
5.

CENTRAL KENYA NATIONAL SCHOOLS JOINT MOCK - 2015 231/1 PHYSICS PAPER 1 MARKING SCHEME

- 1. Initial reading = 22.5cm³ Final reading = $\frac{11.3$ cm³}{33.8cm³
- 2. Water has stronger adhesive forces and weaker cohesive forces but mercury has stronger cohesive forces than and weaker adhesive forces.
- 3. $P = h\rho g$ (0.76 - 6.65) x 13600 x 10 = 1.25 x 10 x h \checkmark^{1} 14960 = 12.5h h = 196.8m \checkmark^{1}
- 4. (i) Brownian motion is random constant motion of particles.
 - (ii) Due to constant bombardment of chalk and air particles.

- 6. When the air is blown into the burner, it leaves the nozzle at a high speed/velocity \checkmark thus the pressure at that region decreases \checkmark below the atmospheric pressure \checkmark thus the air outers the Bunsen burner. \checkmark
- 7. Max extension = 0.20m, spring constant = 125N/m. F = Ke \checkmark^1 F = $125 \ge 0.2 \checkmark^1$
- 8. Any 1
 Radiation ✓
 Evaporation ✓
 Conduction and convection ✓

9.
$$10 \ge 200 = 35$$
 W

$$W$$

$$Q.35 \times W = 0.1 \times 2 \checkmark = 25N \checkmark$$

$$W = \frac{0.2}{0.35} = 0.5714 \checkmark$$

$$M = \frac{W}{10} \times 1000 = 0.5714 \text{ x } 100 \text{ \checkmark} = 57.14 \text{ g}$$

Or 0.05714kg

- 10. Law of inertia states that a body tends to remain in its state of rest or uniform motion unless acted upon by external forces.
- 11. Increase in temp \checkmark leads to increase in K. energy of particles increasing their collision making the pressure to increase.
- 12. Raising of the road at an angle to minimize motor vehicles from skidding.
- 13. Energy cannot be lost or created but can be lost or created but can be converted from one form to another.

SECTION B:

- 14. (a) (i) Measure values of pressure \checkmark and temperature. \checkmark
 - (ii) Temperature varies with pressure.
 - Values of temperature and their corresponding values of pressure are recorded. \checkmark
 - A graph of pressure against temp. is plotted. \checkmark
 - When the graph is extrapolated it passes through absolute zero. \checkmark

(b)
$$P_1V_1 = P_2V_2 \checkmark^1$$

 $26 \text{ x } (a+5) = 30(a-5) \checkmark^1$
 $26a + 130 = 30a - 150$
 $4a = 280$
 $a = 70 \text{ cmHg } \checkmark^1$

Gas pressure = Atm pre + hpg
P₁V₁ = P₂V₂
$$\checkmark$$

(χ + 5) 0.26 = (χ - 5) 0.30 \checkmark
 $\chi = \frac{2.8}{0.04} = 70 cmHg \checkmark$

(c)
$$\frac{P_1V_1}{T_1} = \frac{P_2V_2}{T_2} \checkmark$$
$$\frac{30000 \times 0.5}{300} = \frac{P_2 \times 9.5}{250}$$
$$P_2 = \frac{30000 \times 0.5 \times 250}{300 \times 9.5} \checkmark$$
$$= 1315.79 \text{ Pascals }\checkmark$$

- (d) Kelvin scale starts at absolute zero while Celsius scale starts at 273K.
- 15. (i) Specific heat capacity is the quantity of heat required to raise the temp. of a unit mass of a substance by one Kelvin.

(ii) Heat gained by calorimeter =
$$M_C C_C \Delta \theta$$

= Heat capacity x $\Delta \theta$
= 40 x (34 - 25)
= 40 x 9 = 360J
Heat gained by water = $M_W x C_W x \Delta \theta$
= 0.10 x 4200 x 9
= 3780J

Physics P1MS

(iii)

S 2 Heat lost by metal block = 3780 + 360 = 4140 J \checkmark Cekenas Joint Mock

(iv) Heat lost by metal block = Heat gained by calorimeter + water $M_b \ge C_b \ge \Delta \theta = 4140$ $0.15 \ge C_b \ge (100 - 34) = 4140$ $(66 \ge 0.15)C_b = 4140 \checkmark$ $C_b = \frac{4140}{66 \times 0.15} = 418.18Jkg^{-1}k^{-1} \checkmark$

