KAKAMEGA CENTRAL JOINT EVALUATION TEST CHEMISTRY PAPER 2

MARKING SCHEME

1. a)C₃M₂ /

b)E V

- c) K has higher melting point than J
- d) has a stronger intermolecular force of attraction than J

e) Ionic radius of K is bigger than the atomic radius of. K reacts by gaining an electron hence increasing repulsion among the electrons

f) J has a smaller radius than C. J has a higher nuclear attraction pulling electrons towards the nucleus. 9) K^2 2.8.8.8 V

 $C^{2+} 2.8$

- h) E has a stronger metallic bond than B
 - E has more valency electrons than B
- 2. a i) Mistake- method of gas collection is wrong

Reason- ammonia is less dense than air **Mistake**- flask should be slanting downwards left to right **Reason**- water produced may run back and break the flask -r **Mistake**- moist reactants should not be used **Reason**- ammonia gas will dissolve in water

ii) Calcium oxide-'

iii) $2NH_4Cl_{(aq)} + Ca(OH)_{2(aq)} \rightarrow 2NH_{3(g)} + 2H_2O_{(aq)} + CaCl_{2(aq)}$

iv) Deep a glass rod in conc. HC1 and bring it into contact with ammonia in a test tube. It forms a white precipitate. — bi)Until I

ii) A- Nitrogen (II) oxide (NO)

B- Nitrogen (IV) oxide (NO₂)

iii) Nitrogen in NH, has an oxidation state of -3 while in HNO3, it has an oxidation state of +5. increase in oxidation state is oxidation.

iv) $NH_{3(g)} + HNO_{3(aq)} \rightarrow NH_4NO_{(aq)}$ Molar mass of $NH_4NO_3 = 80 >$

Molar of NH₄NO₃ <u>1000 x 1000</u>

Molar ratio = 1:1

Molar mass of $HNO_3 = 63$ Mass of I-1N03 = $\frac{1000 \times 1000 \times 63}{80}$

3. i)Heat

ii) For condensed vapour not to go back to the hot tube which might break

iii) To expel all air hence prevent re-oxidation

80

— Black copper (II) oxide turns to reddish-brown copper after reduction Colourless droplets collect on cooler parts _— Anhydrous copper (II) sulphate turn to blue hydrated copper (II) sulphate

v) Hydrogen gas is explosive in the air i-"

v To prevent re-oxidation of copper metal by air

vi Yellow Lead (II) oxide will turn reddish brown when heated and then reduced to a grey lead metal on cooling

vii -It is neutral to litmus

- it bums with a blue flame

- it reduces metal oxides into metals(it is a reducing agent) [reject]

- 4. a) Purify to remove impurities, bubble through OH/KOH to remove CO2, reduce the temperature to remove water vapour, compress to liquidify the residue air, then fractional distillation to obtain oxygen at -183°C —
- b) i) Concentrated sulphuric (VI) acid V
 - ii) SO_{3 (g)}+ HSO₄(I) H₂S₂O₇(I) \setminus (penalize ¹/₂ for missing /wrong state symbol

- c) i) Platinum/Platinum asbestos _- 'i.
- ii) It is cheap/cheaper Not easily poisoned /action stopped by impurities
- d) Turns blue to white /'Forms white powder
 Sulphuric (VI) acid dehydrates copper (II) sulphate crystals
 Removes water of crystallization
- e) It is less volatile//volatility//in volatile
- f) -Manufacture of sulphate fertilizer l
- -Superphosphate fertilizer
- -Production of Rayon/ making dyes i-
- -Used in car batteries/ as an electrolyte -
- -Manufacture of soaps; detergent 'cleaning of metals --
- -Manufacture of paints HCl/HNO3 oleum
- -As a drying dehydrating agent/ manufacture of nylon! Al₂SO/ A1COH₃, su1phate Drugs pigments.
- 5. a) Hydrocarbon V / b) i) Fractional distillation 'S-'
- ii) Fuel /solvent source of H₂ gas
- c) i) L = Calcium cabide, CaC2
- ii) Phosphoric acid/aluminium oxide/ H2SO4
- iii) H—C≡C—H
- iv) Hydrolysis or hydration or oxidation'
- d)i) CH₃COOH(aq)+NaOH(aq) CH₃COQNaq) + H₂O(l)
- ii) HC1 is fully dissociated While ethanoic acid dissociates partiall)Y, therefore Ethanoic acid is weak while HCl is strong.
- 6. a) Temperature and pressure are directly proportional OR words to that effect
- b) With increase in temperature, the gas particle gain rr5i Kinetic energy, they move faster and collide with thee walls of the container more frequently hence increasing pressure. //
- C) 0.5x100 = 4000x 1 // T2 = 50x500 = 62.5KT2 500 400 ii $\frac{P_1V_1}{T_1} = \frac{P_2V_2}{T_2}$ 1 x 400 =0.5 x 100 500 T_2 $T2 = 0.5 \times 100 \times 500$ 400 = 62.5 Kd)i) HCl =36.5g 1 mole = 36.5 g? = 3.65g X₂CO₃: HCI 1:20.000135mol = 25cm³ ⁰ $? = 250 \text{cm}^3$ $0.00135 \times 250/25 = 0.1035$ mole 1.86/0.0135 = 137.78gb) $X_2CO_3 = 137.78 V$ 2x+12+48=137.78 penalize $\frac{1}{2}$ for wrong units 2x = 77.78X = 38.89 penalize $\frac{1}{2}$ for units given
- e) Potassium
- 7. magnesium is higher in reactivity than metal. It will displace lead from its compound but lead cannot displace magnesium from magnesium compound.

