates to estimate the area enclosed by the curve of the functions $y=x^{2}-3 x+5, x-$ axis and the lines $x=2$ and $x=8$.
c) Find the exact area o the region described in (b) above.
d) If the mid-ordinates rule is used to estimate the area under the curve between $x=2$ and $x=8$, what will be the percentage error in the estimation?
(2 marks)
23.
a) Fill in the table below to 2 decimal places of the graph $y=\sin x$ and $y=2 \sin (x-30)$ for the range $-180 \leq x \leq 180$ (2 marks)

| $x$ | -180 | -150 | -120 | -90 | -60 | -30 | 0 | 30 | 60 | 90 | 120 | 150 | 180 |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\sin x$ | 0 |  |  | -1 | -0.87 |  | 0 |  | 0.87 |  |  | 0.5 |  |
| $2 \sin (x-30)^{\circ}$ | 1 |  |  | -1.73 | -2 |  | -1 |  | 1 |  |  | 1.73 |  |

b) On the grid provided, using a scale of 1 cm to represent $30^{\circ}$ on the $x$-axis and 1 cm to represent 0.5 units on the $y$-axis, draw the graph of $y=\operatorname{Sin} x^{\circ}(x-30)^{\circ}$ on the same axes.
c) Using your graph
i) state the amplitude and the period of the graph $y=2 \sin (x-30)^{\circ}$
ii) Solve the equation
$\operatorname{Sin} x^{\circ}=2 \operatorname{Sin}(x-30)^{\circ}$
(1 mark)
iii) Describe fully the transformation that will map $y=2 \operatorname{Sin}(x-30)^{\circ}$ on $y=\operatorname{Sin} x$
24. Main was paid an initial salary of Kshs 200,000 per annum with a fixed annual increment. John was paid an initial salary of Kshs 250,000 per annum with $50 \%$ increment compounded annually.
a) Given that Maina's annual salary is the 8th year was Kshs 298,000 determine
i) His annual increment.
(2 marks)
ii) The total amount of money Maina earned during the 8 years.
(2 marks)
b) Determine John's monthly earning, correct to the nearest shillings during the eight year.
c) Determine, correct to the nearest shilling
i) The total mount of money John earned during the 8 years.
(2 marks)
ii) The difference between Maina's and John's average monthly earning during the 8 years.

KIMA JOINT EVALUATION TEST - 2015
Kenya Certificate of Secondary Education

## MATHEMATICS

Paper - 121/2
July/August 2015
Time: 21122 hours
SECTION 1 (50 MARKS)
Answer all the questions in this section in the spaces provided.

1. Use logarithm table to evaluate to 4 decimal places.
(4 marks)

$$
\frac{8.23 \times \sqrt{0.9982}}{0.7467 \div \operatorname{Cos} 60^{\circ}}
$$

2. Expand the expression $(3 \sqrt{ } 2+5)(3 \sqrt{ } 2-5)$. Hence work out the following.
(3 marks)

$$
\frac{4}{3 \sqrt{2}+5}-\frac{3}{3 \sqrt{2}-5}
$$

3. Make $x$ the subject of the formula.

$$
A=\sqrt{\frac{3+2 x}{5-4 x}}
$$

4. A quantity $F$ varies partly at $t$ and partly as the square root of $t$. When $t=4, F=22$ and when $t=9, f=42$. Write the equation connecting $F$ and $t$.
(3 marks)
5. The $n^{\text {th }}$ term of a sequence in $2 n+1$
i) State the first four terms of the sequence (1 mark)
ii) Determine the sum of the first 40 terms of the series.
6. Find the point on the curve $y=x^{2}-3 x+6$ at which the gradient is 3 and find the equation of the tangent to the curve at this point.
(3 marks)
7. Solve the trigonometric equation for $0^{\circ} \leq x \leq 360^{\circ}$.
$3 \operatorname{Cos}^{2} x+8 \operatorname{Sin} x-4=3$
8. Mr. Partel a civil servant pays PAYE of Kshs 3500 per month. He is entitled to a personal relief of Kshs 1164 per month. Using the tax brackets below. Find Partel's monthly taxable income.
(4 marks)

| Monthly Earnings in Kshs | Rates in Ksh /pound |
| :--- | :---: |
| $1-6566$ | 2 |
| $6561-10,560$ | 3 |
| $14561-14560$ | 4 |
| $14561-18550$ | 6 |
| Over 18,550 | 8 |

9. Find the centre of radius of a circle whose equation is $3 x^{2}+3 y^{2}-18 x+12 y+39=12$
(3 marks)
10. Expand $(2+1 / 5 x)^{8}$ up to the term in $x^{3}$. Use your expansion to evaluate ( 2.04$)^{8}$ correct to 4 decimal places. ( 3 marks)
11. Two types of tea which cost Kshs 200 per kg and Kshs 250 per kg are mixed so that their weights are in the ratio $5: 3$ respectively. Calculate the cost of 20 kg of the mixture.
12. In the figure below QT is a tangent to a circle at $Q$. PXRT and $Q X S$ are straight lines. $P X=6 \mathrm{~cm}, R T=8 \mathrm{~cm}, Q X=4.8 \mathrm{~cm}$ and $X S=$ 5 cm .

Find the length of :

a) $X R$
b) $Q T$
(1 mark)
13.
$T$ is a transformation represented by the matrix $\left(\begin{array}{cc}5 x & 2 \\ -3 & x\end{array}\right)$ under $T$, a square of area of $18 \mathrm{~cm}^{2}$ is mapped into a square of area $110 \mathrm{~cm}^{2}$. Find the value of x .
(3 marks)
14. Given that the dimensions of a rectangle are 12.0 cm and 25.0 cm . Find the percentage error in calculating the area.( 3 marks)
15. After how many years would Kshs 15,000 amount to Kshs $24,015.50$ at a rate of $16 \%$ p.a. compounded quarterly?(3 marks)
16. a) Find the inverse of the matrix. $\left(\begin{array}{ll}1 & 1 \\ 3 & 1\end{array}\right)$
(1 marks)
b) Hence determine the point of intersection of the lines.

$$
y+x=7
$$

(2 marks)
$3 x+y=15$

## SECTION II (50 marks)

Answer any FIVE questions from this section.
17. In the figure below $A B C$ is a tangent to the circle centre $O$. $D O G$ is a diameter, angle $D G F=60^{\circ}$. angle $D B C=48^{\circ}$ and angle DFE $=25^{\circ}$. Giving reasons, find the size of angles:

i) $\angle \mathrm{FEB}$
(2 marks)
ii) Obtuse FOB
(2 marks)
iii) $\angle E B D$
(2 marks)
iv) $\angle B C D$
(2 marks)
v) $\angle O B E$
18. Each acre of potatoes required 9 men and each acre of cabbages requires 2 men. The farmer has 240 men available and he must plant at least 10 acres of potatoes. The profit on potatoes is Kshs 1000 per acre and on cabbages is Kshs 1200 per acre. If he plants $x$ acres of potatoes and $y$ acres of cabbages:
a) Write down three inequalities in $x$ and $y$ to describe this information
b) Represent these inequalities graphically.
c) Use your graph to determine the number of acres for each crop which will give maximum profit and hence find the maximum profit.
(3 marks)
19. In the figure below EFGHIJKL is a square based frustum whose dimensions are as shown. The perpendicular height of the frustum is 9 cm . Given that $\mathrm{EF}=\mathrm{FG}=\mathrm{GH}=\mathrm{HE}=10 \mathrm{~cm}$ and $\mathrm{JK}=\mathrm{KL}=\mathrm{IL}=\mathrm{IJ}=4 \mathrm{~cm}$.

a) Calculate
i) The altitude of the pyramid (2 marks)
ii) The angle between the line FK and the base EFGH (2 marks)
iii) The angle between line LG and EF
b) The volume of the frustum
20. A plane took 2 h 10 minutes to fly from town $\mathrm{A}\left(6^{\circ} \mathrm{S}, 70^{\circ} \mathrm{E}\right)$ to town $\mathrm{B}\left(18^{\circ} \mathrm{N}, 70^{\circ} \mathrm{E}\right)$ (Take the radius of the earth to be 6370 km and $\pi={ }^{22} / 7$ )
a) Find the average speed of the plane.
b) A traveller in the plane spent 30 minutes in town B conducting some business. He took a second plane to town $\mathrm{C}\left(18^{\circ} \mathrm{N}\right.$, $10^{\circ} \mathrm{E}$ ). The average speed of the second plane was $70 \%$ that o the first plane. Determine the time to the nearest minute the plane took to travel from $B$ to $C$.
c) When the plane took off at town $A$ the local time was 0400 h . Find the local time at C when the traveller arrived .
21. Use a ruler and a pair of compass only in the constructions below:
a) Construct a triangle $A B C$ such that $A B=4 \mathrm{~cm}, B C=5 \mathrm{~cm}$ and $\angle A B C=120^{\circ}$, measure $A C$.
b) On the same diagram
i) locate $P$ the locus of a point equidistance from the three vertices of the triangle $A B C$ and demonstrate this using a circle. Measure the radius of the circle.
(2 marks)
ii) On the same side of $B C$ as $A$, construct $Q$ the locus of points such that angle $B Q C=120^{\circ}$. ( 2 marks)
iii) On the side of $A C$ opposite point $B$ construct $R$ the locus of points 4 cm from line $A C$.
(2 marks)
iv) Within the circle shade the set of points such that $\angle B Q C \geq 120^{\circ}$
22. The velocity, $\mathrm{Vm} / \mathrm{s}$, of the particles projected into space is given by the formula: $V=5 t^{2}-2 t^{2}+9$ where $t$ is time in seconds elapsed since projection,
Determine
a) The acceleration of the particle when $t=4$
(3 marks)
b) The value of $t$ which minimises the acceleration.
(2 marks)
c) The velocity of the particle when acceleration is minimum
(2 marks)
d) The total distance moved by the particle between $t=1$ to $t=4$ seconds.
23.


In the figure above, $M$ divides line $O B$ in the ratio $2: 3$ and $N$ divides $A B$ in the ratio $1: 2$. $A M$ and $O N$ intersect at $X$. Given $\mathbf{O A}=2 \mathbf{a}$ and $\mathbf{O M}=\mathbf{b}$
a) Find in terms of $\mathbf{a}$ and $\mathbf{b}$.
i) $\mathbf{A B}$
ii) $\mathbf{A M}$
iii) ON (1 mark)
b) If $A X=h \mathbf{A M}$ and $O X=k O N$ where $h$ and $k$ are scalars.
i) Express OX in two ways.
(2 marks)
ii) Find the value of $h$ and $k$
(4 marks)
iii) Find the ratio of $\mathrm{AM}: \mathrm{MX}$
(1 mark)
24. In chemistry form 4 classes, $1 / 3$ of the class are girls and the rest boys, ${ }^{4} / 5$ of the boys and $9 / 10$ of the girls are right handed while the rest are left handed. The probability that a right-handed student breaks a conical flask in any practical session is $3 / 10$ and the corresponding probability of a left-handed student ${ }^{4} / 10$. The probabilities are independent of the students gender.
a) Represent the above information on a tree diagram with independent probabilities.
b) Determine the probability that student chosen at random form the class is left handed and does not break a conical flask in simplest form.
c) Determine the probability that a conical flask is broken in any chemistry practical session in simplest
d) Determine the probability that a conical flask is not broken by a right-handed student in the simplest form. ( 2 marks)

KIMA JOINT EVALUATION TEST - 2015
Kenya Certificate of Secondary Education

## MATHEMATICS

Paper - 121/1
July/August 2015
Time: $211 / 2$ hours



$$
\begin{aligned}
& \text { a) }\left(\begin{array}{cc}
1 & -1 \\
-2 & 1
\end{array}\right)\left(\begin{array}{ccc}
P & Q & R \\
2 & 5 & 4 \\
2 & 3 & 1
\end{array}\right)\left(\begin{array}{ccc}
P^{1} & Q^{1} & R^{1} \\
0 & 2 & 3 \\
-2 & -7 & -7
\end{array}\right) \\
& P^{1}(0,-2), Q^{1}(2,-7), R^{1}(3,-7) \\
& \text { b) i }\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)\left(\begin{array}{ccc}
P^{1} & Q^{1} & R^{1} \\
0 & 2 & 3 \\
-2 & -7 & -7
\end{array}\right)\left(\begin{array}{ccc}
P^{11} & Q^{11} & R^{11} \\
-2 & -5 & -4 \\
-2 & -3 & -1
\end{array}\right)
\end{aligned}
$$

$$
\begin{array}{ll}
-2 b=-2-2 d=-2 \\
b=1 & d=1 \\
2 c-7 d=-3 & 2 a-7 b=-5 \\
2 c=4 & 2 a=2 \\
c=2 & a=1 \\
\quad \text { Matrix }=\left(\begin{array}{ll}
1 & 1 \\
2 & 1
\end{array}\right)
\end{array}
$$

ii) Half turn rotation about the origin
c)

$$
\begin{aligned}
& \left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)\left(\begin{array}{ccc}
P^{1} & Q^{1} & R^{1} \\
2 & 5 & 4 \\
2 & 3 & 1
\end{array}\right)\left(\begin{array}{lll}
P^{11} & Q^{11} & R^{11} \\
-2 & -5 & -4 \\
-2 & -3 & -1
\end{array}\right) \\
& 2 a+2 b=-2 \\
& 5 a+3 b=-5 \\
& 6 a+6 b=-6 \\
& 10 a+6 b=-10 \\
& -4 a=4 \\
& a=-1 \\
& b=-2+2 \\
& =0 \\
& \text { Required matrix }=\left(\begin{array}{cc}
-1 & 0 \\
0 & -1
\end{array}\right)
\end{aligned}
$$

a) Volume of cylindrical part
$=\pi r^{2} h=\frac{22}{7} \times 7^{2} \times 6=924 \mathrm{~cm}^{3}$
Volume of hemisphere
$=\frac{1}{2} \times \frac{4}{3} \pi^{3}=\frac{1}{2} \times \frac{4}{3} \times \frac{22}{7} \times 7 \times 7 \times 7$
$=718.7 \mathrm{~cm}^{2}$
L.S. $f=\frac{7}{4}=\frac{s+h}{n}$
$7 \mathrm{~h}=20+4 \mathrm{~h}$
$3 \mathrm{~h}=20$
$h=\frac{20}{3}=6.667 \operatorname{or} 6 \frac{2}{3}$
volume of conical frustum

$$
\left(\frac{1}{3} \times \frac{22}{7} \times 7^{2} \times 11.67\right)-\left(\frac{1}{3} \times \frac{22}{7} \times 4^{2} \times 6.67\right)
$$

599.06-111.75
$=487.3 \mathrm{~cm}^{3}$
Total volume
(924 +718.7 + 487.2)
$=2129.8 \mathrm{~cm}^{3}$
b)

Density $=\frac{\text { Mass }}{\text { volume }}=\frac{2430}{2129.8}$
$=1.14095 \mathrm{~g} / \mathrm{cm}^{3}$
22
a)

| $x$ | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $y$ | 2 | 5 | 9 | 15 | 23 | 33 | 45 |

b)

| x | 2.5 | 3.5 | 4.5 | 5.5 | 6.5 | 7.5 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| y | 3.75 | 6.75 | 11.75 | 18.75 | 27.75 | 38.8 |

