DISTRICTS SAMPLED AND COMPILED .

1. NAIROBI SCHOOL
2. STAREHE BOYS CENTER
3. MANGU HIGH SCHOOL
4. ALLIANCE GIRLS HIGH SCHOOL
5. HOMABAY
6. RACHUONYO
7. MIGORI
8. UGENYA/UGUNJA
9. KISUMU WEST
10. MATUNGU
11. BUTERE
12. KAKAMEGA EAST
13. NYATIKE
14. KHWISERO
15. TRANS NZOIA WEST
16. TRANSMARA
17. KAKAMEGA NORTH
18. MUMIAS

TOPICS COVERED		Questions	Answers
1	Introduction to chemistry	3	164
2	Simple classification of substances	5	165
3	Acids, bases and indicators	11	168
4	Air and combustion	14	169
5	Water and hydrogen.	19	172
6	Structure of the atom and the periodic table	22	174
7	Chemical families	28	179
8	Structure and bonding	29	179
9	Slats	34	184
10	Effect of an electric current on substance	37	187
11	Carbon and its compounds	41	188
12	Gas laws	45	191
13	The mole	47	196
14	Organic chemistry 1	51	202
15	Nitrogen and its compounds	60	208
16	Sulphur an dits compounds	69	213
17	Chlorine and its compounds	74	217
18	Acids, bases and salts	77	219
19	Energy changes in chemeical and physical reactions	83	224
20	Electrochemistry	96	234
21	Metals	109	244
22	Organic chemistry II (alkanoic acids an dalakanols)	116	248
23	Radioactivity	123	254
24	Praticals	126	255

Introduction to chemistry

1. Wooden splints \mathbf{F} and \mathbf{G} were placed in different zones of a Bunsen burner flame.

The diagram below gives the observations that were made

(a) Explain the difference between \mathbf{F} and \mathbf{G}
(b) Name the type of flame that was used in the above experiment
2. The diagrams below represent a list of apparatus which are commonly used in a chemistry laboratory:-

(a) Give the correct order of the apparatus, using the letters only, to show the correct arrangement that can be used to prepare and investigate the nature of PH of a sample of onion solution
(b) Name one chemical substance and apparatus that is needed in this experiment
3. (a) When the air-hole is fully opened, the bunsen burner produces a non-luminous flame. Explain
(b) Draw a labelled diagram of anon-luminous flame
4. (a) What is a drug?
(b) Give two drugs that are commonly abused by the youth.
5. The diagram below shows three methods for collecting gases in the laboratory

(a) Name the methods \mathbf{A} and \mathbf{B}
(b) From the methods above, identify one that is suitable for collecting sulphur (IV) oxide. Explain
6. A mixture of hexane and water was shaken and left to separate as shown in the diagram below:

State the identity of;
(i) \mathbf{P} \qquad (ii) \mathbf{W} \qquad
7. The diagrams below are some common laboratory apparatus. Name each apparatus and state its use

Diagram	Name	Use

8. The diagram below shows some parts of a Bunsen burner

U

Explain how the parts labelled \mathbf{T} and \mathbf{U} are suited to their functions
9. The diagram below shows the appearance of two pieces of paper placed in different parts of a non-luminous flame of a Bunsen burner and removed quickly before they caught fire.

(a) What do the experiments show about the outer region of the flame?
(b) From the above experiment, which part of the flame is better to use for heating? Give a reason
10. A crystal of copper (II) sulphate was placed in a beaker of water. The beaker was left standing for two days without shaking. State and explain the observations that were made.
11. Study the information in the table below and answer questions that follow.
(Letters given are not real symbols)

Ions	Electron arrangement	Ionic radius (nm)
A^{+}	2.8	0.95
$\mathrm{~B}^{+}$	2.8 .8	0.133
C^{2+}	2.8	0.065

Explain why the ionic radius of :-
(a) B^{+}is greater than that of A^{+}
(b) C^{2+} is smaller than the of A^{+}

Simple classification of substances

1. The diagram below shows the heating curve of a pure substance. Study it and answer the questions that follow:

(a) What physical changes are taking place at points \mathbf{X} and \mathbf{Z} ?
(b)Explain what happens to the melting point of sodium chloride added to this substance
2. (a) State two differences between luminous flame and non-luminous flame
(b) It is advisable to set a Bunsen burner to luminous flame prior to an experiment.

