i)

MARAKWET WEST DISTRICT 443/1 AGRICULTURE Paper 1 July/August - 2015 MARKING SCHEME

aeration

	ii)	Drainage			
	iii)	Water holding capacity/capillarity			
	iv)	Stickiness/ consistency			
	v)	Cation exchange capacity / soil PH / availability of soil nutrients.			
		$(Any 4 x \frac{1}{2} = 2mks)$			
2.	i)	Variety of beans			
	ii)	Rainfall pattern/ availability of irrigation facilities/ rainfall reliability Incidence of pests and diseases			
	iii)				
	iv)	Expected harvesting time in relation to suitable weather or marketability			
	,	$(any 2 x \frac{1}{2} = 1mk)$			
3.	i)	Use of sprinklers			
	ii)	Use of hosepipes			
	iii)	Use of watering cans $(any 2 x \frac{1}{2} = 1mk)$			
4.	i)	Use of organic manure			
	ii)	Growing of cover crops			
	iii)	Crop rotation /fallowing			
	iv)	Use of organic mulch			
	v)	Use of Agricultural line /CAN			
	vi)	Minimum tillage			
	vii)	Cultivating when the soil moisture content is optimum $(5 \text{ x} \frac{1}{2} = 2 \frac{1}{2} \text{ mks})$			
5.	i)	Enables efficient coverage of plant with chemicals			
	ii) Creates unfavourable micro-climate for disease causing organisms				
	iii)	ii) Diseased branches (parts) are removed hence reduce chances of disease spread.			
	iv)	Prevents lower branches (leaves) from touching soil hence avoiding infection			
		$(Any 2 x \frac{1}{2} = 1mk)$			
6.	i)	Reduces run-off thus increasing amount of water into the soil			
	ii)	Reduces evaporation thus increases amount of water retained by the soil			
		$(2 x \frac{1}{2} = 1 mk)$			
7.	i)	Saves time			
	ii)	Reduces cost of production			
	iii)	Maintains soil structure			
	iv)	Minimizes soil erosion			
	v)	Less laborions			
	vi)	conserves moisture			
0	vii)	Minimises root distrurbance $(Any 4 x \frac{1}{2} = 2mks)$			
8.	i)	Training/ education of labour force			
	ii)	Mechanizing farm operations / proper working tools			
	iii)	Giving incentives eg proper housing, transport, bonus			
	iv)	Supervision of labour			
	v)	Assign specific tasks to workers Proper remuneration (proper payment)			
	vi)	Proper remuneration (proper payment) Assigning tasks according to skills $(any 4 x \frac{1}{2} = 2mks)$			
9.	vii)				
ש.	i) ii)	Soil type Soil cover			
	ii)				

- iii) Topography/ slope of the land
- iv) Wind speed / wind velocity/ wind strength
- v) Human activities eg overcultivation
- vi) Soil moisture content $(2 x \frac{1}{2} = 1 \text{ mk})$
- i) Control weeds / pests/ diseases before application
- ii) Control soil erosion
- iii) Apply fertilizers in splits
- iv) Apply fertilizer at appropriate stage of crop growth to minimize volatilization and leaching
- v) Top dress when it is just about to rain/ apply on moist soil
- vi) Apply the optimum rate of fertilizer $(3 \times \frac{1}{2} = 1 \frac{1}{2} \text{ mks})$
- 11. i) Hydration

- ii) Hydrolysis/ solution
- iii) Oxidation
- iv) Carbonation $(Any 2 x \frac{1}{2} = 1mk)$
- 12. i) Soil PH/acidity or alkalinity
- ii) Level of nutrient present in the soil $(\frac{1}{2} \times 2 = 1 \text{ mk})$
- 13. i) Farmer has freedom to make any development plan
 - ii) Title deed can be used to secure credit
 - iii) Farmer has incentives to conserve soil
 - iv) Farmer can sell part of the whole land to settle monetary issues
 - v) Reduces incidence of land disputes $(\frac{1}{2} \times 4 = 2mks)$
- 14. i) Size/ weight of fruits
 - ii) Cleanliness
 - iii) Shape
 - iv) Freshness
 - v) Extent of pests/ disease damage
 - vi) Colour of fruits
 - vii) Wholeness
 - viii) Moisture content $(\frac{1}{2} \times 4 = 2mks)$
- 15. i) Allows production of many seedlings in a small area
 - ii) management of the seedlings is easy
 - iii) Facilitates planting of weak seedlings to become strong for transplanting
 - iv) It is easy to provide optimum conditions for growth of the tiny seeds in the nursery
 - v) One is able to select strong and healthy seedlings for transplanting
 - vi) Excess seedlings can be sold to earn income
 - vii) Reduces the time taken by the crop in the seedbed
 - viii) There is less wastage of seeds as the likelihood of germination is very high (Any 4 x $\frac{1}{2} = 2mks$)
- 16. i) Have high germination percentage
 - ii) Free from pests/ diseases
 - iii) Are high yielding
 - iv) Adapted to certain ecological conditions
 - v) Breed true to type
 - vi) Free from foreign materials
 - vii) Free from physical damage
 - viii) Right shape
 - ix) Uniform in size $(4 x \frac{1}{2} = 2mks)$
- 17. i) Slightly soluble in water / less liable to leaching / long residueal effect in the soil
 - ii) Have a slight scorching effect
 - iii) Easily fixed in the soil $(2 \times \frac{1}{2} = 1 \text{ mk})$
- 18. i) Topography of the land
 - ii) Condition of the land / physical condition of the soil