Area $=1(3.75+6.75+11.75+18.75+27.75+38.75)$
$=107.5$ sq units

Exact area $=\int_{2}^{8} x^{2}-3 x+5 d x$
$=\left(\frac{x^{3}}{3}-\frac{3 x^{2}}{2}+5 x\right)_{2}^{8}$
$=\left(\frac{512}{3}-\frac{3}{2}(60)+40\right)-\left(\frac{8}{3}-\frac{12}{2}+10\right)$
$=168-90+30$
$=108$ sq units
d) Percentage error :

$$
=\frac{0.5}{1.08} \times 100=0.463 \%
$$



KIMA JOINT EVALUATION TEST - 2015
Kenya Certificate of Secondary Education

## MATHEMATICS

Paper-121/2
July/August 2015
Time: $211 / 2$ hours


| 9. | $\begin{aligned} & 3 x^{2}+3 y^{2}-18 x+12 y+39-12=0 \\ & x^{2}+y^{2}-6 x+4 y+9=0 \\ & x^{2}+6 x+9+y^{2}+4 y+4=4 \\ & (x-3)^{2}+(y+2)=2^{2} \checkmark \\ & \text { Centre }(3,-2) \\ & \text { radius } 2 \text { units } \checkmark \end{aligned}$ | 15 | $\begin{aligned} & \text { Rate per period }=\frac{16}{4}=4 \% \\ & 24015.50=15000\left(1+\frac{4}{100}\right)^{n} \\ & 24015.50=15000(1.04)^{n} \\ & (1.04)^{n}=1.610 \end{aligned}$ |
| :---: | :---: | :---: | :---: |
| 10 | $\begin{aligned} & \left(2+\frac{1}{5} x\right)^{8}=1 \times 2^{8}\left(\frac{1}{5} x\right)^{0}+8 \times 2^{7}\left(\frac{1}{5} x\right)^{1}+28 \times 2^{6}\left(\frac{1}{5} x\right)^{2}+56 \times 2^{5}\left(\frac{1}{5} x\right)^{3} \\ & =256+\frac{1024}{5}+\frac{1292)^{2}}{25}+\frac{17923}{125} \\ & \left(2+\frac{1}{5} x\right)^{8} \rightarrow(2.04)^{8} \\ & =(2+0.04)^{8} \\ & \text { Hence } \frac{1}{5} x=0.04 \end{aligned}$ |  | $\begin{aligned} & n \log 1.04=\log 1.6010 \\ & n=\frac{\log 1.6010}{\log 1.04} \\ & n=12.02=\simeq 12 \text { periods } \end{aligned}$ <br> After3years |
|  | $\left\{\begin{array}{l} x=0.04 \times 5 \\ x=0.2 \\ (2.04)^{8}=256 \times \frac{1024}{5}(0.2)+\frac{1792}{25}(0.2)^{2}+\frac{1792}{125}(0.2)^{3} \\ =256+40.96+2.8672+0.114688 \\ =299.94188 \\ =299.9419 \end{array}\right.$ | 16 | $\begin{aligned} & \text { Det } \Rightarrow\left(\begin{array}{ll} 1 & 1 \\ 3 & 1 \end{array}\right) \\ & =1 \times 1-1 \times 3 \\ & =-2 \\ & \text { Inverse }=-\frac{1}{2}\left(\begin{array}{cc} 1 & -1 \\ -3 & 1 \end{array}\right) \\ & =\left(\begin{array}{cc} -\frac{1}{2} & \frac{1}{2} \\ \frac{3}{2} & -\frac{1}{2} \end{array}\right) \\ & -\frac{1}{2}\left(\begin{array}{cc} 1 & -1 \\ -3 & 1 \end{array}\right)\left(\begin{array}{ll} 1 & 1 \\ 3 & 1 \end{array}\right)\binom{x}{y}=-\frac{1}{2}\left(\begin{array}{cc} 1 & -1 \\ -3 & 1 \end{array}\right)\binom{7}{15} \\ & \left(\begin{array}{ll} 1 & 0 \\ 0 & 1 \end{array}\right)\binom{x}{y}=-\frac{1}{2}\binom{-8}{-6} \\ & \left(\begin{array}{ll} 1 & 0 \\ 0 & 1 \end{array}\right)\binom{x}{y}=\binom{4}{3} \\ & x=4, y=3 \end{aligned}$ |
| 11 | $\begin{aligned} & 8 k g \cos t s(5 \times 200)+(3 \times 250) \\ & 20 k g \cos t s \frac{(5+200)+(3 \times 250)}{8} \times 20 \\ & =\text { shs } 4,375 \end{aligned}$ |  |  |
| 12 | a) $6 \times x \mathrm{R}=4.8 \times 5$ $\begin{aligned} & X R=\frac{4.8 \times 5}{6} \\ & X R=4 \end{aligned}$ <br> b) $\quad \mathrm{Q}^{2}=18 \times 8=144$ $Q T=12 \mathrm{~cm}$ |  |  |
| 13 | $\begin{aligned} & \hline \hline \text { Det }=5 x^{2}+6 \\ & \quad 5 x^{2}+6=\frac{110}{110} \\ & 5 x^{2}=5 \\ & x^{2}=1 \\ & x= \pm 1 \\ & x=1 \text { or } x=-1 \end{aligned}$ | 17 | i) $120^{\circ}$ <br> opposite <s in a cyclic Quad <br> ii) $144^{\circ}$ <br> angle at centre twice of circumf <br> iii) $25^{\circ}$ <br> angle subtended by same chord ED <br> iv) $63^{\circ}$ <br> angle in alternate segment <br> v) $42^{\circ}$ <br> Angle in isosceles $\Delta$ |
| 14 | $\begin{aligned} \hline \text { Actual area } & =120 \times 25.0=300 \mathrm{~cm}^{2} \\ \text { Max Area } & =12.5 \times 25.5 \checkmark \\ & =318.75 \mathrm{~cm}^{2} \\ \text { Min area } & =11.5 \times 24.5 \checkmark \\ & =281.75 \mathrm{~cm}^{2} \\ \text { Error } & =\frac{318.75-281.75}{2}=18.5 \\ \% \text { Error } & =\frac{18.5}{300} \times 100 \\ & =6.167 \% \end{aligned}$ | 18 | $\text { a) } \quad \begin{array}{ll}  & x+y \geq 50 \\ & x \leq 10 \\ 3 & x+y \geq 120 \end{array}$ |


|  |  | 20 | $\begin{array}{ll} \hline \hline \text { a) } & \text { Distance from A to B } \\ =\quad & 2 \times 6370 \times \frac{22}{7} \times \frac{24}{360}=2669.33 \\ \text { Speed }=\frac{2 \times 6370 \times \frac{22}{7} \times \frac{24}{360}}{2 \frac{1}{3}} \\ \quad=1144 \mathrm{~km} / \mathrm{h} \\ \text { b) } \quad \text { Time }=\frac{2 \times 6370 \times \frac{22}{7} \times \frac{60}{300} \operatorname{Cos} 18}{1114 \times \frac{70}{100}} \\ =7.925470969 \\ =7 \text { hrs } 56 \text { minutes } \end{array}$ |
| :---: | :---: | :---: | :---: |
| 19 | $\frac{9+h}{h}=\frac{5}{2}$ $\text { altitude }=(6+9)=15$ $\begin{aligned} & V F=\sqrt{15^{2}+(5 \sqrt{2})^{2}} \\ & =16.583 \\ & \operatorname{Tan} \theta=\frac{15}{5 \sqrt{2}} \\ & \theta=64.76^{\circ} \end{aligned}$ <br> ii) <br> iii) <br> b) $\begin{aligned} & =\left(\frac{1}{3} \times 10 \times 10 \times 15\right)-\frac{1}{3}(4 \times 4 \times 6) \\ & =500 \mathrm{~cm}^{3} \\ & =468 \mathrm{~cm}^{3} \end{aligned}$ |  | c) Arrival time at $B$ $0400+2 \mathrm{hr} 20 \mathrm{~min}$ $=0620 \mathrm{~h}$ <br> Departure time at B $\begin{aligned} & =0620+30 \\ & =0650 \mathrm{~h} \end{aligned}$ <br> Time difference between B and C $\begin{aligned} & \frac{20-10}{360} \times 24 \\ & =4 \mathrm{~h} \\ & \text { Arrival time at C (local time } \\ & =0650+7 \mathrm{hr} 56 \mathrm{~min}-4 \\ & =1046 \mathrm{~h} \end{aligned}$ |
|  |  | 21 |  |
|  |  | 22 | a) $\begin{aligned} & \mathrm{V}=5 \mathrm{t}^{2}-2 \mathrm{t}+9 \\ & \boldsymbol{a}=\frac{d v}{d t}=10 t-2 \\ & \text { at } \mathrm{t}=4 \\ & \mathrm{a}=10(4)-2 \\ & =38 \mathrm{~m} / \mathrm{s}^{2} \end{aligned}$ <br> b) $\quad \operatorname{Min}$ acceleration $\Longrightarrow \frac{d v}{d t}=0$ $10 t-2=0$ <br> c) $\quad v=5(0.2)^{2}-2(0.2)+9$ $=8.8 \mathrm{~m} / \mathrm{s}$ |


|  | $\begin{aligned} & s=\int_{1}^{4}\left(5 t^{2}-2 t+9\right) d t \\ & {\left[\frac{5 t^{3}}{3}-t^{2}+9 t\right]_{1}^{4}} \\ & =\left(\frac{5(4)^{3}}{3}+(4)^{2}+9(4)\right)-\left(\frac{5(1)^{3}}{3}-(1)^{2}+9(1)\right) \\ & =117 m \end{aligned}$ |  |
| :---: | :---: | :---: |
| 23 | a) i) <br> ii) <br> iii) $\begin{aligned} A B & =-O A+O B \\ & =-2 a+5 / 2 b \\ A M & =-O A+O M \\ & =2 a+b \\ O N & =O A+1 / 3 A B \\ & =2 a+1 / 3(-2 a+5 / 2 b) \\ & =4 / 3 a+5 / 6 \mathbf{b} \end{aligned}$ <br> b) i) $\begin{aligned} \mathbf{O X} & =\mathbf{O A}+\mathbf{A X} \\ & =2 \mathbf{a}+\mathrm{h}(-2 \mathbf{a}+\mathbf{b}) \\ \mathbf{O X} & =k\left({ }^{( } / 3 \mathbf{a}+5 / 6 \mathbf{b}\right) \end{aligned}$ <br> ii) $\begin{align*} & 2 a+h(-2 a+b)=k\left({ }^{4} / 3 a+5 / 6 \mathbf{b}\right) \\ & 2 a-2 h a+b h=4 / 3 k a+5 / 6 \mathrm{~kb} \\ & 2 a(1-\mathrm{h})=4 / 3 \mathrm{ka} \ldots \ldots . \text { (i) }  \tag{i}\\ & b h=5 / b \mathrm{~kb} \ldots \ldots \ldots \text { (ii) }  \tag{ii}\\ & \mathrm{h}=5 / 6 \mathrm{k} \\ & 2(1-\mathrm{h})=4 / 3 \mathrm{k} \\ & \text { but }=5 / 6 \mathrm{k} \\ & 2(1-5 / 6 \mathrm{k})=4 / 3 \mathrm{k} \\ & 2-10 / 6 \mathrm{k}=4 / 3 \mathrm{k} \\ & 2=4 / 3 \mathrm{k}+10 / 6 \mathrm{k} \\ & 12=8 \mathrm{k}+10 \mathrm{k} \\ & 12 / 18=18 / 18 \mathrm{k} \Rightarrow \mathrm{k}=2 / 9 \\ & \mathrm{but} h=5 / 6 \mathrm{k} \\ & \mathrm{~b}=(5 / 6 \times 2 / 9) \\ & \mathrm{h}=5 / 27 \end{align*}$ <br> iii) $\quad A M: M X$ <br> AX: h AM $=5 / 27 \mathrm{AM}$ | b) Left handed and does not break the conical flask $P$ of left not breaking $\begin{aligned} & =\left(\frac{1}{3} \times \frac{1}{10} \times \frac{6}{10}\right)+\left(\frac{2}{3} \times \frac{1}{5} \times \frac{6}{10}\right) \\ & =\frac{1}{50}+\frac{2}{25} \\ & =\frac{1+4}{50} \\ & =\frac{5}{10} \\ & =\frac{1}{10} \end{aligned}$ <br> c) Probability of a conical flask getting broken $\begin{aligned} & P=\left(\frac{2}{3} \times \frac{4}{5} \times \frac{3}{10}\right)+\left(\frac{2}{3} \times \frac{1}{5} \times \frac{4}{10}\right)+\left(\frac{1}{3} \times \frac{9}{10} \times \frac{3}{10}\right)+\left(\frac{1}{3} \times \frac{1}{10} \times \frac{4}{10}\right) \\ & P=\frac{19}{60} \end{aligned}$ <br> d) Probability of Right handed not breaking the flask $\begin{aligned} & =\left(\frac{2}{3} \times \frac{4}{5} \times \frac{7}{10}\right)+\left(\frac{1}{3} \times \frac{9}{10} \times \frac{3}{10}\right) \\ & =\frac{139}{300} \end{aligned}$ |
| 24 | $\mathrm{B} \rightarrow$ Boys, $\mathrm{G} \rightarrow$ Girls, $\mathrm{B} \rightarrow$ breaking <br> $\mathrm{R} \rightarrow$ Right, L $\rightarrow$ Left, N.B $\rightarrow$ Not breaking |  |

## GUCHA SOUTH EVALUATION TEST - 2015

Kenya Certificate of Secondary Education
MATHEMATICS
Paper - 121/1
July/August 2015
Time: $21 / 2$ hours

## SECTION 1 (50 MARKS)

## Answer ALL the questions in this section.

1. Simplify
$\frac{1 \frac{1}{2}+3 \frac{1}{6}}{4 \frac{1}{3}-3 \frac{2}{5}} \div 1 \frac{2}{3}$
2. Use tables of squares, square roots and reciprocals to evaluate to 3 decimal places.
(3 Marks)
$3.045^{2}+\frac{1}{\sqrt{49.24}}$
3. Simplify the expressions;
$\frac{x^{2}+3 x+2}{x^{2}-1}$
4. A car dealer charges $5 \%$ commission for selling a car. He received a commission of Sh. 17500 for selling a car. How much money did the owner receive from the sale of his car?
5. A water tank has a capacity of 70 litres. A similar model tank has a capacity of 0.25 litres. If the larger tank has a height of 150 cm , calculate the height of the model.
( Marks)
6. The figure below shows a histogram.


