1.

CENTRAL KENYA NATIONAL SCHOOLS JOINT MOCK - 2015 233/1 CHEMISTRY PAPER 1 MARKING SCHEME

10. (a) - Neutron - Proton ratio (ⁿ/_P) ratio √1
 - Amount of energy released when neutrons collide with protons in the nucleus (Any 1)

(b) 216 = 208 + 4m + 0 4m = 216 - 208 4m = 8 $m = \frac{8}{4} = 2\sqrt{1}$ 90 = 82 + 2m + -n 4 = -n $n = 4\sqrt{1}$

(c)
$$1 \rightarrow \frac{1}{2} \rightarrow \frac{1}{4} \rightarrow \frac{1}{8} \rightarrow \frac{1}{16}$$

4 half-life's = 112 days
1 half life = ??
 $= \frac{1 \times 112}{4} \sqrt{\frac{1}{2}} = 28 \text{ days } \sqrt{\frac{1}{2}}$

11. (a)
$$M_{(g)} - 3e^{-} \rightarrow M_{(g)}^{3+} \checkmark^{1}$$

(b) $MCl_{3} \checkmark^{1}$

- 12. Withdraw of ammonia formed, √1/2 decrease in concentration of NH_{3(g)} favours forward reaction. √1/2
 - Use of low temperatures Reaction is exothermic and decrease in temperature favours forward reaction.
 - Addition of hydrogen/nitrogen; increase in concentration of reactants favours forward reaction. (Any one)

13. Moles of HCl used $= \frac{1 \times 20}{1000} \sqrt[7]{2}$ $= 0.02 \text{ moles } \sqrt[7]{2}$ CaCO₃ : HCl 1: 2 Moles of CaCO₃ used = $\frac{1}{2} \ge 0.02$ moles = 0.01 moles $\sqrt{1/2}$ 0.01 moles $\rightarrow 1g$ 1 mole $\rightarrow ??$ $= \frac{1 \times 1}{0.01} = 100g \sqrt{1/2}$ Ca + 12 + 16 ≥ 3 = 100 Ca = 100 - 40 $Ca = 40 \checkmark^1$

14. 100g of water → 25g 112g of water = $\frac{112 \times 25}{100}$ √1/2 = 28g √1/2 Undissolved salt = (8 + 55) - 28 √1/2 = 35g √1/2

Chemistry P1MS 2 Cekenas Joint Mock
15. (a) (i) H H

$$\bullet X \bullet X$$

H $\stackrel{*}{x} C \stackrel{x}{x} C \stackrel{*}{x} H \checkmark^{1}$
 $\bullet X \bullet X$
H H
 $\bullet X \bullet X$
H H
 $\bullet X \bullet X$
 $\bullet X \bullet X$
H H
 $\bullet X$

(b) Dative covalent. \checkmark^1

16. (a) Enthalpy change of a reaction is the same regardless of the route followed as long as the reactants and products are the same. $\sqrt{1}$

(b)
$$H_1$$
 – Lattice energy \checkmark^1
 H_2 – Hydration energy of MgCl₂ \checkmark^1

 $\begin{array}{l} -5142 = -2489 + H_{\chi} + -762 \\ -5142 + 2489 + 769 = H_{\chi} \\ H_{\chi} = -189/kJ/mol \checkmark^1 \end{array}$

17. (a) - Denser than air $\sqrt{\frac{1}{2}}$

(c)

- Does not support combustion $\sqrt{1}$
- (b) Reacts with NaHCO₃ to produce CO₂ which makes the dough to rise √1
 Reacts with Na₂CO₃ formed when NaHCO₃ is heated hence neutralizes Na₂CO₃in the dough. √1

√1

18. (a)
$$Q = 1t$$

 $= 0.5 \times 1930 \sec = 965C \sqrt{1}$
(b) $J_{(l)}^{\chi_{+}} + \chi C \rightarrow J_{(s)}$
 $44g$
 $965C \rightarrow 0.44g$

(b)

$$\leftarrow 44g$$

= $\frac{44 \times 965}{0.44} \sqrt[]{1/2} = 96500C \sqrt{1/2}$
 $\chi \times \frac{96500}{96500} = \frac{965500}{96500} \sqrt{1/2}$
 $\chi = 1$
Charge = $1 + \sqrt{1/2}$