www.eeducationgroup.com

b) Mg_(s) + PbO_(s) → MgO_(s) + Pb_(s)
c) i) magnesium

ii) lead (II) oxide
iii)_ Redox reaction

d) i) Solution A

Sodiun hydroxide / potassium hydroxide.

ii) solution C
iii) Solution A

KAKAMEGA CENTRAL SUB-COUNTY JOINT EVALUATION EXAMS **CHEMISTRY 233/3** MARKING SCHEME

```
Complete table......lmk
Decimal.....lmk
Accuracy ......lmk
Principal of averaging...... lmk
Final answer..... lmk
a)(i) average volume used:
V1+V2+V3 = FA
    3
(11)1000 cm<sup>3</sup> contains 0.4 moles
Ans (i) will contain ans(i) x0.4
                    1000
Ans (ii)
Eqn for the reaction:
HCI_{(aq)} + NaOH_{(aq)} -
                     \rightarrow NaCI<sub>(aq)</sub>+H<sub>2</sub>O<sub>(1)</sub>
Mole ratio : HCI: NaOH
             1:1
Hence number of moles of HCI = number of moles of NaOH
=ans (ii)
(III) number of moles of HCI in 250cm<sup>3</sup>
25cm<sup>3</sup> contains ans (ii) moles
250cm<sup>3</sup> ans (ii) x250
                   OR
                          ans (ii) x 10
           25
= ans (iii)
(iv) 1000cm<sup>3</sup> contains 2moles
50cm<sup>3</sup> will contain 2 x50
                1000
=0.1moles
(v) Number of moles of HCI that reacted
0.1- ans(iii)
= ans (iv)
(vi) mole ratio:
X<sub>2</sub>CO<sub>3</sub>: HCI
1:2
Ans (iv)xl
    2
= ans (vi)
(vii) ans (vi) moles= 1.06g
lmole = 1.06x1
     Ans (vi)
=RFM of X<sub>2</sub>CO<sub>3</sub>
2x+12+(16x3) = RFM
2x = RFM - 60
X = RFM-60
       2
                                              1
```

©2015 KKC Sub-county form four

Fumes produced turn blue litmus paper red and	Acidic gas
red litmus remains red.	Hydrated salt
Colorless liquid forms on the cooler parts of the	
test tube	

b)(i)

Dissolves to form a colourless solution	Soluble salt. Absence of coluored ions- Cu ^{2+,} Fe ^{3+,} Fe ²⁺
(ii)	

(11)

.

White ppt, soluble in excess	Al ³⁺ ,Pb ^{2+,} Zn ²⁺ present
(:::)	

(iii)

Г

White ppt, insoluble in excess	Al ^{3+,} Pb ²⁺ present
(iv)	•

No white ppt formed	Al ³⁺ present
	Pb ²⁺ absent

(v)

No white ppt formed	$SO_4^{2-7} SO_3^{2-7} CO_3^{2-7}$ absent

(vii)

White ppt	Cl'oresent

Q.3.(a)

Burns with a blue flame	Saturated cpd/organic cpd with low C:H ratio -C-C- present, -C=C- absent

(b)

Mixes completely forming a uniform solution	Polar liquid/ miscible liquid
(c)	

Changes to yellow , p H=6.5	weakly acidic
	1

(d)

No effervescence/ no bubbles	Absence of H ⁺ /R-COOH
	K not acidic

(e)

Potassium dichromate(VI) changes from orange to	R-OH present
green	

www.eeducationgroup.com