16. (a) There is change of direction with time. \checkmark

(b) Centripetal force is greater than weight. \checkmark

i.e
$$\frac{MV^2}{r} > Mg$$

(c) (i)
$$W = 6 \ge 2\Pi \text{ rads/s } \checkmark$$

= 12 $\Pi \text{ rad/s } \checkmark$

$$a = \frac{V^2}{r} \checkmark$$

$$= \frac{r^2 w^2}{V}$$

$$= (12\Pi)^2 \ge 0.6 \checkmark$$

$$= 86.4 \operatorname{rad}^2/\operatorname{s}^2 \checkmark$$
(iii) $T = \frac{MV^2}{r}$, but $V = \operatorname{vw} \checkmark = 0.6 \ge 12\Pi$

$$= \frac{0.45 \times 7.2\Pi}{0.6} \checkmark$$
(iv) Linear velocity $V = \operatorname{vw}$

$$= 16.96N \checkmark$$
(iv) Linear velocity $V = \operatorname{vw}$

$$= 0.6 \ge 12\Pi \checkmark$$

$$= 7.2\Pi$$

$$= 22.62 \text{m/s} \checkmark$$

17. (i) Momentum is conserved and bodies moves together after collision (coelesce).

(ii) I Momentum before collision = Momentum after collision
$$(1600 - 20) + (200 - 0) = (1600 + 200) V$$

$$(1600 \times 20) + (800 \times 0) = (1600 + 800) \text{V}$$

$$V = \frac{32000}{2400} = 13.33m/s$$

II
$$V = U + at$$

 $\Rightarrow 13.33 + 15a \Rightarrow pa = -0.89 \text{m/s}^2$

Physics P1MS

$$V^{2} = U^{2} + 2as \implies S = \frac{V^{2} - U^{2}}{2a} = \frac{0 - (13.33)^{2}}{-2(0.89)}$$

= 99.83m
III Impulse tone = $\frac{\Delta P}{T} = \frac{1600(20 - 13.33)}{2}$ for minibus
= 5336N
Or
Or
 $\frac{800(13.33 - 0)}{2}$ for a car
= 5336N

3

Cekenas Joint Mock

 $= 2 \times 10^{-3} \times 8$ = 16 x 10⁻³kg = 1.6 x 10⁻²kg

 $= 3 x 10^{-6} m^3$ M = $\rho x V$

 $= 12000 \times 3 \times 10^{-6}$ $= 12 \times 3 \times 10^{-3}$

 $W = Mg = 1.6 \times 10^{-1} = 0.16N$

Volume of the block in liquid $B = 1.5 \text{ cm } \text{ x } 2 \text{ cm}^2 = 3.0 \text{ cm}^3$

18.

$$= 36 \times 10^{-3}$$

= 0.036kg
W = Mg = 0.036 x 10 = 0.36N

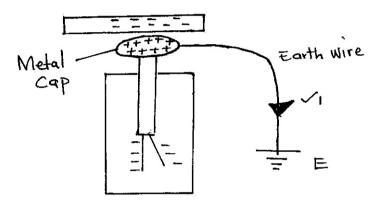
(iii) Mass of the block =
Upthrust =
$$0.36 + 0.16$$

= $0.52N$ = Weight of the block
W = Mg
 0.52 = M x 10
M = $0.052kg$ = $52g$

(iv) Density of the block
$$= \frac{Mass}{Volume} = \frac{52}{2 \times 4}$$

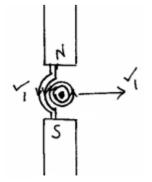
 $= \frac{52}{8} = 6.5 g / cm^3$

Physics P1MS


Cekenas Joint Mock

CENTRAL KENYA NATIONAL SCHOOLS JOINT MOCK - 2015 231/2 PHYSICS PAPER 2 MARKING SCHEME

1. (a)



- (b) It forms multiple images that overlap.
- 2. (i) For even distribution of charge.
 - (ii)

3.	Type of radiation \checkmark^1	Detection method	Use	
	Infrared	Blackened thermometer	Warmth sensation	
	Micro waves	 Crystal detectors Solid state diodes √1 	Communication	