- 19. (a) It is the number of replaceable hydrogen atoms in an acid. \checkmark^1
 - Mix/react 50cm³ of 0.5M H₂SO₄ or 25cm³ of 1M H₂SO₄ solution to obtain a neutral solution of K₂SO₄. √1
 - Heat to evaporate some water. $\sqrt{1}$
 - Cool slowly to crystallize the salt. $\sqrt{1}$

- (c) $Cl_{2(g)} + dye + H_2O_{(l)} \rightarrow 2HCl_{(aq)} + (dye O) \checkmark^1$
- 24. Ionisation energy is the energy required to remove an electron $\sqrt{1/2}$ (S) from a gaseous atom. $\sqrt{1/2}$
 - Electron affinity is the energy required to add an electron $\sqrt{1/2}$ to a gaseous atom. $\sqrt{1/2}$

25.
$$RN_{2} = \frac{280}{70} = \sqrt{\frac{1}{2}} 4 \text{ cm}^{3}/\text{sec}; \ RCO_{2} = \frac{400}{t} \sqrt{\frac{1}{2}}$$
$$\frac{4}{400} = \sqrt{\frac{44}{28}} \sqrt{\frac{1}{2}}$$
$$4 \times \frac{t}{400} = \sqrt{\frac{44}{28}}$$
$$\frac{t}{100} = \sqrt{\frac{44}{28}} \sqrt{\frac{1}{2}}$$
$$t = \sqrt{\frac{44}{28}} \times 100 \sqrt{\frac{1}{2}}$$
$$= 125.36 \text{ sec } \sqrt{\frac{1}{2}}$$
26.

Chemistry P1MS

4

Cekenas Joint Mock

CENTRAL KENYA NATIONAL SCHOOLS JOINT MOCK - 2015 233/2 CHEMISTRY PAPER 2 MARKING SCHEME

- 1. (a) (i) C = 2.8 $\sqrt{1/2}$
 - F = 2.8.8 $\sqrt{1/2}$ (ii) Period $3\sqrt{1/2}$
 - Group II √½
 - B has a giant metallic structure $\sqrt{1/2}$ with strong metallic bonds $\sqrt{1/2}$ (b) hence B.P very high compared to F which has molecular structure $\sqrt{1/2}$ with weak van der waal forces $\sqrt{1/2}$ between the molecules hence low B.P.
 - $BG_2 \checkmark^1$ (c)
 - (d) Chloride of A is ionic has strong ionic $\sqrt{\frac{1}{2}}$ bonds hence high B.P. While C has molecular $\sqrt{1/2}$ structure with weak van der waal forces $\sqrt{1/2}$ hence low B.P.
 - $C_2O_3 \checkmark \frac{1}{2}$ $A_2O \checkmark \frac{1}{2}$ $G_2O_7 \sqrt{1/2}/G_2O$ (e) $DO_2 \sqrt{1/2}$
 - $C_2O_3 \checkmark \frac{1}{2}$ its amphoteric $\checkmark \frac{1}{2}$ (f)
 - $+4 \sqrt{1}$ (g)

2. (a) (i) A – Ethene

- B Ethane C - 1, 2 – dichloroethane
- D Hydrogen
- K Ethanol

$$H H$$

$$H - C - C - OK$$

$$H H$$

(iii)
$$W$$
 – Fermentation X – Esterification

Y – Dehydration

(iv) H H H

$$|$$
 $|$ $|$ $|$
H $-C-C = C-C-C-H$
 $|$ $|$ $|$ $|$ $|$
H H H H H

Η

> Η

Manufacture of polythene. (c) Manufacture of ethanol.