Layers

Machinery

Dairy cattle

	iii) iv)	Type of soil Depth of tillage desir	red/type of crop to g	OW		
	v)	Scale of operation/ si	•••••••••••••••••••••••••••••••••••••••			
	vi)	Capital available/ cos				
	vii)	Skills of the operator	-	7		
	viii)	Source of power avai				
	ix)	Time available before				
	x)	Availability and acce		ment	$(4 \text{ x } \frac{1}{2} = 2 \text{ mks})$	
19.	i)	leaf chlorosis				
	ii)	Leaf curling				
	iii)	Mosaic eg cassava/ to	obacco mosaic/ mottl	ing		
	iv)	Distortion / stunted g	growth/ malformation	S		
	v)	Rosetting / excessive	production of auxill	ary buds		
	vi)	Excessive branching/			$(Any 4 x \frac{1}{2} = 2mks)$	
20.		nventory for millenniur		2010 was as follow	vs;	
	Cash	at hand	Kshs.5,000			
	Layer		Kshs.30,000			
		cattle	Kshs.120,000			
	Calves Kshs.		Kshs.7,000			
			Kshs.15,000			
	Build	0	Kshs.75,000			
	Mach	inery	Kshs.95,000			
	Land On the same day the followi Bank Loan		Kshs.200,000	heating of furgers that f		
			-		armers records.	
			Kshs.213,00			
		ales on credit sales on credit	Kshs.10,000 Kshs.13,000			
			Kshs.5,000)		
	Vegetable sales on credit Farm inputs purchase on cre)		
		s payable	Kshs.5,600)		
	-	s payable	Kshs.750			
		in Bank	Kshs.20,00)		
		st payable	Kshs.2,000	, ,		
	Prepare a balance sheet for th					(5mks)
			Farm balance sheet as	at 1st June, 2010		× ,
		Credit / Assets 🗸		Debit / Liabilitie	es ✓	7
		Fixed Assets:	Kshs. Cts.	Long term Liabi		1
		Land	200,000	U	213,000	
		Building	75,000			
			• • • • • •			