Fill in the table below the missing frequencies.

| Length in xcm | Frequency |
| :--- | :--- |
| $7.5 \leq \mathrm{x}<9.5$ | 12 |
| $9.5 \leq \mathrm{x} 11.5$ |  |
| $11.5 \leq \mathrm{x}<15.5$ |  |
| $15.5 \leq 21.5$ |  |

7. Given that $\operatorname{Sin}(2 x-10)=\operatorname{Cos} 600$ and $x$ is an acute angle, find $x$.
(3 Marks)
8. The length of a rectangle is $(3 x+1) \mathrm{cm}$. Its width is 3 cm shorter than the length. Given that area of the rectangle is $28 \mathrm{~cm}^{2}$, find its length.
9. The sides of a rectangle are given as 4.2 cm and 2.8 m , each correct to one decimal place. Find the percentage error in its area.
10. The figure below is a velocity - time graph for a car.

(a) Find the total distance travelled by the car. ${ }^{\text {Time (seconds) }}$
(b) Calculate the deceleration of the car.
11. Three bells $\mathrm{P}, \mathrm{Q}$ and R are programmed to ring after intervals of 15 minutes, 25 minutes and 50 minutes respectively. If the ring together at 6.45 am , when did they last ring together?
(3 Marks)
12. A straight line 1 passes through the point $(3,-2)$ and is perpendicular to a line whose equation is $2 y-4 x=1$. Find the equation of 1 in the form $y=m x+c$, where $m$ and $n$ are constants.
(3 Marks)
13. A man walks directly from point A towards the foot of a tall building 240 m away. After covering 180 m , he observes that the angle of elevation of the top of a building is $45^{\circ}$. Determine the angle of elevation of elevation of the top of the building from A .
14. ABCD is trapezium in which AB is parallel to $\mathrm{DC}, \mathrm{AB}=6 \mathrm{~cm}, \mathrm{DC}=12 \mathrm{~cm}, \angle \mathrm{ADC}=400$ and $\mathrm{AD}=10 \mathrm{~cm}$. Calculate the area of the trapezium.
(3 Marks)

15. Three business partners: Kioko, Njau and Osiako are to share Sh. 12,000 in the ratio $5: 6: x$ respectively. If Kioko received Sh. 4000, determine the value of $x$.
(3 Marks)
16. Form three inequalities that satisfy the un-shaded region.
(3 Marks)


## SECTION II (50 MARKS)

## Answer only FIVE questions from this section.

17. Three business partners Mogambi, Ouko and Memba contributed Sh. 600,000, Sh. 400,000 and Sh. 800,000 respectively to start a business of matatu plying Kisii - Kisumu route. The matatu carries 14 passengers with each paying Sh. 250 . The matatu makes 2 round trips everyday and is ever full. Each day Sh. 6000 is used to cover running costs and wages.
(a) Calculate their profit per day.
(3 Marks)
(b) The matatu works for 25 days per month and is serviced every month at a cost of Sh. 10,000. Calculate their monthly profit in June.
(1 Month)
(c) The three partners agreed to save $40 \%$ of the profit, $24 \%$ to be shared in the ratio of their contribution and the remaining to be shared equally. Calculate Ouko's share in the month of July.
(4 Marks)
(d) The matatu developed a mechanical problem and they decided to sell it through an agent who charged a commission of $5 \%$ on the selling price. Each partner received Sh. 475,000 from the agent after he had taken his commission. Determine the price at which the agent sold the matatu.
18. In an $n$-sided polygon two angles are right angles and each of the remaining angles is $150^{\circ}$.
(a) Find the value of $n$ and hence the sum of the interior angles of this polygon.
(b) Name the polygon.
(c) Find the area of a regular octagon of sides 4 cm giving answer correct to 4 significant figures.
19. Using a ruler and pair of compasses only,
(a) Construct triangle ABC such that $\mathrm{AB}=6.3 \mathrm{~cm}, \mathrm{BC}=7.2 \mathrm{~cm}$ and angle $\mathrm{ABC}=60^{\circ}$.
(b) Measure the length AC.
(c) Draw a circle that touches the vertices A, B and C.
(d) Measure the radius of the circle.
(e) Hence, calculate of the circle outside the triangle.
20. The diagram below shows triangle $O A B$ in which $N$ is the midpoint of $A B$ and $M$ is a point on $O A$ such that $O M: M A=$ 2:1. Lines ON and BM meet at x such that $\mathrm{OX}=\mathrm{hON}$ and $\mathrm{MX}=\mathrm{kMB}$.

(a) Given that $\overrightarrow{O A}=a$ and $\overrightarrow{O B}=b$, express in terms of $a$ and $b$ the following vectors.
(i) $\overrightarrow{\mathrm{AB}}$
(ii) $\overrightarrow{O N}$
(iii) $\overrightarrow{B M}$
(b) By expressing OX in two different ways determine the value of h and k .
21. Milk in a cool factory is stored in a rectangular tank whose internal dimensions are 1.7 m by 1.4 m by 2.2 m . On one day the tank was $75 \%$ full of milk.
(a) Calculate the volume of milk in the tank in litres.
(b) The milk is packed in small packets which are in the shape of a right pyramid on an equilateral triangle of side 16 cm . The height of each packet is 13.6 cm . Each packet is sold at Sh .30 . Calculate:-
(i) the volume of milk in milliliters in each packet to 2 significant figures.
(ii) the exact amount of money that was realized from the sale of all packets of milk.
22. The marks scored by a group of pupils in a Mathematics test were as recorded in the table below.

| Marks | Frequency |
| :--- | :--- |
| $0-9$ | 1 |
| $10-19$ | 2 |
| $20-29$ | 4 |
| $30-39$ | 7 |
| $40-49$ | 10 |
| $50-59$ | 16 |
| $60-69$ | 20 |
| $70-79$ | 6 |
| $80-89$ | 3 |
| $90-99$ | 1 |

(a) State the model class.
(b) Calculate:
(i) the median
(ii) the mean
(c)
23. The points $A(1,1) B(2,-3)$ and $C(3,0)$ are vertices of triangle $A B C$.
(a) (i) Find the coordinates of the vertices of its image $\mathrm{A}^{1} \mathrm{~B}^{1} \mathrm{C}^{1}$ under the transformation defined by the matrix.

$$
S=\left(\begin{array}{ll}
3 & 0 \\
1 & 1
\end{array}\right)
$$

(ii) Draw triangle ABC and its image $\Delta \mathrm{A}^{1} \mathrm{~B}^{1} \mathrm{C}^{1}$ on the grid provided.
(2 Marks)
(b) The triangle $\mathrm{A}^{1} \mathrm{~B}^{1} \mathrm{C}^{1}$ is transformed to triangle A 11 B 11 C 11 by the transformation R whose matrix is
$R=\left(\begin{array}{cc}1 & 0 \\ -1 & 3\end{array}\right)$
(i) Write down the coordinates of $\mathrm{A}^{11} \mathrm{~B}^{11} \mathrm{C}^{11}$.
(ii) Draw the triangle $\mathrm{A}^{11} \mathrm{~B}^{11} \mathrm{C}^{11}$ on the grid in (a) (ii) above.
(iii) Describe fully the transformation which maps triangle ABC onto triangle ABC .
24. A train is travelling on straight railway. It passes through Kijabe railway station at $t=0$ with velocity $v=70 \mathrm{~km} / \mathrm{h}$. The acceleration after passing through Kijabe is given by $4 t-8$.
(a) Find an expression for its velocity.
(b) Calculate
(i) the average velocity between $t=1$ and $t=3$.
(ii) the distance covered by the train in the third hour.

## GUCHA SOUTH EVALUATION TEST <br> 121/2

Mathematics
July/August 2015
SECTION I (50 MARKS)
Answer ALL the questions in this section.

1. In this question, show all steps in your calculations, giving your answers at each stage. Use logarithms correct to 4 decimal places to evaluate;
$\sqrt[3]{\frac{36.72 x(0.46)^{2}}{185.4}}$
2. Make $m$ the subject of the formula.
$\mathrm{x}=\sqrt{\frac{a m^{2}}{a^{2}-m^{2}}}$
3. Write $\frac{10}{\sqrt{7}-\sqrt{2}}$ in the form of $\mathrm{a}(\sqrt{b}+\sqrt{c})$ where $\mathrm{a}, \mathrm{b}$ and c are integers.
4. If $4 x^{2}+8 x+(k-3)$ is a perfect square, find the value of $k$.
5. A piece of forest is in form of a triangle as shown below. Calculate its perimeter to the nearest metre.

6. Find the centre and radius of a circle whose equation is $x^{2}+y^{2}-4 x+6 y-3=0$
7. Presently a machine costs KSh. 364,000 . What was its cost 5 years ago, if it depreciated at $12 \%$ per year (2 Marks)
8. Find the equation of a tangent to the curve $y=x^{3}-2 x^{2}+3 x-1$ at $x=2$
9. Transformation $M$ and $N$ are represented by the matrices $\left(\begin{array}{ll}2 & 0 \\ 0 & 2\end{array}\right)$ and $\left(\begin{array}{ll}3 & 0 \\ 1 & 3\end{array}\right) \quad$ respectively. Point $R$ has coordinates (3,-2), find the coordinates of R1 the image of $R$ under a transformation represented by MN (R).
10. In the figure given below $R N$ and $M S$ are chords of a circle that meet at an external point $P$. $P Q$ is a tangent to the circle at $\mathrm{Q} . \mathrm{PR}=2 \mathrm{~cm}, \mathrm{PN}=12 \mathrm{~cm}$ and $\mathrm{PM}=3 \mathrm{~cm}$.
(3 Marks)


Calculate the length of:
(i) PS
(2 Marks)
(ii) PQ
11. Use the first 4 terms of the expansion of $(1-2 x)^{6}$ to find the value of $(0.98)^{6}$ correct to 4 decimal places.
12. Solve the equation $\log _{10}(6 x-2)-1=\log _{10}(x-3)$
13. The points $P, Q$ and $R$ lie on a straight line. The position vectors of $P$ and $R$ are $2 i+\underset{\sim}{j} \mathbf{j}+13 \mathrm{k}_{\sim}$ and $5{\underset{\sim}{\sim}}^{\mathrm{i}}-3 \mathrm{j}+\underset{\sim}{4}$ respectively. Find
(i) the position vector of Q
(ii) the length of PQ
14. (a) Using a ruler and a pair of compasses only, construct a parallelogram $P Q R S$ such that $P Q=8 \mathrm{~cm}, P S=4.5 \mathrm{~cm}$ and angle QPS $=60^{\circ}$.
(b) On the diagram in (a) above locate the locus of a point $X$, such that $X$ is equidistance from $P$ and $R$ (1 Mark)
15. In the figure below $A D E$ and $A B$ are tangents to the circle at $D$ and $B$ respectively. Angle $D A B=40^{0}$ and angle $C D E=$ $65^{\circ}$.


Calculate
(a) angle ADB
(b) angle ABC
16. If $\left(\begin{array}{cc}a-1 & a \\ 3 a & a\end{array}\right)$ is a singular matrix, find the value of a.

## SECTION II (50 MARKS)

## Answer only FIVE questions from this section.

17. (a) A certain sum of money is deposited in a bank that pays simple interest at a certain rate. After 3 years the total amount in the account is KSh,. 358,400 . The interest earned each year is KShs. 121,800.
Calculate
(i) the amount of money which was deposited
(2 Marks)
(ii) the annual rate of interest that the bank paid
(b) (i) A computer whose marked price is KSh. 40,000 is sold at KShs. 56,000 on hire purchase terms. Kioko bought the computer on hire purchase terms. He paid a deposit of $25 \%$ of the hire purchase price and cleared the balance by equal monthly installments of KShs. 2,625.
(ii) Had Kioko bought the computer on cash terms he would have been allowed a discount of $12 \frac{1}{2} \%$ on marked price. Calculate the difference between the cash price and hire purchase price.
(3 Marks)
18. The volume of $V \mathrm{~cm}^{3}$ of a solid depends partly on $\mathrm{r}^{2}$ and partly on $\mathrm{r}^{3}$ where rcm is one of the dimensions of the solid. When $\mathrm{r}=1$ the volume is $54 \mathrm{~cm}^{2}$ and when $\mathrm{r}=2 \mathrm{~cm}$ the volume is $226.8 \mathrm{~cm}^{3}$.
(a) Find the expression of $V$ in terms of $r$. (6 Marks)
(b) Calculate the volume of the solid when $r=4 \mathrm{~cm}$.
(c) Find the value of r for which, the two parts of the volume are equal.
19. (a) Complete the table below for the curve $y=2 x 2+3 x-11$

| x | -4 | -3 | -2 | -1 | 0 | 1 | 2 | 3 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $2 \mathrm{x}^{2}$ | 32 |  | 8 |  | 0 |  |  | 18 |
| 3 x | -12 |  | -6 |  | 0 |  |  | 9 |
| -11 | -11 | -11 | -11 | -11 | -11 | -11 | -11 | -11 |

(b) On the provided grid, draw the graph of $y=2 x 2+3 x-11$
(c) On the same axes draw the graph of $y=2 x+1$.
(1 Mark)
(d) Use your graph in (b) above to solve equation $2 x^{2}+3 x-11=0$
(1 Mark)
(e) Use your graphs in (b) and (c) above to solve the quadratic equation $2 x^{2}+x-12=0$
(1 Mark)
(f) Draw a suitable line to the graph in (b) hence solve the equation $2 x^{2}+3 x-3=0$
(2 Marks)
20. The diagram below represents a cuboid ABCDEFGH in which $\mathrm{FG}=4.5 \mathrm{~cm}, \mathrm{GH}=8 \mathrm{~cm}$ and $\mathrm{HC}=6 \mathrm{~cm}$.

Calculate
(a) the length of FC

(b) the size of the
(i) angle between the lines FC and FH
(ii) angle between the lines AB and FH .
21. From airport $\mathrm{A}\left(30^{\circ} \mathrm{N}, 20^{\circ} \mathrm{W}\right)$ a plane flies eastwards to airport $\mathrm{B}\left(30^{\circ} \mathrm{N}, 80^{\circ} \mathrm{E}\right)$ at a speed of 150 knots.
(a) Determine
(i) the distance covered by the plane in nautical miles.
(ii) time taken by the plane to reach airport B .
(b) The plane made a stopover at B for 45 minutes before flying southwards to airport $\mathrm{C}\left(20^{\circ} \mathrm{S}, 80^{\circ} \mathrm{E}\right)$ at 600 knots. Calculate the total time taken to complete the journey from A to C.
(4 Marks)
(c) If at the time of arrival the local time at C is 5.30 am on Monday. What is the local time A ?
22. (a) Estimate the area bounded by the curve $y=x 2-x-6$, the axis and the ordinates $x=3$ and $x=8$, using the trapezoidal rule with 5 trips.
(b) Find the exact area of the region in (a) above by integration.
(c) Hence find the percentage error made when the trapezium rule is used to estimate the area.
23. (a) Complete the table below which shows heights to the nearest centimeters of 40 students in a school.

| Height | x | f | d | fd | $\mathrm{d}^{2}$ | $\mathrm{fd}^{2}$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $141-150$ | 145.5 | 4 | -20 | -80 | 400 | 1600 |
| $151-160$ |  | 3 |  |  |  |  |
| $161-170$ |  | 8 | 0 | 0 | 0 | 0 |
| $171-180$ | 175.5 | 10 |  | 100 |  | 1000 |
| $181-190$ |  | 7 |  | 140 |  | 2800 |
| $191-200$ |  | 5 |  |  |  | 4800 |
| $201-210$ |  | 3 |  |  |  |  |
|  |  | 40 |  |  |  |  |

where x is the mid-point of a class, f , is the frequency of the class and d is the deviation from the assumed mean.
(b) Hence or otherwise calculate:
(i) the mean height of the 40 students.
(ii) the standard deviation of the distribution correct to $2 \mathrm{~d} . \mathrm{p}$.
24. (a) Complete the table giving the values correct to 2 decimal places.

| $\mathrm{x}^{0}$ | $0^{0}$ | $30^{0}$ | $60^{0}$ | $90^{0}$ | $120^{0}$ | $150^{0}$ | $180^{0}$ | $210^{0}$ | $240^{0}$ | $270^{0}$ | $300^{0}$ | $330^{0}$ | $360^{0}$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $\operatorname{Sin} 2 \mathrm{x}^{0}$ | 0 |  | 0.87 |  | -0.87 |  | 0 | 0.87 | 0.87 |  |  |  |  |
| $\operatorname{Cos} \mathrm{x} 0-2$ | 1 | 0.60 |  |  | -2 | -3.50 |  | -4.60 |  |  |  | -0.50 |  |

(b) On the grid provided draw the graphs of $y=\sin 2 x$ and $y=3 \cos x^{0}-2$ for $0^{0} \leq x \leq 360^{0}$ on the same axes. Use a scale of 1 cm to represent 1 unit on the $30^{\circ}$ on the $x$ axis and 2 cm to represent 1 unit on the $y$ axis.
(c) Use your graphs in (a) above to solve the equation $3 \operatorname{Cos} x-\operatorname{Sin} 2 x=2$
(2 Marks)
(d) State the amplitude of $y=3 \operatorname{Cos} x-2$.