(d)

- 3. (a) To avoid poisoning the catalyst $\sqrt{1}$
 - (b) A: Air $\sqrt{1/2}$
 - B: Ammonia gas √½
 - (c) D: Catalytic chamber √1
 E: Cooling chamber √1
 F: Absorption tower √1
 - (d) (i) $4NH_3 + 5O_{2(g)} \rightarrow 4NO_{(g)} + 6H_2O_{(g)} \checkmark^1$ (ii) $4NO_{2(g)} + O_{2(g)} + 2H_2O_{(l)} \rightarrow 4HNO_{3(aq)} \checkmark^1$
 - (e) Pressure: 9atm $\sqrt{1/C}$ atalyst : Platinum-rhodium $\sqrt{1}$
 - (f) Fractional distillation. \checkmark^1
 - (g) Manufacture of nitrogenous fertilizers $\sqrt{1/AOC}$.
 - (h) There is production of $NO_{(g)}$ which is oxidized by air to $NO_{2(g)}$ which is brown. \checkmark^1
- 4. (a) $Zn_{(S)} + 2HCl_{(aq)} \rightarrow ZnCl_{2(aq)} + H_{2(g)}$
 - (b) It decreases with time until it becomes constant.
 - (c) Colourless solution/Brown solid.
 - (d) (i) Graph paper provided

(ii)
$$\frac{\Delta y}{\Delta \chi} = \frac{252.8 - 251}{30 - 20} = 0.09 \pm 0.01$$

 (iii) Rate would increase. Increase in temperature increases kinetic energy and lowers activation energy.

5. (a) (i) $Q; \sqrt{\frac{1}{2}}$ Has the highest negative $\sqrt{\frac{1}{2}} E^{\theta}$ hence highest tendency to lose electrons.

(ii)
$$B_{(s)} \rightarrow B_{(aq)}^{2+} + 2e^{-} + 1.14$$

 $D^{2+} + 2e \rightarrow D_{(aq)} \qquad \frac{\pm 0.80}{e.m.f} \sqrt[]{1/2} + 1.94V \sqrt[]{1/2}$
(or)

7.

			e.m.f = $E_{\text{Reduced}}^{\theta} - E_{Oxidised}^{\theta} = +0.801.14 \sqrt{1/2}$
			$=+1.94 V \sqrt{1/2}$
		(iii)	$Q_{(s)} \rightarrow 2C_{(aq)}^{2_{+}} \rightarrow Q_{(aq)}^{2_{+}} + 2C_{(s)} \checkmark^{1}$
		(iv)	$3B \rightarrow 3B^+ + 3e + 1.14V$
			$Fe^{3+} + 3e- \rightarrow Fe \qquad \underline{-1.66V}$
			emf = -0.52V
			∴ Cannot occur because emf is negative.
			(or) Fe is a stronger reducing agent hence B cannot reduce
			Fe^{3+} .
Chem	istry F	P2MS	2 Cekenas Joint Mock
	(b)	To pr	revent rusting $\sqrt{1/corroding}$ of iron pipe; magnesium is more reactive
		than i	ron, so it is attacked as a sacrificial metal. $\sqrt{1}$ (2 marks)
	(c)	(i)	$\mathbf{B} \checkmark 1$
		(ii)	$4OH_{(aq)} \rightarrow 2H_2O_{(l)} + O_{2(g)} + 4e^{-\sqrt{1}}$
		(iv)	A brown \checkmark^1 deposit, Cu ²⁺ migrate to cathode and are reduced
			to copper metal.
		(v)	Becomes acidic/PH reduces because hydrogen ion concentration
	(1)		increases as OH^{-1} ions are discharged.
	(d)	Anod	e dissolves: $Cu_{(s)} \rightarrow Cu_{(aq)}^{2+} + 2e \qquad \checkmark 1$
		Catho	ode: $Cu_{(aq)}^{2+} + 2e^- \to Cu_{(S)} \checkmark 1$
		(v)	Purification of copper. \checkmark^1
6.	(a)	(i)	I: $Zn(OH)_2 \sqrt{1}$
	. ,	()	II: $ZnCl_2 \qquad \checkmark^1$
			III: ZnO $\sqrt{1}$
		(ii)	$Pb_{(aq)}^{2+} + 2Cl_{(aq)} \rightarrow PbCl_{2(S)} \checkmark^{1}$
		(iii)	White precipitate soluble in excess. $\sqrt{1}$
	(b)	Amm	onia gas is polar and ionizes $\sqrt{1}$ in water which is polar.
		While	e it does not ionize in methylbenzene which is non polar.
	(c)	(i)	Calcium carbonate/magnesium carbonate.
		(ii)	Passing a solution of dilute hydrochloric acid or nitric (V) acid
	< 1)	Γ_ (-	in the boiler. $(1mk)$
	(d)	Zn(O)	$(H)_4$
7 (a) $27nS_{m} \pm 30n(x) + 250n(x) \pm 280n(x)$		$(n) + 3\Omega_{n(n)} \rightarrow 27n\Omega_{n(n)} + 2S\Omega_{n(n)}\sqrt{1}$	
/.	(\mathbf{h})		$\ln \ln r$ (IV) oxide M: Zinc oxide
	(0)	T: Le	ad Z: Zinc/Zinc vapour (Each ½mk)
(c) It produced in vapour state/form. $\sqrt{1}$		duced in vapour state/form. $\sqrt{1}$	
	(d)	Sulph	uric (VI) acid manufacturing plant. $\sqrt{1}$
		To ut	ilize the sulphur (IV) oxide by product. \checkmark^1
	(e)	- Ga	alvanization of iron sheets to prevent corrosion/rusting.
		- M	aking brass, an alloy of copper and zinc.
		- M	aking outer casing of dry batteries.