- (i) From N S ; around conductor ;
- (ii) Direction of force; (NB; lines should not cross)
- 5. Nail is hammered in North South direction.
 - Earth's magnetic field aligns dipoles of the nail in one direction.
- 6. (i) Focal plane is a plane passing through the focal point and perpendicular to the principal axis.
 - (ii) Produces an Upright image.
 - Magnified image

- 7. $f = {}^{20}/{}_{36}HZ$ $l = {}^{0.80}/{}_4 m$ V = fl $= {}^{20}/{}_{36} x {}^{0.80}/{}_{36} = 0.111 ms^{-1}$
- 8. Air is warmer at upper layers.
 Velocity of sound waves will be higher in the upper layers than lower layers hence they will be refracted downwards.
- 9. $\frac{1}{f} = \frac{1}{u} + \frac{1}{v}$ eye piece Objective lens $\frac{1}{v} = \frac{1}{3.2} + \frac{1}{2.5}$ $\frac{1}{v} = \frac{1}{3} + \frac{1}{5}$ v = -11.43 cm v = 7.5 cm
- 10. (a) The incident ray, the normal and the refracted ray, at the point of incidence all lie on the same plane.
 - (b) $n_1 \sin \theta_1 = n_2 \sin \theta_2$ $1.5 \sin 55 = \frac{4}{3} \sin r$ $\sin r = 1.5 \text{ x} \frac{3}{4} \sin 55$ = 0.9215r = 67.150

SECTION B

11. (a) - Surface area of plates of B is higher than that of A.- B has more plates than A per cell.

(ii)
$$\frac{3.0 - 2.4}{0.6 \times 2} = 0.552$$

(iii)
$$I = {v/_R} \\ I = {0.6/_2} = 0.3A \\ V = IR \\ = 0.3 x 3 \\ = 0.9 V$$

(c) (i) OV
(ii)
$$\frac{6.0 \times -4}{0.6 \times 0.4} = 0.24 \,\mu F$$

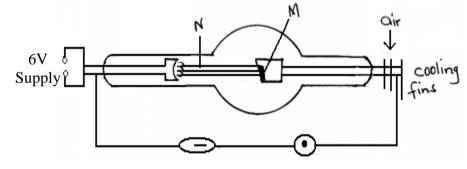
 $Q = CV$
 $= 0.24 \times 10^{-6} \times 12$
 $= 2.88 \times 10^{-6} C$
(...) $Q = 2.88 \times 10^{-6}$

(iii)
$$V = \frac{Q}{C} = \frac{2.88 \times 10^{-6}}{0.4 \times 10^{-6}}$$

= 7.2 V

12. (a) The magnitude of the induced EmF is directly proportional to the rate of change

of magnetic flux linkage.


Physics Paper 2MS

- (b) (i) C Secondary coil.
 - (ii) To reduce resistance
 - (iii) To minimise sparking at the contacts.
 - To cause the primary current and hence the magnetic flux to decay to zero.

(any 1mk)

Cekenas Joint Mock

- (c) (i) Power output = $12 \times 120 = 1440$ Power input = ${}^{100}/_{80} \times 1440$ = 1800Current primary = ${}^{1800}/_{240}$ = 7.5 A
 - (ii) Replace the commutators with slip rings
- (d) (i) Y Blue /black Z - Yellow
 - (ii) $2 x {}^{35}/_{60} x 30 = 35 \text{ kW}$ 35 kW x 12.50 = ksh. 437.50

- (i) To direct the X rays out of the tube through a window on the lead shield.
- (ii) M High melting point.
 N Negatively charged.
 Travel in a straight line.
 Posses K.E

(any 1 mk)

(b) (i)

$$= \frac{10 \times 10^{-3}}{1.6 \times 10^{-19}} \checkmark^{1}$$

= 6.25 x 10⁻¹⁶ electrons \checkmark^{1}

 $n = \frac{I}{2}$

(ii)
$$ev = \frac{1}{2} mv^2 \sqrt{1}$$

1.6 x 10⁻¹⁹ x 2000 = $\frac{1}{2}$ x 9.11 x 10⁻³¹ x v²
v = 26,505182.42 ms⁻¹

(c)
$$\frac{400v}{2cm} \checkmark^{1}$$
$$= 200 \text{ v/ cm}$$

2

(a)	a = 1	40
	b = 3	6
(b)	(i)	A - Beta particles
	~ /	b = 3

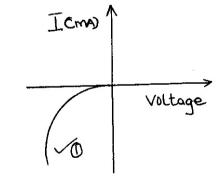
(ii) C is more massive than A

(iii) It posses no charge.