Explain
3. The paper chromatography of a plant extract gave the following results:

Solvent	Number of spots
X	6
Y	2
Z	3

(a) Which is the most suitable solvent for purifying the extract? Explain
(b) Ball pen cannot be used to mark solvent front in the above chromatography. Explain
4. Name the process which takes place when:
(a) Solid Carbon (Iv) Oxide (dry ice) changes directly into gas
(b) A red litmus paper turns white when dropped into chlorine water
(c) Propene gas molecules are converted into a giant molecule
5. A sample of copper turnings was found to be contaminated with copper (II) oxide. Describe how a sample of copper metal can be separated from the mixture
6. Copper (II) oxide and charcoal are black solids. How would you distinguish between the two solids?
7. a) What is chromatography?
b) Give two applications of chromatography

Mocks Topical Analysis eeducationgroup.com
8. The two elements \mathbf{P} and \mathbf{R} were separately burned in air, the products gave the results recorded in the table below:

ELEMENTS PHYSICAL STATE AT ROOM TEMPERATURE	P SOLID	R SOLID
Physical states of products	White solid powder only	Colourless gases L and M
Nature of solutions in water	Basic	L strongly acidic M slightly acidic

(a) Suggest the identity of element \mathbf{R}.
(b) Describe how the nature of the solutions of the of the oxides were determined

9 The diagram below represents a paper chromatography for the three brands of soft drinks containing banned artificial food additives.

A and \mathbf{C} found to contain the banned artificial food additives. Which numbers indicate the banned artificial food additives?
10. Without using any laboratory chemical, describe a simple laboratory experiment to distinguish between calcium hydrogen carbonate and sodium hydrogen carbonate
11. Substance \mathbf{Q} has a melting point of $15^{\circ} \mathrm{C}$ and boiling point of $70^{\circ} \mathrm{C}$.
(a) On the same axes, draw the melting point and boiling point graph for \mathbf{Q} and the room temperature

Time (minutes)
(b) State the physical state of substance \mathbf{Q} at room temperature
12. Cooking oils comprise of a mixture of compounds which have a boiling point range of $23^{\circ} \mathrm{C}$ to $27^{\circ} \mathrm{C}$.
(i) What evidence is then to support the statement that cooking oil is a mixture?
(ii)Name another experimental technique that could be used to confirm your answer in part (i) above
13. A form 1 student carried out the separation as shown in the set-up below:-

(i) Identify the method above.
(ii) Give one of its disadvantages
(iii) Name a mixture which can be separated by the set-up above
14. What is meant by melting point and boiling point of a substance?
15. The apparatus below were used by a student to study the effect of heat on hydrated copper II sulphate

(a) What is the role of the ice cold water
(b) Name liquid \mathbf{P}
(c) What observation is made in the boiling tube
17. The diagram below shows chromatograms of blood samples obtained from three athletes. One athlete used illegal drug to improve performance in competition.

(a) Name the line marked \mathbf{M}
(b)Identify the athlete who used illegal drug
18. Classify the following processes as chemical changes or physical changes

Process
Neutralization

Substance	Water	Concentrated sulphuric(VI)acid	Concentrated sodium hydroxide
Ethene	Slightly soluble	Soluble	Insoluble
Ammonia	Very soluble	Very soluble	Very soluble
Hydrogen	Slightly soluble	Insoluble	Insoluble

Sublimation
Fractional distillation
Displacement reaction
19. Give two reasons why a luminous flame is not used for heating purposes
20. Classify the following processes as chemical changes or physical changes