Zinc cyanide is used for refining silver and gold. (any 1mk) -

R.F.M ZnS = 97(f) (i) Sulphuric acid H₂SO₄ Moles $\frac{2.91}{97} = 0.03 \text{ moles } \sqrt{1/2}$ $0.2 \text{ mole} = 1000 \text{ cm}^3$ $? = 100 \text{cm}^3$ $\frac{100 \times 0.2}{1000} = 0.02 \text{ mole } \sqrt[4]{2}$ Zinc sulphide \checkmark^1 is excess by 0.01 mole. 0.02 mole x 24000 $\checkmark^1 = \underline{480 \text{ cm}^3} \checkmark^1$

3

(ii)

Chemistry P2MS

Cekenas Joint Mock

233/3 CHEMISTRY PAPER 3 MARKING SCHEME

Question 1

Table 1

- 1. (i) Complete table. (5mks)
 - Conditions
 - 3 titrations (1mk)
 - 2 titrations (½mk)
 - 1 titration (0mk)

Penalties

- Wrong arithmetic/subtraction
- Inverted table
- Burette reading beyond 50cm³ or below 1cm³.

Penalize ¹/2mk for each penalty upto a max of. (¹/2mk)

(ii) Decimals.

Conditions

- Accept 1 or 2d.p used consistently.
- Where 2d.p used 2nd d.p must be 0.5 or 5
- Penalize fully if any conditions are not met

(iii) Accuracy (1mk)

Compare candidates titre with school value. <u>Conditions</u>.

- If any is within ± 0.1 cm³ SV (¹/₂mk)
- If none within ± 0.2 cm³ SV (0mk)
- (iv) Averaging
 - Values averaged must be shown and be consistent within ± 0.2 cm³ of each other.

Conditions

- If 3 consistent averaged. (1mk)
- If 3 titration done and two possible averaged (1mk)
- If only two titrations done, consistent and averaged (1mk)
- If only two titrations done, inconsistent yet averaged (1mk)
- If 3 titrations done, all are possible yet only two averaged (0mk)
- If 3 inconsistent values averaged. (0mk)

Final/answer

Compare final answer with SV (School value)

- If within ± 0.1 cm³ of SV (1mk)
- If within ± 0.2 cm³ of SV (1mk)
- If outside ± 0.2 cm³ of SV (0mk)

(a) (ii)
$$\frac{5.88 \times 4}{392} \checkmark^{1} = 0.05 \text{M} \checkmark^{1}$$
 (2mks)
(iii) $Moles = \frac{25}{1000} \times 0.06 \checkmark^{1}$
 $= 0.0015 \checkmark^{1}$ (2mks)

(b) (i) Mole ratio = y:
$$\chi$$

= 5: 1
Moles of $A = \frac{1}{5} \times 0.0015 \sqrt{1/2}$
= 0.0003 $\sqrt{1/2}$ (1mk)