Calves	15,000	Taxes ✓	750

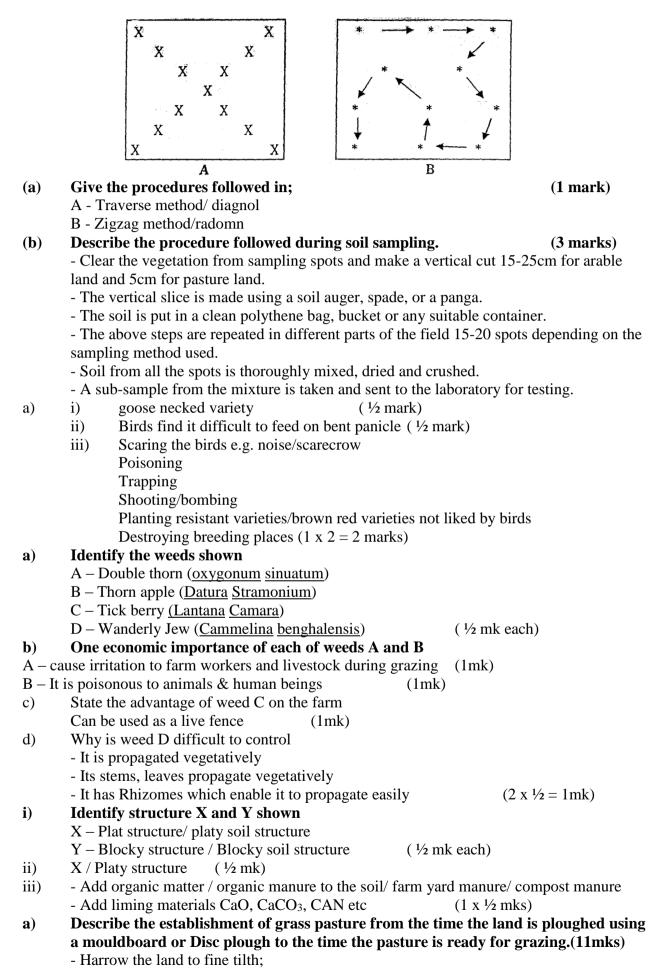
30,000

95,000 Farm inputs

120,000 Wages

Current Liabilities:

19,800


5,600

21. Study the following diagrams of soil sampling and answer the following questions.

23.

24.

25.

- Done during the dry season / before rains.
- A Clean seedbed / weed free seedbed is desirable.
- Firm the seedbed using rollers before or after planting.
- Select the desirable variety of seed grass for the ecological zone of the area.
- Plant the seeds at the onset of the rains or just before the rains / early planting.

- Apply phosphatic fertilizers /SSP, DSP, TSP at planting time at the rate of 200-300kgms SSP/Hect

- Drill/broadcast the seeds evenly.

- Use the recommended seed rate for the variety or 1.5-2 kgms/ Hect. PGS or 10-15 kgms/Hect

Non-germinating seeds.

- Drug a twig or gunny bag to cover the seeds lightly/plant 3-5 times the diameter of the seeds.

- Control weeds by uprooting / applying a suitable herbicide.
- Apply nitrogenous fertilizers about 6 weeks after germination in split application.

- Cut back/practice light grazing in the initial stage of establishment to encourage lateral growth.

- Avoid grazing when the pasture is too young.
- Use certified seeds / healthy seeds.

What are the advantages of mixed grass-legume pasture over a pure grass pasture? **(b)** (9 marks)

- It is more palatable than a pure grass pasture.
- Farmer has security against total loss due to attack by pests, diseases or bad weather.

- Mixed pastures make maximum use of soil nutrients because of different nutrient requirement

- Mixed pastures have better weed control effect
- Mixed pastures reduce soil erosion because of good coverage.
- Mixed pastures in crease soil fertility because of nitrogen fixation.
- There is economy in use of fertilizers in mixed pastures

- There is better distribution of growth in a mixture of early and late maturing species can be included in the mixture.

26. a) Cultural Disease control measures in crops

- Use of healthy planting materials/ certified seeds during planting to prevent introduction i) or spread of crop diseases.
- Practising field hygiene / burning crop residue / rogueing/ clean weeding/ destroys (kills) ii) disease causing micro-organisms/ destroys pests that transmit diseases.
- Proper seedbed preparation/ clean seedbed for the control of armillaria root rot in tea and iii) coffee.
- Proper spacing to control damping off in cabbage seedlings in the nursery or rosette iv) disease in groundnuts or blight
- Heat treatment for the control of ratoon stunting disease in sugarcane. v)
- Proper drying of cereals and pulses before storage to control Aflatoxin vi)
- Planting disease resistant varieties eg Ruiru 11, for the crop to be able to resist attack by vii) coffee Berry disease.
- PCrop rotation starves the disease causing organisms to death viii)
- Proper crop nutrition makes the crop strong and able to resist attack by disease ix)
- Close season This is the period when a susceptible crop is not grown in order to control x) a certain disease.
- Timely planting/ early planting enables the crop to escape attack by the disease eg blight xi) in tomatoes and irish potatoes.
- Prunning/ open pruning / staking/ altering of environmental conditions / irrigation; xii) irrigation during dry season controls blossom end in tomatoes, staking and pruning reduce