GUCHA SOUTH EVALUATION TEST
121/1
Mathematics
July/August 2015

| $\text { 1. } \begin{aligned} & \text { ( } \mathrm{N}=11 / 2+3 \frac{1}{6}=\frac{3}{2}+\frac{19}{6} \\ &= \frac{9+19}{6} \\ &= \frac{28}{6} \\ & \mathrm{D}=4 \frac{1}{3}-3 \frac{2}{5}=\frac{13}{3}-\frac{17}{5} \\ &=\frac{65-51}{15} \\ &=\frac{14}{15} \\ & \frac{N}{D}=\frac{28}{6} \div \frac{14}{15}=\frac{28}{6} \times \frac{15}{14}=5 \\ &=5 \div \frac{5}{3} \end{aligned}$ | 9. | $\begin{aligned} & \text { Max length }=4.25 \\ & \text { Max width }=2.85 \\ & \text { Max area }=4.25 \times 2.85=12.11 \mathrm{~cm}^{2} \\ & \text { Min length }=4.15 \mathrm{~cm} \\ & \text { Min width }=2.75 \mathrm{~cm} \\ & \text { Min area }=4.15 \times 2.75=11.41 \mathrm{~cm}^{2} \\ & \text { Error }=\frac{\text { max area }- \text { min } \text { area }}{2}=\frac{12.11-11.41}{2} \\ & =\frac{0.7}{2}=0.35 \\ & \text { Actual area }=4.2 \times 2.8=11.76 \\ & \quad \% \text { error in area }=\frac{0.35}{11.76} \times 100=2.976 \% \end{aligned}$ |
| :---: | :---: | :---: |
| $\begin{aligned} & =5 \times \frac{3}{5} \\ & =3 \end{aligned}$ | 10 | $\begin{aligned} & \text { (a) } \mathrm{D}=1 / 2(24+16) 80 \\ & \text { (b) }=-\frac{80}{4} \\ & =20 \mathrm{~m} / \mathrm{s}^{2} \text { (deceleration) } \end{aligned}$ |
| $\begin{array}{ll} \hline \hline \text { 2. } & 9.272+\frac{1}{7.0171} \\ & =9.272+0.1426 \\ & =9.4164 \end{array}$ |  |  |
| 3. $\begin{aligned} & \mathrm{x}^{2}+3 \mathrm{x}+2=(\mathrm{x}+1)(\mathrm{x}+2) \\ & \mathrm{N}=\frac{(x+1)(x+2)}{(x+1)(x-1)} \\ & =\frac{x+2}{x+1} \end{aligned}$ | 11 | $\begin{array}{llll}  & 15 & 25 & 50 \\ 2 & 15 & 25 & 25 \\ 3 & 5 & 25 & 25 \end{array}$ |
| $\begin{aligned} & \text { 4. } \frac{5}{100} \times x=17500 \\ & x=350,000 \\ & \text { Owner receives }=350000-17500 \\ & =332,500 \end{aligned}$ |  |  |
| $\begin{array}{ll} \hline \hline \text { 5. } & \text { V.S.F }=\frac{70}{0.25}=280 \\ & \text { LSF }=3 \sqrt{280}=6.542 \\ & \text { Height of smallest tank }=\frac{150}{6.542} \\ & =22.93 \mathrm{~cm} \end{array}$ |  |  |
| $\begin{array}{ll} \hline \hline \text { 6. } & \text { Frequency }=\text { CI } \times \mathrm{fd} \\ 12=2 \times 1.2 \times \mathrm{k} \\ \mathrm{k}=5 \\ 2 \times 1.6 \times 5=16 \\ 4 \times 0.8 \times 5=16 \\ 6 \times 2 \times 5=60 \\ \hline \end{array}$ | 12 | $\begin{aligned} & 2 \mathrm{y}=4 \mathrm{x}+1 \Rightarrow \mathrm{y}=2 \mathrm{x}+1 / 2 \\ & \mathrm{~g}_{1}=2 \\ & \mathrm{~g}_{2}=1 / 2 \\ & \frac{y+2}{x-2}=-\frac{1}{2} \\ & 2(\mathrm{y}+2)=-1(\mathrm{x}-3) \\ & 2 \mathrm{y}=-\mathrm{x}-1 \\ & \mathrm{y}=-\frac{x}{2}-\frac{1}{2} \end{aligned}$ |
| 7. $\quad \operatorname{Sin}(2 x-10)=0.5$ <br> Acute angle $=30^{\circ}$ |  |  |
| $\begin{aligned} & 2 \mathrm{x}-10=30^{\circ}, 150^{\circ} \\ & 2 \mathrm{x}=40^{\circ}, 160^{\circ} \\ & \mathrm{x}=20^{\circ} \text { and } 80^{\circ} \end{aligned}$ | 13 |  |
| $\text { 8. } \begin{aligned} & \text { Length }=(3 \mathrm{x}+1), \text { width }=3 \mathrm{x}+1-3 \\ & (3 \mathrm{x}+1)(3 \mathrm{x}-2)=28 \\ & 9 \mathrm{x}^{2}-6 \mathrm{x}+3 \mathrm{x}-2=28 \\ & \frac{9 x^{2}}{3}-\frac{3 x}{3}-\frac{30}{3}=0 \\ & \sqrt{3 x^{2}}-x-10=0 \\ & 3 \mathrm{x}^{2}-6 \mathrm{x}+5 \mathrm{x}-10=0 \\ & (3 \mathrm{x}+5)(\mathrm{x}-2)=0 \\ & 3 \mathrm{x}+5=0, \mathrm{x}=-\frac{5}{3}, \mathrm{x}=2 \\ & \text { Length }=3(2)+1=7 \mathrm{~cm} \end{aligned}$ |  | $\begin{aligned} & \text { Tan } 45^{0}=\frac{x}{60} \\ & x=60 \tan 45^{0} \\ & =60 \end{aligned}$ <br> Tan A $=\frac{60}{240}$ $\begin{gathered} =\frac{1}{4}=0.25 \\ \mathrm{~A}=14.04^{0} \end{gathered}$ |


| 14 | $\begin{aligned} & \hline \hline \mathrm{h}=10 \sin 40 \\ & \text { Area }=1 / 2 \times 10 \operatorname{Sin} 40(12+6) \\ & =57.85 \\ & \hline \hline \end{aligned}$ | 19 | Radius $4.0 \pm 0.1 \mathrm{~cm}$ <br> Area of circle $=\frac{22}{7} \times 4 \times 4=50.29$ <br> Area of $\Delta=1 / 2 \times 6.3 \times 7.2 \times \operatorname{Sin} 60=19.64$ |
| :---: | :---: | :---: | :---: |
| 15 | $\begin{aligned} & \text { Total ratio }=5+6+\mathrm{x} \\ & \text { Kioko's share }=\frac{5}{11+x} \times 12000=4000 \end{aligned}$ |  | Area of region between $=50.29-19.64$ $=30.65$ |
|  | $\begin{aligned} & 60000=4000(11+\mathrm{x}) \\ & 60000=4400+4000 \mathrm{x} \\ & \frac{16000}{4000}=\frac{4000 x}{4000} \\ & \mathrm{x}=4 \end{aligned}$ | 20 | 9. (a) (i) $\mathrm{AB}=\mathrm{AO}=\mathrm{a}+\mathrm{b}=\mathrm{b}-\mathrm{a}$ <br> (ii) $\mathrm{ON}=\mathrm{OA}+\tilde{\mathrm{A}} \tilde{\tilde{N}}=\tilde{1}+\tilde{1} / 2 \mathrm{AB}$ $=1+1 / 2(b-a \tilde{a})$ $=1 / 2(\underset{\sim}{\mathbf{a}}+\underset{\sim}{\mathbf{b}})$ <br> (iii) $\mathrm{BM}=\tilde{\mathrm{BO}}+\mathrm{OM}=\underset{\sim}{\mathrm{b}}+\underset{\sim}{\underset{\sim}{a}} \underset{\sim}{a}$ $=\frac{2}{3} a-b$ $\text { (b) } \begin{aligned} & \mathrm{OX}=\mathrm{hON}=\mathrm{h}(1 / 2 \mathrm{a}+1 / 2 \mathrm{~b})=\frac{h}{2} a+\frac{h}{2} b \\ & \\ & \mathrm{OX}=\mathrm{OM}+\mathrm{MX}=\frac{2}{3} a+k M B \\ & =\frac{2}{3} a+k(-B M) \\ & =\frac{2}{3} a-\left(\frac{2}{3} a-b\right) \\ & =\left(\frac{2}{3}-\frac{2}{3} k\right) \underset{\sim}{a}+k \underset{\tilde{2}}{\underset{2}{2}} \\ & \frac{h}{2} a+\frac{h}{2} b=\left(\frac{2}{3}-\frac{2}{3} k\right) \mathrm{a}+\mathrm{kb} \end{aligned}$ <br> Comparing coefficients of a and b $\begin{aligned} & \frac{h}{2}=\left(\frac{2}{3}-\frac{2}{3} k\right) \Rightarrow \mathrm{h}=\frac{4}{3}-\frac{4}{3} k \\ & \frac{4}{3}-\frac{4}{3} k=2 k \Rightarrow \frac{4}{3}=2 k+\frac{4}{3} k \\ & 4=6 \mathrm{k}+4 \mathrm{k} \\ & 10 \mathrm{k}=4 \\ & \mathrm{k}=\frac{2}{5} \end{aligned}$ <br> Substitute k in eqn (ii) $\mathrm{h}=2 \times \frac{2}{5}=\frac{4}{5}$ |
| 16 | $\begin{aligned} & \text { (i) } \mathrm{y} \geq 0 \\ & \text { (ii) } \mathrm{x}>1 \\ & \text { (iii) } \frac{y}{x-5}=-\frac{2}{5} \\ & 5 y+2 \mathrm{x}=10 \\ & \therefore 5 \mathrm{y}+2 \mathrm{x} \leq 10 \\ & \hline \end{aligned}$ |  |  |
| 17 | (a) $250 \times 14 \times 2 \times 2$ <br> $=14,000$ <br> Net profit $=14000-6000$ <br> $=$ Shs. 8000 <br> (b) $8000 \times 25=200000$ $200000-10000=190000$ <br> (c) Saving $\frac{40}{100} \times 190,000$ $=76,000$ <br> Remaining profit $=\frac{36}{100} \times 190,000$ $=68,400$ <br> Ouko's share $=\frac{456,000}{3}+\frac{2}{9} x 68,400$ $=30,400$ <br> (d) $\frac{475000 \times 3 \times 100}{95}$ <br> $=$ Sh. $1,500,000$ |  |  |
| 18 | 10. (a) $\begin{aligned} & (2 \mathrm{n}-4) 90=2 \times 90+(\mathrm{n}-2) 150 \\ & 180 \mathrm{n}-360=180+150 \mathrm{n}-300 \\ & 180 \mathrm{n}-150 \mathrm{n}=180+60 \\ & 30 \mathrm{n}=240 \\ & \mathrm{n}-8 \text { sides } \\ & \text { Sum }=2 \times 90+150 \times 6=1080 \end{aligned}$ <br> (b) Polygon - Octagon <br> (c) Angle at centre $=\frac{360}{8}=45^{\circ}$ $\begin{aligned} & \text { Base angles }=1 / 2 \times 135=67.5 \\ & \mathrm{x}=1 / 2 \times 45=22.5 \\ & \tan 67.5=\frac{h}{2} \\ & \mathrm{~h}=2 \text { Tan } 67.5=4.828 \\ & \text { Area of } \Delta \mathrm{AOB}=1 / 2 \times 4 \times 4.828 \\ & =9.656 \\ & \text { Area of octagon }=8 \times \text { area of } 1 \Delta \\ & =8 \times 9.656 \\ & =77.248 \end{aligned}$ | 21 | ```(a) Volume \(=1.7 \times 1.4 \times 2.2\) \(=5.23 \mathrm{~cm}^{3}\) Volume of milk \(=\frac{75}{100} \times 5.236 \times 1000\) \(=3927\) litres (b) Base are \(=1 / 2 \times 16 \times 16 \times \operatorname{Sin} 60\) \(=110.85\) Volume \(=110.85 \times 13.6 \times \frac{1}{3}\) \(=502.52 \mathrm{~cm}^{3}\) \(=500 \mathrm{ml} 2 \mathrm{sf}\) (c) No of packets \(=\frac{3927 \times 1000}{500}\) \(=7854\) Amount of money \(=7854 \times 30\) \(=\) Sh. 235,620``` |


| 22 | Marks | Midpoint X | f | $\mathrm{d}=\mathrm{x}-\mathrm{a}$ | cf |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | 0-9 | 4.5 | 1 | -49.9 | 1 |
|  | 10-19 | 14.5 | 2 | -39.9 | 3 |
|  | 20-29 | 24.5 | 4 | -29.9 | 7 |
|  | 30-39 | 34.5 | 7 | -19.9 | 14 |
|  | 40-49 | 44.5 | 10 | -9.9 | 24 |
|  | 50-59 | 54.5 | 16 | 0.1 | 40 |
|  | 60-69 | 64.5 | 20 | 10.1 | 60 |
|  | 70-79 | 74.5 | 6 | 10.1 | 60 |
|  | 80-89 | 84.5 | 3 | 30.1 | 69 |
|  | 90-99 | 94.5 | 1 | 40.1 | 70 |

(a) (i) Modal class $=60-69$
(ii) Position of median in $\mathrm{CF}=\frac{70}{2}=35 \mathrm{th}$