(ii) Concentration in mole dm⁻³
=
$$\frac{1000 \times moles \ in \ b(i)}{Answer \ in \ a(i)} \checkmark^{1}$$

= Correct answer \checkmark^{1} (2mks)

Question 2

- Complete table	(1mk)
- Trend in temperature	(1mk)
- Trend in time	(1mk)
Accuracy: Time	(1mk)
Temperature	(1mk)
Calculation of $\frac{1}{Time}$	(2mks)

Temp. before mixing (°C)	60.0	55.0	50.0	45.0
Temp. when solution	52.0	48.0	44.0	39.0
become colourless (°C)				
Time (sec)	25	35	48	70
$\frac{1}{t}(\mathbf{S}^{-1})$	4.000 x 10 ⁻²	2.8571 x 10 ⁻²	2.0853 x 10 ⁻²	1.4285 x 10 ⁻²

4 values – 2mks 3 values – 1mk 2 values – 0mk Values of time should be whole number Values of temperature with one decimals – The decimal should be 0 or 5 (Should decrease; if not) (0mk) (Should increase; if not) (0mk) (Must be within \pm 5 sec of SV) (Must be within \pm 2°C of SV) (Must have 4d.p 4 \rightarrow Correct values – (1mk) 3 values – (½mk) 2 values – (0mk)

- (b) $\frac{1}{Time} = 2.25 \times 10^{-2} S^{-1}$ $Time = \frac{1}{2.25} \times 10^{2} Sec$ $Time = 44 secs. \checkmark^{1}$ (Shown on the graph (1mk) not shown (0mk) Total marks (2mks)
- (c) The rate of reaction increases with increase in temperature.

www.eeducationgroup.com

Chemistry P3MS

2

Chemistry P3MS

Chemistry P3MS			3	
2.	(a)	(i)	OBSERVATION	INFERENCES
			Blue turns red $\sqrt{1/2}$	- Acidic gas √½
			Red remains red $\sqrt{1/2}$	
			Yellow residue when hot $\sqrt{1/2}$	- ZnO √1⁄2
			White when cold $\sqrt{1/2}$	
			Colourless liquid on cooler $\sqrt{1/2}$	- Hydrated salt √1⁄2
			Parts of test tube √1/2	
		(ii)	- Colourless filtrate √1⁄2	- Soluble $\sqrt{\frac{1}{2}}$ Insoluble salt $\sqrt{\frac{1}{2}}$
			- White residue √1⁄2	
		(iii)	White ppt soluble in excess \checkmark^1	Al ³⁺ , Pb ²⁺ , Zn ²⁺ present \checkmark^1
		(iv)	White ppt soluble in excess \checkmark^1	Zn^{2+} present $\sqrt{1/2}$
		(v)	White ppt formed $\sqrt{1/2}$	
			dissolves on warming $\sqrt{1/2}$	Cl ⁻ present √1⁄2
		(vi)	Bubbles produced $\sqrt{1/2}$	CO_{3}^{2-} present $\sqrt{1/2}$
		(vii)	White ppt soluble in excess $\sqrt{1}$	Zn^{2+} present $\sqrt{1/2}$

3. (i) OBSERVATION		OBSERVATION	INFERENCES
		Burns with aluminous sooty	$-C \equiv C - \sqrt{1/2} \text{ or } -C = C - \sqrt{1/2}$
	flame √1		Present
			Reject alkyne/alkenes in words
	(ii)	Partially soluble $\sqrt{1/2}$	Organic substance with a high
			molecular mass $\sqrt{1/2}$
	(iii)	$K_2Cr_2O_7/H+$ turns from orange	$-C \equiv C - \sqrt{1/2}, -C = C - \sqrt{1/2}$
		to green $\sqrt{1}$	Present
	(iv)	Effervescence occurs $\sqrt{1/2}$	RCOOH present
			Reject $H^+/H_3O^+ \sqrt{1/2}$
	(v)	$PH = 4.0 \sqrt{1/2}$	Weakly acidic √1⁄2
			RCOOH present
			Reject H ⁺ /H ₃ O ⁺

Chemistry P3MS

4