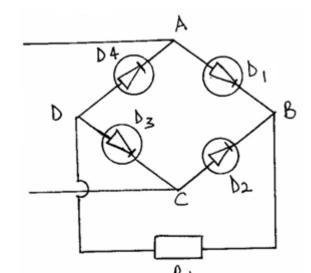
Physics Paper 2MS
(c)
$$N_0 = 3$$

(a)

 $N_{o} = 82 - 10 = 72$ N = 19 - 10 = 972 36 18 9 3 - half line = 210 1 half life = ²¹⁰/₃ = 70 seconds.


15.

The UV emits photoelectrons from the zinc plate.These elections are repelled away and electroscope becomes discharged hence leaf falls.


3

(b) hf = w_o + K.e

$$\frac{hC}{T} = 2.04 \times 10^{-19} \text{ J} - \text{K.E}$$
K.E = $\frac{(6.63 \times 10^{-34}) \times (3 \times 10^8)}{4.5 \times 10^{-7} m} = 2.04 \times 10^{-19} \checkmark^1$
KE = 2.38 x 10⁻¹⁹ J
= $\frac{2.38 \times 10^{-19}}{1.6 \times 10^{-19}}$

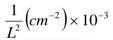
(iii)

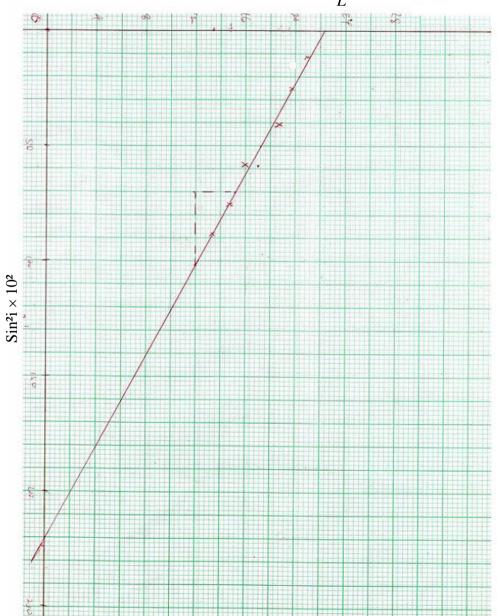
Cekenas Joint Mock

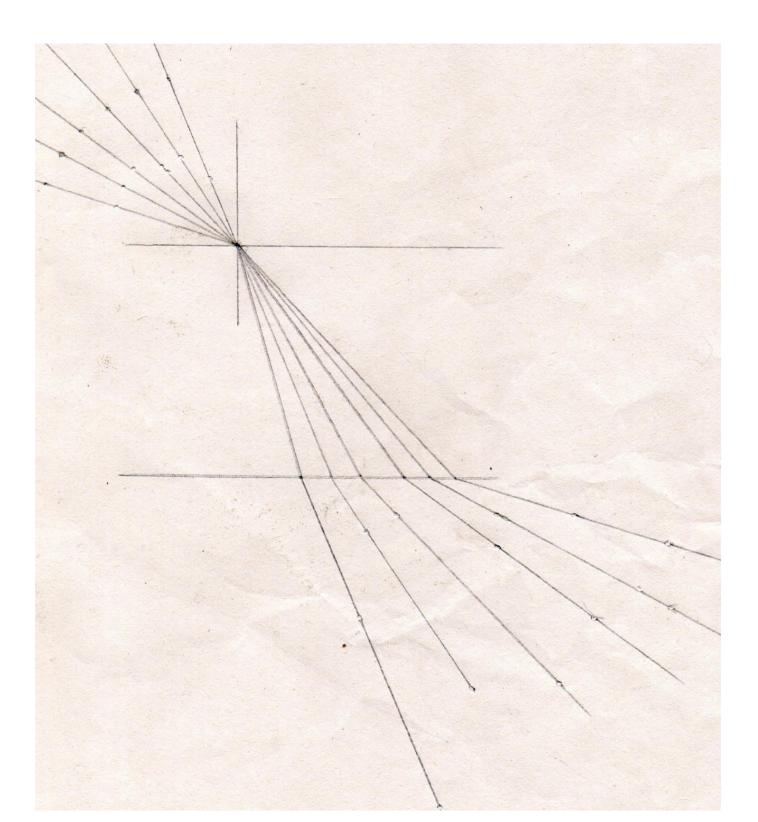
www.eeducationgroup.com

Physics Paper 2MS

4


Cekenas Joint Mock

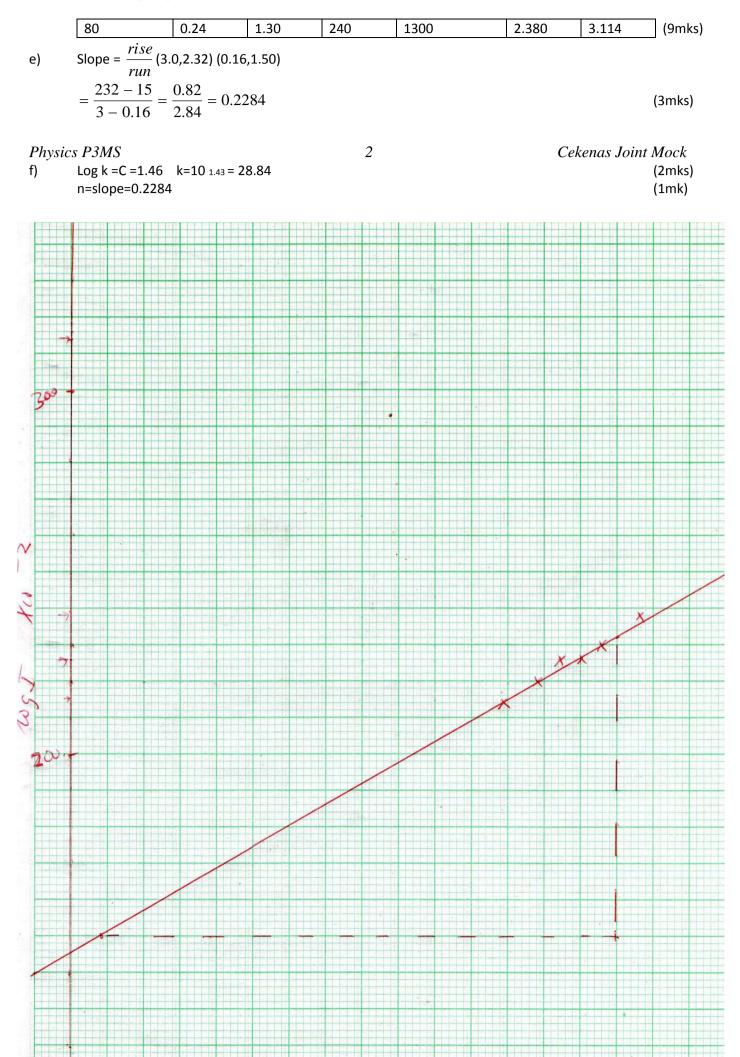