Median class $=50-59$

$$
\begin{aligned}
& M=L+\frac{\frac{n}{2}-C}{f} \times 10 \\
& =49.5+\frac{\frac{70}{2}-24}{16} \times 10 \\
& =49.5+\frac{11}{16} \times 10
\end{aligned}
$$

(b) Mean $=54.4+-\frac{33}{70}=53.93$
232
(a) $\left(\begin{array}{ll}3 & 0 \\ 1 & 1\end{array}\right)\left(\begin{array}{ccc}1 & 2 & 3 \\ 1 & -3 & 0\end{array}\right)=\left(\begin{array}{ccc}A^{1} & B^{1} & C^{1} \\ 3 & 6 & 9 \\ 2 & -1 & 3\end{array}\right)$
$A^{1}(3,2) B^{1}(6,-1) C^{1}(9,3)$
(b)
$\left(\begin{array}{cc}1 & 0 \\ -1 & 3\end{array}\right)\left(\begin{array}{ccc}A^{1} & B^{1} & C^{1} \\ 3 & 6 & 9 \\ 2 & -1 & 3\end{array}\right)=\left(\begin{array}{ccc}A^{11} & B^{11} & C^{11} \\ 3 & 6 & 9 \\ 3 & -9 & 0\end{array}\right)$
$\mathrm{A}^{11}(3,3) \mathrm{B}^{11}(6,-9) \mathrm{C}^{11}(9,0)$
(iii) $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)\left(\begin{array}{ccc}3 & -6 & 9 \\ 3 & 9 & 0\end{array}\right)=\left(\begin{array}{ccc}1 & 2 & 3 \\ 1 & -3 & 0\end{array}\right)$
$\mathrm{a}=0$
$b=-\frac{1}{3}$
$\mathrm{c}=0$
$\mathrm{d}=-\frac{1}{3}$
enlargement
LSF $\frac{1}{3}$
Centre ( 0,0 )
Enlargement centre $(0,0)$ and scale factor $\frac{1}{3}$

24
(a) $V=2 t^{2}+8 t+c$
$\mathrm{t}=0, \mathrm{~V}=70$
$V=2 t^{2}+8 t+70$
(b) $t=1, V=2+8+70$
$\mathrm{t}=3, \mathrm{~V}=6+24+70$
$\frac{90+80}{2}$

$$
=85 \mathrm{~km} / \mathrm{h}
$$

(iii) $\left[\frac{2}{3} t^{3}+4 t^{2}+70 t\right]_{2}^{3}$
$(18+26+210)-\left(\frac{16}{3}+16+140\right)$
$264-\frac{484}{3}=\frac{308}{3}$
$=102 \frac{2}{3} \mathrm{~km}$

GUCHA SOUTH EVALUATION TEST
121/2
Mathematics
July/August 2015

| 1 | No Log <br> 36.72 1.5649 <br> 0.46 $\overline{1} .6628$ <br>  $\underline{\mathrm{x}} \quad 2$ <br>  $\underline{1.3256}$ <br> 185.4 $\underline{0.8905}$ <br>  $\underline{2.2681}$ <br>  $\underline{\overline{2} .6224}$ <br> 0.3474  <br>   <br>   <br>   <br>   <br>   | 9 | $\begin{aligned} \hline \mathrm{MN} & =\left(\begin{array}{ll} 2 & 0 \\ 0 & 2 \end{array}\right)\left(\begin{array}{ll} 3 & 3 \\ 1 & 3 \end{array}\right) \\ = & \left(\begin{array}{ll} 6 & 0 \\ 2 & 6 \end{array}\right) \\ = & \mathrm{MN}=(\mathrm{R})=\left(\begin{array}{ll} 6 & 0 \\ 2 & 6 \end{array}\right)\binom{3}{2} \\ & =\binom{18}{-6} \\ & \text { Co-ordinates of } \mathrm{R}^{1}(19,-6) \end{aligned}$ |
| :---: | :---: | :---: | :---: |
| 2 | $\begin{aligned} & \mathrm{x}^{2}=\frac{a m^{2}}{a^{2}-m^{2}} \\ & \mathrm{a}^{2} \mathrm{x}^{2}-\mathrm{m}^{2} \mathrm{x}=\mathrm{am}^{2} \\ & \mathrm{am}^{2}+\mathrm{m}^{2} \mathrm{x}=\mathrm{a}^{2} \\ & \mathrm{~m}^{2}(\mathrm{a}+\mathrm{x})=\mathrm{a}^{2} \mathrm{x}^{2} \\ & \mathrm{~m}^{2}=\frac{a^{2} x^{2}}{a+x} \mathrm{~m}=\sqrt{\frac{a^{2} x^{2}}{a+x}} \end{aligned}$ | 10 | $\begin{aligned} & \hline \text { (a) } 12 \times 2=(\mathrm{SM}+3) 3 \\ & \mathrm{SM}=\frac{24}{3}-3=5 \\ & \mathrm{PS}=5+3=8 \mathrm{~cm} \\ & \text { (b) } \mathrm{PQ}=\sqrt{12 \times 2} \\ & 4.899 \mathrm{~cm} \end{aligned}$ |
| 3 | $\begin{gathered} \frac{10}{\sqrt{7}-\sqrt{2}} x \frac{\sqrt{7}+\sqrt{2}}{\sqrt{7}+\sqrt{2}} \\ =\frac{10(\sqrt{7}+\sqrt{2})}{7-2} \end{gathered}$ | 11 | $\begin{aligned} & (1-2 x)^{6}=1(1)^{6}+6(1) 5+15(1)^{4}(-2 x)^{2}+20(1)^{3}(- \\ & 2 x)^{3} \\ & =1-12 x+60 x^{2}-160 x^{3} \\ & (0.98) 6=1-12(0.01)+60(0.01) 2-160(0.01) 3 \\ & =0.88584=0.8858 \end{aligned}$ |
| 4 | $\begin{aligned} & \frac{(8 x)^{2}}{4 x x^{2}}=\mathrm{K}-3 \\ & \frac{64 x^{2}}{16 x^{2}}=\mathrm{K}-3 \\ & 4=K-3 \\ & \mathrm{~K}=7 \end{aligned}$ | 12 | $\text { 1. } \begin{aligned} & \log _{10}(6 \mathrm{x}-2) \log _{10}(\mathrm{x}-3)=1 \\ & \log 10\left(\frac{6 x-2}{x-3}\right)=1 \\ & \frac{6 x-2}{x-3}=10 \\ & 6 x-2=10 x-30 \\ & -4 \mathrm{x}=-28 \\ & \mathrm{x}=7 \end{aligned}$ |
| 5 | $\mathrm{AC}=\frac{100 \sin 72^{\circ}}{\sin 66^{\circ}}$ |  |  |
|  | $\begin{aligned} & =104.1 \mathrm{~m} \\ & \mathrm{BC}=\frac{100 \sin 42}{\sin 66} \\ & =73.25 \mathrm{~m} \\ & \text { Perimeter }=100+104.1+73.25 \\ & =277.35 \\ & =277 \mathrm{~m} \end{aligned}$ | 13 | 2. (a) <br> $\mathrm{OQ}=\frac{2}{3}\left(\begin{array}{c}5 \\ -3 \\ 4\end{array}\right)+\frac{1}{3}\left(\begin{array}{c}2 \\ 6 \\ 13\end{array}\right)$ $=\left(\begin{array}{l} 4 \\ 0 \\ 7 \end{array}\right)$ <br> Position vector of $\mathrm{Q} 4 \mathrm{i}+7 \mathrm{k}$ <br> (b) $\mathrm{PQ}=\left(\begin{array}{l}4 \\ 0 \\ 7\end{array}\right)-\left(\begin{array}{c}2 \\ 6 \\ 13\end{array}\right)$ <br> Length of $\mathrm{PQ}=\sqrt{(2)^{2}+6^{2}+-6^{2}}$ $=8.718$ units |
| 6 | $\begin{aligned} & \hline \mathrm{x}^{2}-4 \mathrm{x}+\mathrm{y}^{2}+6 \mathrm{y}=3 \\ & (\mathrm{x}-2)^{2}+(\mathrm{y}+3)^{2}=3+(-2)^{2}+(3)^{2} \\ & (\mathrm{x}-2)^{2}+(\mathrm{y}+3)^{2}=(4)^{2} \\ & \text { Radius }=4 \text { units } \\ & \text { Centre }(2,-3) \end{aligned}$ |  |  |
| 7 | $\begin{aligned} & \mathrm{P}\left(1-\frac{12}{10}\right)^{5}=364000 \\ & \mathrm{P}=\frac{364000}{(0.88)^{5}} \end{aligned}$ <br> KSh. 689,744 |  |  |
| 8 | At $\mathrm{x}=2 \mathrm{y}=(2)^{3}-2(2)^{2}+3(2)-1=5$ $(2,5)$ $\frac{d y}{d x}=3 x^{2}-4 x+3$ <br> at $\mathrm{x}=2$ gradient of tangent $=7$ $\frac{y-5}{x-2}=7$ <br> Equation of tangent $y=7 x-9$ |  |  |

## KANDARA SUB-COUNTY SECONDARY SCHOOLS

FORM FOUR 2015 JOINT EXAMINATIONS
Kenya Certificate of Secondary Education
MATHEMATICS
Paper - 121/1
July/August 2015

## SECTION 1 (50 MARKS)

## Answer all the questions in this section.

1. Without using mathematical tables or a calculator evaluate.
(2 marks)

$$
\frac{\sqrt[3]{675 \times 135}}{\sqrt{2025}}
$$

2. Solve the simultaneous equation $\frac{1}{9}=\frac{2}{x}+\frac{1}{10}$ and $\frac{3}{4 y}+\frac{5}{2 x}=\frac{7}{8}$
(4 marks)
3. The figure below shows triangle $P Q R$ in which $P R=12 \mathrm{~cm}$. $T$ is a point on $P R$ such that $T R=4 \mathrm{~cm}$. Line $S T$ is parallel to $Q R$. If the area of triangle $P Q R$ is $336 \mathrm{~cm}^{2}$. Find the area of the quadrilateral STQR.
(4 marks)

4. Expand the expression.
$\left(a^{2}-b^{2}\right)\left(a^{2}+b^{2}\right)\left(a^{4}-b^{4}\right)$
5. Angle of $1.8^{0}$ at the centre of a circle subtends an arc off 46.38 cm . Find the area of the arc encloses and the radius.
(3 marks)
6. The size of an interior angle of a regular polygon is $3 x^{\circ}$ while its exterior angle is $(x-20)^{\circ}$. Find the number of sides of the polygon.
7. Solye the following inequalities and represent the solutions on a single number line.
$3-2 x<5$
4- -8
8. Find the value of $x$ which satisfy the equation.
(3 marks)
$5^{2 x}-6 \times 5^{x}+5=0$
9. A rostrum is made by cutting off the upper part of a cone along a plane parallel to the base at $2 / 3$ up the height. What fraction of the volume of the cone does the rostrum represent?
(3 marks)
10. A bus takes 195 minutes to travel a distance of $(2 x+30) \mathrm{km}$ at an average speed of $(x-20) \mathrm{km} / \mathrm{h}$. Calculate the actual distance travelled. Give your answer in kilometres.
11. A fruit seller bought 144 pineapples at Kshs 100 for every six pineapples. He sold some of them at Kshs 72 for every
 72 for every three.
(3 marks)
12. Given that Sin (90-
13. Last year, Nafula was four times as old as her son, Kamau. In four years time, the sum of their ages will be 53. Determine their present ages
14. Solve for $x$ in $\log 5-2+\log (2 x+10)=\log (x-4)$
15. Four people working 5 hours per day can clear a piece of land in 4 days. How many days would it take 10 people to clear the same piece of land working 4 hours per day?
16. In this question, mathematical tables should not be used.

A Kenyan bank buys and sells foreign currencies as shown below.

|  | Buying | Selling |
| :--- | :---: | :---: |
|  | (in Kenya shillings) | (in Kenya shillings) |
| 1 Hong Kong dollar | 9.74 | 9.77 |
| 1 South African rand | 12.03 | 12.11 |

A tourist arrived in Kenya with 105,000 Hong Kong dollars and change the whole amount to Kenya Shillings. While in Kenya, she spent Kshs 403,879 and changed the balance to South African Rands before leaving for South Africa. Calculate the amount in South African Rand that she received.

## SECTION 11 (50 MARKS)

Answer ANY FIVE questions in this section in the spaces provided.
17. The diagram below represents the cross section of a solid prism of length 8 cm

(a) Calculate the volume of the prism.
(3 marks)
(b) Given that the density of the prism is $5.75 \mathrm{gcm}^{-3}$, calculate its mass in grams.
(c) A second prism is similar to the first one but it made of a different materials. The volume of the second prism is $246.24 \mathrm{~cm}^{3}$.
Calculate the area of the cross-section of the second prism.
(d) Given that the ratio of the mass of the first prism to that of the second is 2.5 , find the density of the second prism.
18. In the diagram below $O A=\mathbf{a}, \mathrm{OB}=\mathbf{b}$ the points P and Q are such that $\mathrm{AP}={ }^{2} / 3 \mathrm{AB}, \mathrm{OQ}=1 / 3 \mathrm{OA}$

(a) Express $\mathbf{O P}$ and BQ in terms of $\mathbf{a}$ and $\mathbf{b}$
(b) If $\mathbf{O C}=\mathrm{hOP}$ and $\mathrm{BC}=\mathrm{kBQ}$, Express OC in two different way and hence
(i) Deduce the value of $h$ and $k$.
(ii) Express vector OC in terms of $\mathbf{a}$ and $\mathbf{b}$ only.
(iii) State the ratio in which C divides $B Q$
19. The diagram on the grid provided below shows a trapezium $A B C D$ on the same grid.