- (Stating $\frac{1}{2}$ mk explaining $\frac{1}{2}$ mk x 8 = 8 mks) blight in tomatoes
- **Problems of marketing agricultural produce** b)
- Interferance by the state; such as hoarding causing artificial shortage leading to price i) fluctuation (higher prices.)
- Poor training of people involved in marketing; leading to heavy losses to the farmer ii)
- Bulkiness of most Agricultural produce; making transportation/ storage difficult and iii) expensive
- High perishability of produce; leading to low quality within a short time iv)
- Seasonality of produce: leading to price fluctuation v)
- Inadequate storage facilities; leading to heavy losses of produce vi)
- Poor infrastructure; leading to high transport costs and spoilage of agricultural produce vii)
- Change in market demand; due to time lag between production and marketing viii)
- Change of supply of Agricultural produce; leading to fluctuation of market prices. ix)
- Inadequate market information to farmers; leading to selling of farm produce hen the x) prices are low
- xi) Lack of capital to finance various marketing functions eg advertising and transportation
- Competition with synthetic/cheap products leading to loss of market. xii) (stating $\frac{1}{2}$ mk explaining $\frac{1}{2}$ mk x 8 = 8 mks)

c) Ways in which grass cover conserve soil & water

- Grass filters / traps soil from the run off i)
- Grass roots holds/ binds the soil together ii)
- Grass cover reduces evaporation of soil moisture (reduce loss of soil moisture) iii)
- Grass reduce speed of runoff hence reducing erosive power of runoff iv)
- Grass slows down runoff hence encourage water infiltration and deposition of soil v) upstream
- Grass leaves/ foliage on decomposition improves soil fertility and soil structure vi) (1 x any 4 = 4 mks)

Ways of dealing with risks and uncertainties a)

- Diversification/ growing a variety of crops/ having various enterprises; so that if one fails i) the farmer has something to rely on (avoid total loss)
- Insurance against losses/ taking insurance policy for farming activities; so that in case of ii) failure the enterprises are covered (compensated)
- Inventory marketing/ strategic farming; keeping farm products and selling them at a time iii) when prices are favourable (high)
- Flexible enterprises; engaging in enterprises that can be stopped or started early as iv) conditions change or stopped and changed.
- Rationing of inputs; using just sufficient inputs such that in case of losses the costs are not v) too high.
- Contract marketing/ Hedging; making arrangement with marketing agencies in advance so vi) that changes in prices after arrangement do not change the price of the farmers produce.
- vii) Using more certain husbandry practices/ using practices that the farmer is sure of and has used in the past ; This increase chances of success.
- Selecting more certain enterprises/ selection of enterprises that have done well in the area / viii) tried through research; increase the chance of success.
- Maintain liquidity; for use incase of any eventuality ix)
- Adopting modern production techniques x)
- Factors influencing spacing of crops b)
- Growth habit of the crop/nature of plant growth; crops that tiller, spread, creep, tall may i) require a wider spacing than those that do not.
- ii) Intended use/ purpose of the crop; maize for silage is planted at a closer spacing than that for grain production.
- Type of machinery to use for field maintenance operation iii)

27.

- Spacing adopted should allow passage for various operations such as weed control, spraying and harvesting

- iv) Soil fertility; A fertile soil allows closer spacing compared to poor soils
- Moisture content of the soil/amount of rainfall in the area;
 High moisture content/rainfall may allow closer spacing but low rainfall may necessitate wider spacing.
- vi) Interplanted crops; crops planted with others in rows will require wider spacing
- vii) Pest control; properly spaced crops will make it difficult for pests to move from one plant to another e.g aphids.
- viii) Disease control; Rosette virus in groundnuts is controlled by close spacing / wider spacing controls fungal disease eg blight
- ix) Number of plants/seeds per hole; where more than one seed (plant) per hole wider spacing is required.