Process

Neutralization
Sublimation
Fractional distillation
Displacement reaction
21. Give two reasons why a luminous flame is not used for heating purposes
22. State two criteria for determining the purity of a substance
23. Study the information in the table below and answer the questions.
i) A mixture contains ethene, Hydrogen and ammonia gases. Explain how a sample of hydrogen gas can be obtained from this mixture.
24. a)i) The diagram below show spots of a pure substance \mathbf{A}, \mathbf{B}, and \mathbf{C} on a chromatography paper. Spot \mathbf{D} is that of a mixture

After development \mathbf{A}, \mathbf{B}, and \mathbf{C} were found to have moved $8 \mathrm{~cm}, 3 \mathrm{~cm}$ and 6 cm respectively. D had separated into two spots which had moved 6 cm and 8 cm
On the diagram above;
I. Label the baseline (origin)
II. Show the positions of all the spots after development
ii) Identify the substances present in mixture \mathbf{D}
b) Describe how solid ammonium chloride can be separated from a solid mixture of ammonium chloride and anhydrous calcium chloride
c) The table below shows liquids that are miscible and those that are immiscible

Liquid	$\mathbf{L}_{\mathbf{3}}$	$\mathbf{L}_{\mathbf{4}}$
L_{1}	Miscible	Miscible
L_{2}	Miscible	Immiscible

Use the information given in the table to answer that questions that follow;
i) Name the method that can be used to separate L_{1} and L_{2} from a mixture of the two
ii) Describe how a mixture of L_{2} and L_{4} can be separated
25. A student left some crushed fruit mixture with water for some days. He found the mixture had fermented. He concluded that the mixture was contaminated with water and ethanol with
boiling point of $100^{\circ} \mathrm{C}$ and $78^{\circ} \mathrm{C}$ respectively. The set-up of apparatus below are used to separate the mixture.

(i) Name the piece of apparatus labelled \mathbf{W}
(ii) What is the purpose of the thermometer in the set-up?
iii) At which end of the apparatus \mathbf{W} should tap water be connected?
(iv) Which liquid was collected as the first distillate? Explain
(v) What is the name given to the above method of separating mixture?
(vi) State two applications of the above method of separating mixtures
(vi) What properties of the mixture makes it possible for the component to be separated by the above methods?
26. The set-up below was used to separate a mixture:-

(a) Name the apparatus missing in the set-up
(b) Give one example of mixture \mathbf{T}
(c) What is the name of this method of separation
27. a) The diagram below shows a set - up used by a student to find out what happens when Copper (II) sulphate crystals are heated.

(i) State the observations made when the blue copper (II) sulphate crystals are heated.
(ii) Identify liquid Y and write an equation for its formation.
b) Pellets of sodium hydrogen and anhydrous Copper (II) sulphate were put in separate Petridishes and left in the open for two hours. Explain the observation in each Petri-dish.
28. The chromatography below shows the constituents of a flower extract using an organic solvent:-

(a) (i) Name a possible organic solvent you can use for this experiment
(ii) State one property that makes the red pigment to move the furthest distance from \mathbf{M}
(iii) Describe how one could get a sample of yellow pigment
(iv) On the diagram indicate solvent front
(b) Describe how Aluminium chloride can be separated from a mixture of aluminium chloride and sodium chloride
29. Study the information below and answer the questions that follow:

Solid	Cold water	Hot water
R	Soluble	Soluble
V	Insoluble	Insoluble
S	Insoluble	Insoluble

Describe how the mixture of solid \mathbf{R}, \mathbf{S}, and \mathbf{V} can be separated
30. Given a mixture of lead (II) oxide, ammonium chloride and sodium chloride, describe how this mixture can be separated to obtain a sample of each.
31. The setup below was used to separate two miscible liquids \mathbf{Q} and \mathbf{T}
(Boling points; $\mathrm{Q}=98^{\circ} \mathrm{C}, \mathrm{T}=78^{\circ} \mathrm{C}$)

(a) Identify the mistakes in the setup above
(b)Identify Distillate \mathbf{X}
32. Name the process which takes place when:
a) Solid Carbon (IV) oxide (dry ice) changes directly into gas.