(a) (i) Draw the image $\mathrm{A}^{1} \mathrm{~B}^{1} \mathrm{C}^{1} \mathrm{D}^{1}$ and ABCD under a rotation of $90^{\circ}$ clockwise about the origin.
(1 mark)
(ii) Draw the image $A^{11} B^{11} C^{11} D^{11}$ of $A^{1} B^{1} C^{1} D^{1}$ under the reflection in line $y=x$. State coordinates of $A^{11} B^{11} C^{11} D^{11}$ (3 marks)
(b) $\mathrm{A}^{111} \mathrm{~B}^{111} \mathrm{C}^{111} \mathrm{D}^{111}$ in the image of $\mathrm{A}^{11} \mathrm{~B}^{11} \mathrm{C}^{11} \mathrm{D}^{11}$ under the reflection in the line $\mathrm{x}=0$. Draw the image $\mathrm{A}^{111} \mathrm{~B}^{111} \mathrm{C}^{111} \mathrm{D}^{111}$ of and state its coordinates.
(2 marks)
(c) Describe a single transformation that maps $\mathrm{A}^{11} \mathrm{~B}^{11} \mathrm{C}^{11} \mathrm{D}^{11}$ onto ABCD .
20. A triangular plot $A B C$ is such that $A B=36 \mathrm{~m}, \mathrm{BC}=40 \mathrm{~m}$ and $A C=42 \mathrm{~m}$.
(a) Calculate the :-
(i) Area of the plot in hectares.
(3 marks)
(ii) The acute angle between the sides AB and BC .
(2 marks)
(b) A water tap is to be installed inside the plot such that the tap is at the centre of the circumcircle passing through the vertices A, B and C. Calculate the distance of the tap from the vertex A.
(c) Find the area outside the plot that would be watered by the sprinkler connected directly to the tap.
21. (a) On the grid provided, draw the graph of the function $\mathrm{y}=1 / 2 x^{2}-x+3$ for $0 \leq x \leq 6$
(b) Calculate the mid-ordinates for 5 strips between $x=1$ and $x=6$ and hence use the mid-ordinate rule to approximate the area under the curve between $x=1, x=6$, and x -axis.
(3 marks)
(c) Assuming that the area determined by integration to be the actual area, calculate the percentage error in using the mid-ordinate rule.
(4 marks)
22. The boundaries $P Q, Q R, R S$ and $S P$ of a ranch are straight lines such that $Q$ is 16 km on a bearing of $040^{\circ}$ from $P$. $R$ is directly south of $Q$ and East of $P$ and $S$ is 12 km on a bearing of $120^{\circ}$ from $R$.
(a) Using a scale of 1 cm to represent 2 km , show the above information in a scale drawing.
(3 marks)
(b) From the scale drawing determine:
(i) the distance in kilometres between P and S .
(2 marks)
(ii) the bearing of P from S .
(c) Calculate the area of the ranch PQRS in square kilometres.
(3 marks)
23. A bus left Mombasa and travelled towards Nairobi at an average speed of $60 \mathrm{~km} / \mathrm{h}$. After $21 / 2$ hours, a car left Mombasa and travelled along the same road at an average speed of $100 \mathrm{~km} / \mathrm{h}$. If the distance between Mombasa and Nairobi is 500 km , determine:
(a) (i) the distance of the bus from Nairobi when the car took off.
(ii) the distance the car travelled to catch up with the bus.
(b) Immediately the car caught up with the bus, the car stopped for 25 minutes. Find the new average sped at which the car travelled in order to reach Nairobi at the same time as the bus.
(4 marks)
24. A sales man is paid a commission of $2 \%$ on goods worth over kshs 100,000 . He is also paid a monthly salary of Kshs 12000. In certain month, he sold 360 handbags at Kshs 500 each.
(a) Calculate the salesman's earnings that month.
(b) The following month, the salesman's monthly salary was increased by $10 \%$. His total earnings that month was shs 17600 Calculate:
(i) the total amount of money received from the sales of handbags that month.
(ii) the total number of handbags sold that month.

# KANDARA SUB-COUNTY SECONDARY SCHOOLS <br> FORM FOUR 2015 JOINT EXAMINATIONS 

Kenya Certificate of Secondary Education
MATHEMATICS
Paper - 121/2
July/August 2015
SECTION 1 (50 MARKS)
Answer all the questions in this section.

1. Use mathematical tables to evaluate.
$\sqrt[3]{\frac{0.8423 \times 72.5}{930.5}}$
2. The sum of the first three positive numbers of a Geometric progression is 3 . If the first term is three times the second term, find the three numbers.
3. A quantity $y$ is partly constant and partly varies as $x$. If $x=7, y=4$ and $x=16, y=40$. Find the equation connecting $x$ and $y$. Find the value of $x$ when $y=30$.
4. Find the radius and centre of a circle whose equation is $3 x^{2}+3 y^{2}-12 x+18 y=9$
5. Three oranges and five mangoes cost shs 19 while two oranges and one mango cost shs 8 . Form a matrix equation to represent the above information hence find the cost of one orange and one mango.
6. Find $\int_{2}^{4}\left(x^{3}-x^{2}+5\right) d x$
7. Solve the equation
$6 t^{2}-\mathrm{t}-2=0$
Hence solve the equation
$6 \operatorname{Cos}^{2} \theta-\operatorname{Sin} \theta+4=0$ in the range $0 \leq \theta \leq 180^{\circ}$
8. In the diagram below $\mathrm{OA}=\mathbf{a} \mathbf{O B}=\mathbf{b}$ and c divides AB in the ratio 3 : -1 . Find OC

9. Simplify $(2+\sqrt{3})^{3}-(2-\sqrt{3})^{3}$
10. Solve for $m$ in the given equation

$$
(27)^{-m} \times \frac{1}{81}=243
$$

11. Solve $5 \leq 3 x-1<15$ and represent the answer on a number line.
12. Point $A(3,4)$ is mapped onto $A^{1}(7,8)$ by an enlargement scale factor 3 , determine the centre of enlargement.
13. The graph below is part of the straight line graph obtained from the initial equation $R=b Z^{n}$.

(a) Write down the equation of the straight line in the form.
(b) Use the graph to calculate the values of $b$ and $n$
14. A book and a ruler are sold at a discount of $8 \%$ and $3 \%$ respectively. Calculate the overall discount offered on the two commodities if the cost of the book is four times that of ruler.
15. On the figure below like ABC and DC are tangents of the circle at B and D respectively.

(a) $\angle \mathrm{CBD}$
(b) $\angle \mathrm{CDE}$
16. Make $P$ the subject of the formula.
$2 a=\sqrt{\frac{t^{2}+q}{p}}$
SECTION 11 (50 MARKS)
Answer ANY FIVE questions in this section.
17. The table below shows the distribution of marks of 50 students in an opener examination.

| Mark | $1-10$ | $11-20$ | $21-30$ | $31-40$ | $41-50$ | $51-60$ | $61-70$ | $71-80$ | $81-90$ | $91-100$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Frequency | 4 | 7 | 6 | 6 | y | 8 | 4 | 3 | 2 | 1 |

(a) i) Find the value of $y$.
(ii) State the modal class.
(b) Using an assumed mean of 45.5 find the mean.
(1 mark)
(1 mark)
(3 marks)
(3 marks)
(2 marks)
(3 marks)
18. (a) Complete the table for the equation.
$y=2 \operatorname{Sin}\left(3 x+30^{\circ}\right)$

| x | $0^{\circ}$ | $10^{\circ}$ | $20^{\circ}$ | $30^{\circ}$ | $40^{\circ}$ | $50^{\circ}$ | - | $70^{\circ}$ | 80 | $90^{\circ}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |

(b)
axis and 2 cm to represent 1 unit on the $y$-axis.
Use your graph to find
(i) $y$ when $x=45^{\circ}$
(ii) the range of values of $x$ that satisfy the inequality.
19. The position of the two towns $P$ and $Q$ on the earths surface are $\left(60^{\circ} \mathrm{N} 139^{\circ} \mathrm{E}\right)$ and $\left(60^{\circ} \mathrm{N}, 41^{\circ} \mathrm{W}\right)$ respectively.
a) Find the latitude difference between $P$ and $Q$.
(b) i) Given that the radius of the earth is 6370 km , calculate the distance between P and Q (i) via the North pole.
(ii) Along the parallel of latitude.
(2 marks)
(c) Another town R is 420 km east of town $P$ and on the same latitude as $P$ and $Q$. Find the longitude of town R.
20. The $p^{\text {th }}$ term of a sequence is given by $2 p+3$
(a) Write down the first five terms of the sequence.
(b) Find $\mathrm{S}_{50}$, the sum of the first fifty terms of the sequence.
(c) Show that sum of the first $P$ terms of the sequence is given by $S_{p}=p^{2}+4 p$.

Hence or otherwise find the largest integral value of P such that $\mathrm{Sp}<725$
21. The table below shows income tax rates.

| Taxable pay (K£ per month) | Rate of tax (Kshs/Pound) |
| :---: | :---: |
| $1-435$ | 2 |
| $436-870$ | 3 |
| $871-1305$ | 4 |
| $1306-1740$ | 5 |
| (Excess over 1740) | 6 |

A company employee earns a monthly salary Kshs 32,000 and is also given a taxable house allowance amounting to Kshs 1784 per month.
(a) Calculating his total income tax in $K £$ per month.
(b) The employee is entitled to a personal relief of Kshs 1700 per month determine his tax.
(c) If the employee is entitled to a personal relief of Kshs 1700 per month determine his tax.
22. A number is selected from $2,5,7,9,11,13$ and pared with another number selected from $4,6,8,10,12,14$.
(a) Construct a table sharing how the numbers are paired.
(2 marks)
(b) Find the probability that the sum of the selected numbers is even.
(c) Find the probability that the sum is a prime number and also add.
(d) Find the probability that the sum is greater than 15.
23. The diagram below shows a right pyramid on square base $A B C D$ and vertex $V$. 0 is the centre of the base $A B=14 \mathrm{~cm}$. $\mathrm{VA}=20 \mathrm{~cm}$ and N is the midpoint of BC

Find

(a) the height of the pyramid
(b) the length VN
(c) the angle between
(i) BV and the plane ABCD

(d) Calculate the volume of the pyramid.
24.

V is a point on the minor arc SR.

(a) Calculate the size of the following angles giving reasons for your answer.
(i) $\angle$ QPS $\quad$ (2 marks)
(ii) Reflex $\angle$ QOS
(2 marks)
(iii) $\angle$ QVS
(2 marks)
(iv) $\angle Q V R$
(2 marks)
(b) Given that $S R=5 \mathrm{~cm}$ and $R V=4 \mathrm{~cm}$ find $U Q$.
(2 marks)

## KANDARA SUB COUNTY SECONDARY SCHOOLS

FORM FOUR 2015 JOINT EXAMINATION
Kenya Certificate of Secondary Education
MATHEMATICS
Paper-121/1
July/August 2015
Marking Scheme

| 1. | $\frac{\sqrt[3]{675 \times 135}}{\sqrt{2025}}=\frac{\sqrt[3]{3^{3} \times 5^{2} \times 5 \times 3^{3}}}{3^{2} \times 5}=1$ | 7. |  |
| :---: | :---: | :---: | :---: |
| 2 | $\begin{aligned} & \frac{1}{y}=\frac{2}{x}+\frac{1}{10} \ldots \ldots \text { (i) } \\ & \frac{3}{4 y}+\frac{5}{2 x}=\frac{7}{8} \cdots \cdots(i i) \\ & \frac{3}{4}\left(\frac{2}{x}+\frac{1}{10}\right)+\frac{5}{2 x}=\frac{7}{8} \end{aligned}$ |  |  |
|  | $\begin{aligned} & \frac{10}{4 x}=\frac{32}{40} \Rightarrow x=\frac{40}{32} \times \frac{10}{4} \\ & =5 \\ & \frac{1}{y}=\frac{2}{5}+\frac{1}{10} \\ & y=2 \\ & \therefore x=5 \quad y=2 \end{aligned}$ | 8. | Let $y=5^{x}$ $\begin{aligned} & y^{2}-6 y+5=0 \\ & (y-5)(y-1)=0 \end{aligned}$ |
| 3. | $\text { L.s. } f=\frac{12}{8}=\frac{3}{2}$ |  | $\begin{aligned} & 5^{-1}=5^{x} \text { and } 5^{\circ}=5^{x} \\ & \mathrm{P} x=1 \text { or } \mathrm{x}=0 \end{aligned}$ |
|  | $\frac{336}{A}=\frac{9}{4} \Rightarrow A=149^{1 / 3}$ <br> Area of quadrilateral $\begin{aligned} & =336-149^{1 / 3} \\ & =1862 / 3 \mathrm{~cm}^{3} \end{aligned}$ | 9. | $\begin{aligned} & \text { l.s. } f=\frac{1}{3} \\ & \text { r.s. } f=\left(\frac{1}{3}\right)^{3}=\frac{1}{27} \end{aligned}$ <br> Fraction of the volume of a cone $\begin{aligned} & =1-\frac{1}{27} \\ & =\frac{26}{27} \end{aligned}$ |
| 4. | $\begin{aligned} & \left(a^{2}-b^{2}\right)\left(a^{2}+b^{2}\right)\left(a^{4}-b^{4}\right) \\ & \quad=(a+b)(a-b)\left(a^{2}+b^{2}\right)\left(a^{2}+b^{2}\right)\left(a^{2}-b^{2}\right) \end{aligned}$ |  |  |
|  | $\begin{aligned} & =a^{8}-a^{4} b^{4}-a^{4} b^{4}+b^{8} \\ & =a^{8}-2 a^{4} b^{4}+b^{8} \end{aligned}$ | 10. | $\begin{aligned} & \frac{2 x+30}{x-20}=\frac{195}{60}=\frac{13}{4} \\ & 4(2 x+30)=13(x-20) \\ & x=76 \\ & d=2(76)+30=182 \mathrm{~km} \end{aligned}$ |
| 5. | $\begin{aligned} & \frac{1.8^{C}}{2 \pi^{C}} \times 2 \times \pi \times R=46.8 \\ & 0.8(2) R=46.8 \\ & R=26 \\ & A=\frac{1.8}{2 \pi} \times \pi(2.6)^{2}=608.4 \mathrm{~cm}^{2} \end{aligned}$ |  |  |
| 6. | $\begin{aligned} & 3 x^{\circ}+(x-20)^{\circ}=180^{\circ} \\ & 4 x^{\circ}-20=180^{\circ} \\ & 4 x^{\circ}=160^{\circ} \\ & x=40^{\circ} \end{aligned}$ <br> Let $\mathrm{n}=$ no of sides. $\begin{aligned} & \frac{360^{\circ}}{n}=40^{\circ} \\ & 40^{\circ} n=360^{\circ} \\ & n=9 \end{aligned}$ | 11 | $\begin{aligned} & \frac{144}{6} \times 100=2400 \\ & \frac{x}{3} \times 72+\frac{144-x}{2}(60)=\frac{165}{100}(2400) \\ & 24 x+80(144-x)=3980 \\ & 6 x=360 \\ & x=60 \end{aligned}$ |



| 19. |  |  |
| :---: | :---: | :---: |
| 20. | $\begin{aligned} S= & 1 / 2(36+40+42)=59 \\ & A=\sqrt{59(59-36)(59-40)(59-42)} \\ & =662.05 \mathrm{~m}^{2}=0.0662 \mathrm{Ha} \end{aligned}$ <br> ii) $662.05=1 / 2 \times 36 \times 40 \operatorname{Sin} B$ $\mathrm{B}=66.86^{\circ}$ <br> b) $\frac{42}{\operatorname{Sin} 66.86}=2 R \Rightarrow R=22.84 \mathrm{~m}$ <br> c) $A=\frac{22}{7} \times 22.84^{2}=1639.5 \mathrm{~m}^{2}$ <br> Area of $\Delta=662.05$ <br> Area outside $=1639.25-662.05$ $=977.20 \mathrm{~m}^{2}$ | (b) <br> (c) <br> Approximate area $\begin{aligned} & =1(2.625+3.625+5.625+8.625+12.625) \\ & =33.126 \text { sq units } \end{aligned}$ |
| 21. | $x$ 0 1 2 3 4 5 6 <br> $y=1 / 2 x^{2}-x+3$ 3 $21 / 2$ 3 $41 / 2$ 7 $101 / 2$ 15 | (c) $\begin{aligned} & \text { Area }=\int_{1}^{6}\left(\frac{1}{2} x^{2}-x+3\right) d x \\ & =\left[\frac{x^{3}}{6}-\frac{x^{2}}{2}+3 x\right]_{1}^{6} \\ & =\left[\frac{6^{3}}{6}-\frac{6^{2}}{2}+3 \times 6\right]-\left[\frac{1^{3}}{6}-\frac{1^{2}}{2}+3\right] \\ & =33.3 \\ & \% \text { Error }=\frac{33.3-33.125}{33.3} \times 100 \\ & =0.625 \% \end{aligned}$ |