1 for stating	6 x 1 = 6mks
1 for explanation	6 x 1 = 6mks
Total	= 12mks

MARAKWET WEST DISTRICT 443/2**AGRICULTURE** Paper 2 July/August - 2015 MARKING SCHEME 1. Four precautions observed when working with livestock tools - Tools kept in safe place after use - Tools used for the correct job - Maintained and serviced always - Handle correctly when in use - Use safety devices / first Aid $(\frac{1}{2} \times 4 = 2mks)$ 2. Other good qualities of Jersey breed over fresian - Hardy/ withstand high temperatures - Needs less food - Excellent grazer on fairly poor pasture $(\frac{1}{2} \times 2 = 1)$ Factors that influence rate of respiration 3. - Body size - Amount of exercise - Degree of excitement - Ambient temperatures $(\frac{1}{2} \times 4 = 2mks)$ - Browse on a wide variety of bitter leaves 4. - Do not graze from the ground where they can pick eggs of parasites $(\frac{1}{2} \times 2 = 1 \text{ mk})$ 5. - To resist diseases - To enhance production of quality produce - To facilitate faster growth $(\frac{1}{2} \times 4 = 2mks)$ Crutching is the cutting of wool around the vulva of the sheep while ringing is the trimming 6. around the penis sheath of rams (mark as a whole 2mks) 7. - Mother dies - Mother rejects the kid - Mother is a dairy goat - Mother does not have enough milk/does not produce milk (@ $\frac{1}{2} \times 3 = 1 \frac{1}{2} \text{ mk}$) 8. - Prevent moisture rising up the wall - Prevent coldness from ascending - Prevent termites from rising up the wall $(@ \frac{1}{2} \times 2 = 1 \text{mk})$ 9. - Absence of vigor mortis / No stiffness of joints - Dark watery blood oozing from natural openings - Excessively blown stomach - Blood does not clot $(@ \frac{1}{2} \times 2 = 1 \text{mk})$ 10. - The reputation of the supplier - Time factor from the hatchery to the farm - Type of chick available or required $(@ \frac{1}{2} \times 2 = 1 \text{mk})$ - Restrain cow in a crush 11. - Assemble milking equipment - Provide dairy meal feed - Wash udder with warm water/ dry towel - Test presence of mastitis using a strip cup $(\frac{1}{2} \times 4 = 2mks)$ 12. - Power take off shaft - Draw bar $(@ \frac{1}{2} \times 3 = 1 \frac{1}{2} \text{ mks})$ - Hydraulic system

©2015 Pyramid Consultants P.O BOX 67593-00200 Nairobi 0722614502/0733494581 / www.kcsetopical.co.ke

- 13. Progesterone
 - Prolactin
 - oxytocin $(\frac{1}{2} \times 3 = 1 \frac{1}{2} \text{ mks})$
- 14. Levelling the seedbed
 - Breaking large soil clods
 - Mix soil with organic matter
 - Cover broadcasted seeds
 - Uproot weeds
 - Aerate the soil $(@ \frac{1}{2} \times 2 = 1 \text{ mk})$
- 15. Increase efficiency of machines/ reduce wear and tear caused by friction
 - Reduce heat created by rubbing surfaces
 - Acts as a cleaning agent of dust
 - Prevent rusting of stationary machines
- $(@ \frac{1}{2} x 4 = 2mks)$
- 16. Fertilize the queen during nuptial flight
 - Keep the hive cool by flapping their wide wings at high speed (@ $\frac{1}{2} \ge 1 = 1 = 1$)
- 17. Malpresentation of the the foetus
 - Retained afterbirth
 - Prolonged labour pains $((@ \frac{1}{2} x 2 = 1mk))$
- 18. Overgrown hooves
 - Presence of sharp objects eg stones
 - Muddy living/ grazing areas
 - Tick infestation between hooves
 - $(@ \frac{1}{2} x 4 = 2mks)$

Strategic treatment – It involves giving animals drugs regularly each year with purpose of reducing risk of infection or contamination of internal parasites eg worms
 Tactical treatment- involves giving animals drugs during the year to avoid outbreak of internal parasites when climatic and nutritional conditions become abnormal (2mks)

20. a) M - Piston

20.	a)	M – Piston		
		N – Crankshaft		
		P – Differential axle	$(@ \frac{1}{2} \times 3 = 1 \frac{1}{2} \text{ mks})$	
	b)	- Transmits/ breaks pow	er from the engine to the selected	d gear
		- Stops the tractor while	the engine is running for gradua	l acceleration from rest position
		- For gradual engageme	nt of power to the rear wheels.	(@ 1 x 3 = 3mks)
21.	a)	A – Oviduct	-	
		X – Uterus / shell gland		
		Y – Magnum	$(@ \frac{1}{2} \times 3 = 1 \frac{1}{2} \text{ mks})$	
	b)	- Water		
		- Vitamins		
		- Mineral salts	$(@ \frac{1}{2} \times 2 = 1 \text{mk})$	
	c)	18 – 22hours (½ mk)		
	d)	Part Q $(\frac{1}{2} \text{ mk})$		
22.	a)	X – wood chisel	(½ mk)	
		Y – cold chisel	(½ mk)	
	b)	D – Cutting edge		
		E – Bevel edge blade		
		F – Shoulder		
		G – Header ($@ \frac{1}{2} x 4 = 2mks)$	
	c)	Oilstone (¹ /2 mk)	