CENTRAL KENYA NATIONAL SCHOOLS JOINT MOCK - 2015 231/3 PHYSICS PAPER 3 MARKING SCHEME


Angle io	L(cm)	L ₂ (cm)	(cm ⁻²)	Sin ² i	
20	6.9	47.61	0.0210	0.1170	
30	7.1	50.41	0.0198	0.2500	
40	7.3	53.29	0.0188	0.4132	
50	7.9	62.41	0.0160	0.5868	
60	8.2	67.25	0.0149	0.7500	
70	8.6	73.96	0.0135	0.8830	(6mks)

- h) Slope = $\frac{rise}{run}$ (0.70, 0.0152) (1.02, 0.012) Slope = $\frac{(0.152 - 0.012)}{(0.70 - 1.02)} = \frac{0.0032}{-0.32} = -0.01$
- i) C = 0.0224 B = 2.20

j)
$$Q = Q = -\frac{0.0222}{-0.01} \div 2.20$$

= 2.24 = 1.020



2.

Length L(cm)	I(A)	Pd V(v)	l(mA)	pdV(v) (mV)	Log I	Log V
20	0.14	0.25	140	250	2.146	2.398
30	0.16	0.35	160	350	2.204	2.544
40	0.18	0.50	180	500	2.255	2.699
50	0.19	0.65	190	650	2.279	2.813
60	0.20	0.85	200	850	2.301	2.929

www.eeducationgroup.com

www.eeducationgroup.com

Physics P3MS

Cekenas Joint Mock

3