| 22. | Given scale 1 cm to 2 km <br> b) i) $\begin{aligned} & \mathrm{S}=10.8 \mathrm{t} \\ & =21.6 \mathrm{~km} \end{aligned}$ <br> ii) $<\mathrm{PSN}=74 \pm 1^{\circ}$ <br> Bearing of P from $\mathrm{S}=286 \pm 1^{\circ}$ | 24. | Total sales $=360 \times 500=$ Shs 180,000 <br> a) Commission $=(180000-100000)$ <br> $=(80000) \times{ }^{2} / 100$ <br> $=$ shs 1600 <br> Total earnings <br> $12000+1600$ <br> $=$ shs 13600 <br> b) i) New salary $\begin{array}{r} 12000+12000 \times \frac{10}{100} \\ =\text { shs } 13200 \end{array}$ <br> Commission paid $=17600-13200$ $=\text { shs } 4400$ <br> Commission paid on shs 4400 $4400 \times \frac{100}{2}=220,000$ <br> Total sales $=220,000+100,000$ = Shs 320,000 <br> (ii) No. of handbags sold $\begin{aligned} & \mathrm{n}=\frac{32000}{500} \\ & \mathrm{n}=64 \end{aligned}$ |
| :---: | :---: | :---: | :---: |
| 23. | (a) (i) Distance covered by bus in $2 \frac{1}{2} \mathrm{hrs}$ $=60 \times 5 / 2=150 \mathrm{~km}$ $500-150=350 \mathrm{~km}$ <br> (ii) Overtaking speed $=100-60=40 \mathrm{~km} / \mathrm{hr}$ $\text { Distance }=150 \mathrm{~km}$ <br> Time taken to over $=\frac{150}{40}=3 \frac{3}{4} \mathbf{h r s}$ <br> Distance travelled by call to catch up $=100 \times 15 / 4=375 \mathrm{~km}$ <br> (b) Distance remaining $=500-375=125 \mathrm{~km}$ <br> Time taken by bus to cover 125 km $\frac{125}{60}=2 \frac{1}{2}=2 h r 30 \min$ <br> Time left for the car after rest. $2 \mathrm{hrs} 30 \mathrm{~min}-25 \mathrm{~min}$. $=2^{1} / 12 \mathrm{hrs}$ <br> New av. speed $\begin{aligned} & =\frac{125}{\frac{25}{12}} \\ & =\frac{125 \times 12}{25} \\ & =5 \times 12 \\ & =60 \mathrm{~km} / \mathrm{hr} \end{aligned}$ |  |  |

KANDARA SUB COUNTY SECONDARY SCHOOLS
FORM FOUR 2015 JOINT EXAMINATION
Kenya Certificate of Secondary Education
MATHEMATICS
Paper-121/2
July/August 2015
Marking Scheme



24. a) $\angle Q R S$
$=58+\frac{90}{2}$
$=103^{\circ}($ angle insemicircle $)$
ii) $\angle$ QOS $=103 \times 2=206^{\circ}$ (angle subtended at centre by an arc is twice angle at the circumference)
iii) $\angle Q V S=180^{\circ}-103^{\circ}=77^{\circ}$
(angle in cyclic quadrilateral are supplementary)
iv) $\quad \angle Q V R=180-\left(103^{\circ}+45^{\circ}\right)=32^{\circ}$
(angle in alternate segment)
b)
$Q U=\sqrt{5 \times 4}=\sqrt{20}$
$=4.47 \mathrm{~cm}$

MAKUENI COUNTY KCSE 2015 PREPARATORY EXAMINATION
Kenya Certificate of Secondary Education
MATHEMATICS
Paper - 121/1
July/August 2015

1. Evaluate without using mathematical tables.
$\sqrt{\frac{-23-(-17)}{-2}-\frac{15-(-2)(-6)}{-3}}$
2. Evaluate:
$\frac{\sqrt{\frac{1}{4}} \text { of } 3 \frac{1}{2}+\frac{3}{2}\left(\frac{5}{2}-\frac{2}{3}\right)}{\frac{3}{4} \text { of } 2 \frac{1}{2} \div \frac{1}{4}}$
3. Use tables of squares, square roots and reciprocals to find the value of $x$ given.
$\frac{1}{x}=\sqrt{\frac{1}{3.591^{2}}+\frac{2}{1.526}}$
4. The figure below shows a rectangle PQRS in which all dimensions are given in centimetres. Find the value of $x$ and hence calculate the area of the rectangle.

5. Solve for $x$ if:
(4 marks)
$93 x+1-12 \times 33 x=-3$.
6. (a) Given that the position vectors of points $P, Q$ and $R$ are $p, q$ and $r$, respectively, and that $R$ is the mid-point of $P Q$, state the vector equation that relates $\mathbf{p}, \mathbf{q}$ and $\mathbf{r}$.
(2 marks)
(b) If $\mathbf{p}=\binom{6}{-8}$ and $\mathbf{q}=\binom{8}{4}$, find $\mathbf{r}$ and state the coordinates.
7. A straight line passes through points $P(4,9)$ and $Q(4,-3)$ and has a double intercept of the form $\frac{x}{a}+\frac{y}{b}=1$
Write the equation in the form $y=M x+C$ and determine the values of $a$ and $b$.
8. In the triangle ABC shown below, DE is parallel to BC . If $\mathrm{AE}=3 \mathrm{~cm}$ and $\mathrm{EC}=2 \mathrm{~cm}$, determine the ratio of the area of the triangle $A D E$ to that of triangle $A B C$.

9. A Kenyan bank buys and sells foreign currencies as shown below.

|  | Buying (Ksh) | Selling (Ksh) |
| :--- | :--- | :--- |
| 1 Hong Kong Dollar | 9.74 | 12.03 |
| 1 South African Rand | 9.77 | 12.11 |

A tourist arrived in Kenya with 105,000 Hong Kong Dollars and changed the whole amount to Kenya Shillings. While in Kenya he spent Ksh 403,879 and changed the balance to South African Rand before leaving for South Africa. Calculate the amount he received.
10. If $\tan x=\frac{12}{5}$, find the value of $\frac{\sin x+2 \cos x}{1-\operatorname{Sin} x}$
11. The figure below shows a solid cone of base radius 8 cm and height 12 cm .


Calculate to one decimal place:
(a) the slant height of the cone.
(1 mark)
(b) the total surface area of the cone.
(2 marks)
12. Given the inequalities $3-2 x<x \leq \frac{2 x+5}{3}$
(a) solve the inequalities.
(b) list all the integral values of $x$ that satisfy the combined inequality in (a) above.
13. The sum of the interior angles of an $n$-sided polygon is $1440^{\circ}$. Find the value of $n$ and deduce the name of the polygon.
14. Solve for $x$ in the equation.

$$
2+\log _{7}(3 x-4)=\log _{7} 98
$$

15. Security light poles have been erected along both sides of a street in Wote town. The poles are 50 m apart along the left-hand side of the road while they are 80 m apart along the right-hand side. At one end of the road the poles are directly opposite each other. How many poles will be erected by the time the poles are directly opposite each other at the end of the road?
16. Find the equation of the normal to the curve $x^{2}=4 y$ at $(6,9)$ leaving your answer in the form $a x+b y=c$. (3 marks)

SECTION II (50 marks)

## Answer only five questions in this section.

17. Mary bought three brands of tea A, B and C. The prices of the three brands were sh 25 , sh 30 and sh 45 per kilogram, respectively. She mixed the three brands in the ratio of $5: 2: 1$, respectively. After selling the mixture, she made a profit of $20 \%$.
(a) How much profit did she make per kilogram of the mixture?
(4 marks)
(b) After one year the cost price of each brand increased by $10 \%$.
(i) For how much did she sell one kilogram of the mixture to make a profit of $15 \%$ ? Give your answer to the nearest 5 cents.
(3 marks)
(ii) What would have been her percentage profit if she sold one kilogram of the mixture at sh 45 ?
18. A rectangle $O A B C$ has vertices $O(0,0), A(2,0), B(2,3)$ and $C(0,3)$. $O^{\prime} A^{\prime} B^{\prime} C^{\prime}$ is the image of OABC under a translation $\mathrm{T}=\binom{0}{4} . \mathrm{O}^{\prime \prime} \mathrm{A}^{\prime} \mathrm{B}^{\prime} \mathrm{B}^{\prime} \mathrm{C}^{\prime \prime}$ is the image of $\mathrm{O}^{\prime} \mathrm{A}^{\prime} \mathrm{B}^{\prime} \mathrm{C}^{\prime}$ under a transformation given by the matrix $\mathrm{M}=\left(\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right)$
(a) Draw the rectangles $\mathrm{OABC}, \mathrm{O}^{\prime} \mathrm{A}^{\prime} \mathrm{B}^{\prime} \mathrm{C}^{\prime}$ and $\mathrm{O}^{\prime \prime} \mathrm{A}^{\prime} \mathrm{B}^{\prime \prime} \mathrm{C}^{\prime}$ ' on the grid provided.
(b) Use your diagram to find the centre of rotation which maps OABC onto $\mathrm{O}^{\prime} \mathrm{A}^{\prime} \mathrm{A}^{\prime} \mathrm{B}^{\prime} \mathrm{C}^{\prime}$ '.
(c) Find the coordinates of $0^{\prime \prime} A^{\prime}{ }^{\prime} \mathrm{B}^{\prime \prime} \mathrm{C}^{\prime}$ ', the image of $\mathrm{O}^{\prime} \mathrm{A}^{\prime} \mathrm{B}^{\prime} \mathrm{C}^{\prime}$, under a reflection in the line $y=-x$.
19. (a) Complete the table below for the function

| $x$ | -6 | -5 | -4 | -3 | -2 | -1 | 0 | 1 |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $y$ |  | -3 | -7 |  | -9 |  | -3 | 3 |

(b) Draw the graph of $y=x^{2}+5 x-3$ for $-6 \leq x \leq 1$.

Use the scale: Vertical axis -1 cm represents 1 unit.
(3 marks)
Horizontal axis- 1 cm represents 1 unit
(c) (i) State the equation of the line of symmetry for the graph.
(ii) Use your graph to solve the equations:
(a) $x^{2}+5 x-3=0$
(b) $x^{2}+4 x-2=0$
(c) $x^{2}+5 x-3=-3$
20. A matatu left Eldoret at $7.45 \mathrm{a} . \mathrm{m}$. and travelled towards Nairobi at an average speed of $60 \mathrm{~km} / \mathrm{h}$. A saloon car left Eldoret at $9.15 \mathrm{a} . \mathrm{m}$. on the same day and travelled along the same road at an average speed of $120 \mathrm{~km} / \mathrm{h}$. The distance between Eldoret and Nairobi is 360 km .
(a) Determine the time of the day when the saloon car overtook the bus.
(6 marks)
(b) Both vehicles continued towards Nairobi at their original speed. How long had the saloon car waited in Nairobi before the matatu arrived?
21. The table below shows the distribution of marks scored by 100 candidates in an examination.

| Marks | $1-10$ | $11-20$ | $21-30$ | $31-40$ | $41-50$ | $51-60$ | $61-70$ | $71-80$ | $81-90$ | $91-100$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| No. of <br> Candidates | 2 | 5 | 8 | 19 | 24 | 18 | 10 | 6 | 5 | 3 |

(a) State the modal class.
(1 mark)
(b) Calculate the mean.
(4 marks)
(c) Calculate the median mark.
(4 marks)
d) Find the difference between mean and median.
(1 mark)
22. Two planes $S$ and $T$ leave airport $A$ at the same time. S flies on a bearing of $60^{\circ}$ at $750 \mathrm{~km} / \mathrm{h}$ while T flies on a bearing of $210^{\circ}$ at $900 \mathrm{~km} / \mathrm{h}$. Using a scale of 1 cm to represent $200 \mathrm{~km} / \mathrm{h}$, draw a diagram to show the position of the planes after 2 hours. ( 6 marks)
Use your diagram to determine:
(i) the actual distance between the two planes.
(ii) the bearing of T from S .
(iii) the bearing of $S$ from $T$.
23. The figure below shows a cone with a vertex at A and diameter 13 cm . The cone is cut off along DE as shown below.

(a) Find the vertical height AO.
(b) Find the volume of the frustrum.
(c) Find the curved surface area of the frustrum.
24. A particle P moves in a straight line such that $t$ seconds after passing a fixed point Q , its velocity is given by the equation $\mathrm{v}=2 t^{2}-10 t+12$. Find:
(a) the value of $t$ when P is instantaneously at rest.
(3 marks)
(b) an expression for the distance moved by P after $t$ seconds.
(2 marks)
(c) the total distance travelled by P in the first 3 seconds after passing point Q .
(2 marks)
(d) the distance of P from Q when acceleration is zero.

## MAKUENI COUNTY KCSE 2015 PREPARATORY EXAMINATION <br> Kenya Certificate of Secondary Education <br> MATHEMATICS <br> Paper-121/2 <br> July/August 2015

## Section I (50 marks)

Answer all the questions in this section in the space provided.

1. Use logarithms to evaluate:

$$
\frac{16.49^{2} \times \sqrt{0.6318}}{327.5}
$$

2. Simplify the expression
$\frac{4 x^{2}-y^{2}}{3 y^{2}-7 x y+2 x^{2}}$.
3. Wambua saves 1,040 shillings in the first year of his employment and each year afterwards saves 145 more than the preceding year. How much will he have saved by the time he retires in 30 years' time?
4. Given that $y\left(c x^{2}-a\right)=b-b x^{2}$, make $x$ the subject.
5. The gradient of a curve at any point is given by $2 x-1$. Given that the curve passes through point $(1,5)$, find the equation of the curve.
6. In the figure below, $O$ is the centre of a circle whose radius is $6 \mathrm{~cm} . \mathrm{AB}=9 \mathrm{~cm}$ and AOB is obtuse. Calculate the area of the major segment.

7. (a) Expand $\left(1-\frac{1}{2} x\right)^{5}$ up to the term with $x^{3}$.
(b) Use your expansion in (a) above to determine the value of $(0.99)^{5}$.
(2 marks)
8. The length and breadth of a rectangular floor were measured and found to be 5.2 m and 2.4 m respectively. If a possible error of 0.01 m was made in each of the measurements, find the:
(a) maximum possible area and minimum possible area of the floor.
(b) maximum possible wastage in a carpet ordered to cover the whole floor.
9. Simplify:

$$
\frac{4}{\sqrt{5}+\sqrt{2}}-\frac{3}{\sqrt{5}-\sqrt{2}} .
$$

10. In the diagram below, $P, Q$ and $R$ are points on the circumference of a circle. $P Q=10 \mathrm{~cm}, P R=12 \mathrm{~cm}$ and $Q R=8 \mathrm{~cm}$.