23. a) B – Landside

	D – U-bolt	
	$F - Draft rod$ (@ $\frac{1}{2} \times 3 = 1 \frac{1}{2} mks$)	
b)	A – invert furrow slice	
	C – Cut furrow slice horizontally	
	E – Adjust the depth of ploughing	$(@ \frac{1}{2} \times 3 = 1 \frac{1}{2} \text{ mks})$
c)	- Cheap to buy	
	- Few skilled labour is required to use	
	- Plough on any land topography	
	- Economical to small scale farmers	$(@ \frac{1}{2} x 4 = 2mks)$
a)	Ear notching $(\frac{1}{2} \text{ mk})$	
b)	- Facilitate culling	
	- Ease in record keeping	
	- Ease feeding	
	- Facilitate disease control	
	- Facilitate selection and breeding	(@ 1 x 2 = 2mks)

SECTION C (40 MARKS)

24.

25.

- a) Forage conservation as silage or hay used during time of scarcity
 - Paddocking to achieve rotational grazing to conserve and maximize use of pasture without wastage.
 - Irrigation of pasture
 - Increase yield during drought
 - Selective destocking to reduce number of animals during drought
 - Construction of dams and boreholes to supply constant water
 - -Provision of supplements to supply deficient nutrients or elements
 - Growing of drought resistant pasture species to maintain continous supply of pasture
 - Reseeding pastures is done at beginning of rains to ensure maximum yields.

(stating $\frac{1}{2} \ge 5 = 2 \frac{1}{2}$ mks) Explanation $\frac{1}{2} \ge 5 = 2 \frac{1}{2}$ mks)

- Total = 5mks
- b) High stocking rate
 - Easy to keep egg production records
 - High laying percentage
 - No vices eg egg eating and cannibalism
 - Clean egg production
 - Broodiness is minimized
 - Control disease spread
 - Less labour under automated feeders and waterers
 - Manure accumulates easily (@ 1 x 5 = 5mks)
- c) Proper disposal of placenta/ afterbirth
 - Cut umbilical cord with sterilized scapel
 - Removal of needle teeth/ tooth clipping
 - Keep piglets in warm/ creep area
 - Weigh piglets regularly/ 24 hours after birth
 - Feed piglets on colustrum
 - Provide iron supplementation intramuscular injection
 - Vaccination against diseases
 - Creep feeding
 - Identification
 - Deworming/drenching to control internal parasites / worms
 - Tail cutting

- Castration of male piglets $(1 \times 10 = 10 \text{mks})$ - Causal organism - virus; Enterovirus; A, C & D 26. a) (1mk)- Infected saliva - Contaminated litter, machinery - Feeds - Vaccines (any point 1mk) - Profuse salivation - Wounds/ Blisters in mouth, muzzle and between hooves - Emaciation - High fever/ rise in temperature - Reduction in milk production (4 x 1 = 4 mks)Longer lifespan i.e economic life b) - Maximum production in terms of quantity or more draught power - Quality products which fetch high market price - High fertility – reproduce faster - Economical to keep and many offsprings - Do not spread diseases Factor $-1 \ge 5 = 5 \text{ mks}$ Explanation 1 x 5 = 5 mks Total = 10mks- Vaccination every 6 months c) - Imposition of quarantine - Slaughter affected animals - Isolation of farm animals from wild life - Strict hygiene (1 x 4 = 4 m k s)Site selection a) - Suitable topography/ gentle sloping - Availability of water - Correct soil type ii) - Clear the land - Clear all the vegetation around the place iii) Mark the site - Put pegs - Mark exit and inlet channels Digging the pond iv) - Dig and separate topsoil and subsoil - Upper side 0.5M deep and lower side 1.7m deep
 - Use concrete on floor to prevent seepage
 - v) Construction of dykes
 - Compact wall around pond for reinforcement
 - $\text{Step} 1 \ge 5 = 5 \text{mks}$
 - Description $1 \ge 5 = 5 \text{mks}$
 - Total 10mks
 - b) Eggs on underground hatch into larva.
 - Larva climb 1st host suck blood, engorge drop to the ground
 - On the ground larva moult into nymph and climb 2 host suck blood engorge and drop
 - On the ground nymph mount into adult climb 3^{rd} host suck engorge male and drop on the ground adult lay egg and cycle continues. (1 x 7 = 7 mks)

(c) Factors that affect digestability of food

- Chemical composition of food
- Ratio of energy to protein

www.eeducationgroup.com

- Species of animal
- Food already in the digestive system
- Form in which food given to animal
- Fibre composition of the seed

$$(1 \text{ x } 3 = 3 \text{ mks})$$