Find the radius of the circle to 2 decimal places.
11. Under a transformation given by the matrix $\left(\begin{array}{cc}2 x & x+3 \\ 1 & x+3\end{array}\right)$, a rectangle is wrapped onto a straight line. Find the value of $x$.
12. Solve $4-4 \cos ^{2} \alpha=4 \sin \alpha-1$ for $0 \leq \alpha \leq 360$.
13. Find the distance between the centre A of a circle whose equation is $2 x^{2}+2 y^{2}+6 x+10 y+7=0$ and the point $B$ $(-4,1)$.
(3 marks)
14. Three grades A, B and C of rice were mixed in the ratio 3:4:5. The cost per kilogram of each of the grades A, B and C was Ksh 120, Ksh 90 and Ksh 60, respectively. Calculate the cost of one kilogram of the mixture.
(2 marks)
15. Three quantities $p, x$ and $y$ are such that $p$ varies directly as $x$ and inversely as the square root of $y$. Find the percentage change in $p$ if $x$ decreases by $7 \%$ when $y$ increases by $21 \%$.
(3 marks)
16. A black die and a red die are rolled. What is the probability of getting a total score of 5 or 8 ?

## SECTION II (50 marks)

Answer only five questions in this section in the spaces provided.
17. The table below shows the rate at which tax is charged on annual income.

| Annual taxable income $(\mathrm{k} £)$ | Rate in Ksh per $\mathrm{k} £$ |
| :--- | :--- |
| $1-1800$ | 2 |
| $1801-3600$ | 3 |
| $3601-5400$ | 5 |
| $5401-7200$ | 7 |
| $7201-9000$ | 9 |
| $9001-10800$ | 10 |
| $10801-12600$ | 12 |
| Over $12600-23579$ | 13 |

A company employee earns a gross monthly salary of Ksh 12,600 . He is housed by the company and as a result his taxable income is increased by $15 \%$. If he is married and hence claims a relief of Ksh 1,162 per month, find the amount of tax he pays per year and his net salary per month.

If the employee was given a $50 \%$ pay rise, calculate the percentage increase on income tax.
18. (a) Complete the table below, giving the values correct to 2 decimal places.

| $x^{\circ}$ | $0^{\circ}$ | $30^{\circ}$ | $60^{\circ}$ | $90^{\circ}$ | $120^{\circ}$ | $150^{\circ}$ | $180^{\circ}$ | $210^{\circ}$ | $240^{\circ}$ | $270^{\circ}$ | $300^{\circ}$ | $330^{\circ}$ | $360^{\circ}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\operatorname{Sin} 2 x$ | 0 |  | 0.87 |  | - <br> 0.87 |  | 0 | 0.87 | 0.87 |  |  |  | 0 |
| $3 \cos x-2$ | 1 | 0.60 |  | -2 | -3.5 |  |  | - <br> 4.60 |  |  | -0.5 |  | 1 |

a) On the graph paper provided, draw the graphs $y=\sin 2 x$ and $y=3 \cos x-2$ for $0^{\circ} \leq x \leq 360^{\circ}$ on the same axes. Use a scale of 1 cm to represent $30^{\circ}$ on the $x$-axis and 2 cm to represent 1 unit on the $y$-axis. (5 marks)
(c) Use the graph in (b) above to solve the equation $3 \cos x-\sin 2 x=2$.
(d) State the amplitude of $y=3 \cos x-2$.
19. The figure below represents a right pyramid with vertex $V$ and a rectangular base $P Q R S . V P=V Q=V R=V S=18 \mathrm{~cm}$. $P Q=16 \mathrm{~cm}$ and $Q R=12 \mathrm{~cm} . \mathrm{M}$ and 0 are the mid-points of $Q R$ and $P R$, respectively.

(a) Calculate the:
(i) length of the projection of line VP on the plane PQRS.
(2 marks)
ii) angle between line VP and the plane PQRS.
(b) Calculate the angle between the face $V Q R$ and the base $P Q R S$.
(c) Calculate the volume of the pyramid.
20. The diagram below shows a trapezium $O A B C \cdot \overline{O A}=\mathbf{a}, \overline{O C}=\mathbf{c}$ and $C B=3 \mathbf{a}$. $X$ and $Y$ are points on $A C$ such that $A X: X C=1: 2$ and $A Y: Y C=1: 3$.

(a) Give the following vectors in terms of $\mathbf{a}$ and $\mathbf{c}$.
(i) $\overline{A C} \overline{A Y} \quad$ (1 mark)
(ii) $\overline{A Y} \overline{\partial Y} \quad$ (1 mark)
(iii) $\overline{O Y}$ (1 mark)
(iv) $\overline{O X} \quad$ (1 mark)
(v) $A B$
(b) Hence show that the points $\mathrm{O}, \mathrm{Y}$ and B are collinear.
(c) In what ratio does the diagonal $\overline{\mathrm{OB}}$ cut $\overline{\mathrm{AC}}$ ?
mark)
21. The product of the first three terms of a geometric progression is 64 . If the first term is a and the common ratio is $r$ :
(a) Explain $r$ in terms of $a$.
(b) Given that the sum of the three terms is 14 ,
(i) Find the values of $a$ and $r$ and hence write down two possible sequences each up to the $4^{\text {th }}$ term. (5 marks)
(ii) Find the product of the 50th terms of the two sequences.
22. Two points A and B are found on the earth's surface. The position of $A$ is $\left(52^{\circ} \mathrm{S}, 66^{\circ} \mathrm{W}\right)$ and $B\left(52^{\circ} \mathrm{S}, 114^{\circ} \mathrm{E}\right)$. Use Earth's radius as 6370 km .
(a) Find the longitude difference between $A$ and $B$.
(b) Calculate the shortest distance between $A$ and $B$ along:
(i) the latitude in kilometres to the nearest whole number.
(2 marks)
(ii) the longitude in kilometres to the nearest whole number.
(3 marks)
(c) A plane travelling at $800 \mathrm{~km} / \mathrm{h}$ leaves point A at 10.00 a.m. and flies through South Pole to point B. Find the local time the plane arrives at point $B$ to the nearest minutes.
23. The diagram below shows a sketch of the line $y=3 x$ and the curve $y=4-x^{2}$ intersecting at points P and Q .

(a) Find the coordinates of $P$ and $Q$.
(b) Given that QN is perpendicular to the $x$-axis at N, calculate:
(i) the area bound by the curve $y=4-x^{2}$ and the $x$-axis.
(ii) the area of the shaded region that lies below the $x$-axis.
(iii) the area of the shaded region enclosed by the curve $y=4-x^{2}$, the line $y=3 x$ and the $y$-axis.
24. A factory manufactures two types of tables; A and B. Type A table requires 2 hours for painting and 4 hours for assembling. Type B table requires 2 hours for assembling and 5 hours for painting. There are 48 hours for assembling and 60 hours for painting. The number of type B tables must be at least 3 and less than twice the number of type A tables. Profit on type A table is sh 180 and profit on type B table is sh 120. If $x$ represents the number of type A tables and $y$ represents the number of type $B$ tables:
(a) Form all inequalities representing the information above.
(b) Illustrate the inequalities on the grid provided by shading the unwanted region.
(c) Determine the number of tables of each type which can be manufactured to make maximum profit and determine the maximum profit.

## KANGEMA MATHIOYA FORM FOUR JOINT EVALUATION

Kenya Certificate of Secondary Education

## MATHEMATICS

Paper - 121/1
July/August 2015
Time: $21 / 2$ hours

## INSTRUCTIONS TO CANDIDATES

SECTION 1 (50 MARKS)
Answer all the questions in this section in the spaces provided.

1. Evaluate without using tables or a calculator.

$$
\frac{\frac{2}{3} \text { of }\left(1 \frac{1}{2}+\frac{3}{4}\right)-\frac{1}{4} \times \frac{1}{8} \div \frac{1}{16}}{\frac{4}{5}\left(3 \frac{1}{4}-1 \frac{3}{8}\right) \div\left(2 \frac{1}{2} \div 5 \frac{1}{3}\right)}
$$

2. Find the value of $y$ in the following equation.

$$
3^{-1}\left(\frac{1}{27}\right) \times\left(\frac{1}{27}\right) y=243
$$

3. In the figure below 0 is the centre of the circle and $A O B$ is a straight line. Find the value of $x$ and $y$.

4. Simplify $\frac{9 x^{2}-y^{2}}{2 y^{2}-7 x y+3 x^{2}}$
5. Determine the inequalities that define the unshaded region marked R in the diagram below.

6. The straight line $L_{1}$ with equation $\frac{x}{a}+\frac{y}{b}=1$ passes through (4,0) and (0,-15)
i) Formulate the equation of the line in the form $y=m x+c$
ii) Another line parallel to line $L_{1}$ passes through $(4,5)$ what is its equation in the form $a x+b y=c$
7. The size of an interior angle of a regular polygon is $156^{\circ}$. Find the number of sides of the polygon.
8. Musyoka mixes Basmati rice costing shs 150 per kg with pishori rice costing shs 170 per kg in the ratio of $3: 2$ respectively. At what price must he sell the mixture per kg inorder to make a $40 \%$ profit.
9. Given that $\operatorname{Sin} \theta=\frac{\sqrt{3}}{\sqrt{7}}$ and that $\theta$ is obtuse, determined $\operatorname{Cos} \theta$ without using tables or a calculator.
(3 marks)
10. Six men working 3 hours a day can lay 300 bricks. How many more bricks can 12 men lay, working 2 hours a day at
11. The position vectors of A, B and C are $O A=\binom{2}{5}, O B=\binom{5}{12}$ and $O C=\binom{8}{19}$ show that A, B and C are collinear.
12. Solve the equation for the value of $x$.

$$
8^{x+1}+2^{3 x+1}=160
$$

13. Use logarithms to evaluate
(4 marks)

$$
\frac{0.367^{\frac{1}{2}} \times 7324}{\sqrt[3]{2.365-3.3489}}
$$

14. 3 g of metal A of density $2.7 \mathrm{~g} / \mathrm{cm}^{3}$ is mixed with $1.6 \mathrm{~cm}^{3}$ of metal B of $3.2 \mathrm{~g} / \mathrm{cm}^{3}$. Determine the density of the mixture.
15. Use reciprocal tables to evaluate and solve for $x$ in the equation

$$
\frac{1}{x}=\frac{2}{0.125}+\frac{3}{0.008}
$$

16. Kamau is paid on commission by his employer. He gets a commission of $10 \%$ for selling goods worth shs 10,000 . For any sale beyond shs 10,000 he gets a commission of $7.5 \%$. In the month of September he was paid shs 7750. Calculate the total value of goods sold by Kamau in that month.
(3 marks)

## SECTION II (50 marks)

17. Three business partners Amina, Mutheu and Wamae contributed shs 200,000 , shs 300,000 and Shs 500,000 respectively and bought a matatu. the three decided that a quarter of the profit from the matatu at the end of the month would be saved for emergencies. A fifth of the remainder would be shared among the three partners in the ratio of their contributions. During the month of September the profit made was shs 184,800 . Determine how much each received at the end of that month.
(10 marks)
18. A cylindrical tank is to be constructed. A model of the tank is made such that it is similar to the actual tank. The curved surface area of the model is $2160 \mathrm{~cm}^{2}$ and that of the proposed tank is $135 \mathrm{~m}^{2}$
a) Given that the height of the model is 6 cm , calculate the height of the actual tank in metres.
b) Calculate the volume of the model given that the diameter of the actual tank in 14 m .
c) Determine the volume of actual tank in $\mathrm{m}^{3}$
d) The actual tank is to be used to store some liquid whose density is $0.82 \mathrm{~g} / \mathrm{cm}^{3}$. If the tank is half full determine the mass of the liquid in kg.
19.The figure below shows a histogram representing marks obtained by 80 students in a test

a) Construct a frequency distribution table for the data shown on the histogram.
(4 marks)
b) State the modal class.
(1 mark)
c) Calculate the mean mark.
d) Find the median
19. A strip leaves port $P$ and sails to port $Q$ which is 80 km away on a bearing of $040^{\circ}$. The ship then sails from $Q$ to $R$ on a bearing of $160^{\circ}$ where $R$ is 150 km from $Q$. From $R$ the ship returns directly to $P$ at a speed at $25 \mathrm{~km} / \mathrm{h}$.
a) Using a suitable scale, show the relative positions of $P, Q$ and $R$.
b) i) Find the bearing of $R$ from $P$.
ii) Find the distance travelled from R and the time taken to arrive at the destination.
c) An island $S$ is equidistance from $P, Q$ and $R$. Show its relative position.
20. A vehicle starting from rest attains a velocity of 15 mls after it has been travelling for 6 seconds with a constant acceleration. It continues at this speed for 15 seconds. Then it slows down with constant retardation until it comes to rest in a further 9 seconds.
i) From this information draw a velocity time graph.
(2 marks)
ii) What is the acceleration of the vehicle.
iii) What is the retardation.
(2 marks)
iv) Find the distance travelled in the total time 30 seconds.
v) Find the average speed for the whole journey.
21. a) In triangle $P Q R, q=3 \mathrm{~cm}, r=5 \mathrm{~cm}$ and $P=120^{\circ}$, Find $P$ and the area of the triangle.
(2 marks)
b) A room measuring 5.8 m long, 4.2 m wide and 2.5 m high is to be painted on all walls the floor and the ceiling. The room has one door measuring 1.8 m by 80 cm and three widows measuring 1.2 m by 75 cm each. Calculate
i) The area of the floor and ceiling.
ii) The area of all the walls except the door and windows.
iii) The area to be painted (including floor and ceiling)
iv) If painting costs shs 100 per $\mathrm{m}^{2}$ find the cost of painting two similar rooms.
22. a) Given that $\mathbf{O A}=\mathbf{i}+2 \mathbf{j}-3 \mathbf{k}$ and $\mathbf{O B}=2 \mathbf{i}-\mathbf{j}-2 \mathbf{k}$ find $|\mathrm{AB}|$
b) The diagram shows triangle OAB in which $\mathrm{BN}: \mathrm{NA}=1: 2, \mathrm{OT}: \mathrm{TN}=3: 2$ and M is the midpoint of OB .

Give that $\mathbf{O A}=\mathbf{a}$ and $\mathbf{O B}=\mathbf{b}$. Express the vector.


## AB

ON
AT in terms of $\mathbf{a}$ and $\mathbf{b}$.
Show that the point A, T and M are collinear and hence determine the ratio MT : TA.
24. The displacement $S$ metres of a particle from a fixed point in motion at any given time ( t ) seconds is given by $\mathrm{s}=3 \mathrm{t}+$ $3 / 2 \mathrm{t}^{2}-2 \mathrm{t}^{3}$
a) Find the initial acceleration.
b) Calculate
i) the time when the particle was momentarily at rest.
ii) its displacement by the time it comes to rest momentarily.
c) Calculate the maximum speed attained.

## THE ABOVE (KANGEMA MATHIOYA) IS A REVISION EXERCISE


[^0]:    (b) Using the grid provided, draw on the same axis the graphs of $\mathrm{y}=\operatorname{Sin} \mathrm{x}$ and $\mathrm{y}=-2 \operatorname{Sin} \mathrm{x}$
    (4 Marks)