Mocks Topical Analysis eeducationgroup.com
b) A red litmus paper turns white when dropped into chlorine water.
c) Propene gas molecules are converted into a giant molecule.
33. The following diagram shows a paper chromatogram of substances A, B, C, and D which are coloured

(a) Indicate the solvent front on the chromatogram
(b) Which substance is pure?
(c) Substance \mathbf{E} is a mixture of \mathbf{C} and \mathbf{D}. Indicate its chromatogram in the diagram
34. Study the information below and answer the following questions. A mixture contains three solids \mathbf{A}, \mathbf{B}, and \mathbf{C}. The solubility of these solids in different liquids is as shown below:-

Solid	Water	Alcohol	Ether
A	Soluble	Insoluble	Insoluble
B	Insoluble	Soluble	Very soluble
C	Soluble	Soluble	Insoluble

Explain how you will obtain sample \mathbf{C} from the mixture
35. State and explain the observations made when iodine crystals is heated in a boiling tube?

Acids, bases and combustion

1. The table below shows solutions \mathbf{A}, \mathbf{B} and \mathbf{C} are tested and observations records as shown:

Solution	Observations on indicator
A	Methyl orange turns yellow
\mathbf{B}	Phenolphthalein turns colourless
\mathbf{C}	Litmus turns purple

(a) Using the table above, name an acid
(b) How does the pH value of 1 M potassium hydroxide solution compare with that of 1M aqueous ammonia? Explain
2. The information below gives PH values of solutions $\mathbf{V}, \mathbf{W}, \mathbf{X}, \mathbf{Y} \mathbf{Z}$

Solution	PH values
V	2
W	6.5
X	11
Y	14
Z	4.5

(a) Which solution is likely to be:
(i) Calcium hydroxide?
(ii) Rain water?
(b) Which solution would react most vigorously with Zinc carbonate
3. a) Complete the table below to show the colour of the given indicator in acidic and basic solutions.

Indicator	Colour in	
Methyl Orange	Acidic Solution	Basic Solution
		Yellow
	Colourless	

b) How does the PH value of 0.1 M potassium hydroxide solution compare with that of 0.1 M aqueous ammonia? Explain.
4. Use the information given below to answer the questions that follow:

Solution	G	H	\mathbf{I}	J	K
$\mathbf{p H}$	1.5	6.5	13.0	7.0	8.0

(a) Which of the solutions would be used to relieve a stomach upset caused by indigestion?
(b) Which solution is likely to be:
(i) Dilute sulphuric acid?
(ii) Sodium hydroxide solution?
5. Solid copper (II) oxide is a base although it does not turn litmus paper to blue. Explain
6. Below are the pH values of 4 types of medicine represented by letters $\mathbf{P}, \mathbf{Q}, \mathbf{R}$ and \mathbf{S}

MEDICINE	pH VALUES
\mathbf{P}	7.0
\mathbf{Q}	5.0
\mathbf{R}	8.0
\mathbf{S}	6.0

a) It is not advisable to use \mathbf{S} when a patient has indigestion .Explain
b) What is the role of chemistry in drug manufacture
7. Explain why very little Carbon (IV) oxide gas is evolved when dilute sulphuric (VI) acid is added to lead (II) carbonate
8 . State one commercial use of Calcium Oxide
9. The following data gives the $\mathbf{p H}$ values of some solutions

Solution	$\mathbf{p H}$
\mathbf{P}	14.0
\mathbf{Q}	6.8
\mathbf{R}	2.5

(a) What colour change would occur in solution \mathbf{P} on addition of two drops of phenolphthalein indicator?
(b) State the pH value of a resulting solution when equal moles of solution \mathbf{P} and \mathbf{R} react
10. In an experiment, ammonia gas was prepared by heating ammonium salt with an alkali. After drying, ammonia gas was collected at room temperature and pressure.
(a) What is meant by the term alkali?
(b) Explain using physical properties of the gas why ammonia is not collected by downward delivery
11. The table shows the colours obtained when some indicators are added to solutions:-

Solution	Blue litmus paper	Indicator W
Distilled water	$\ldots \ldots \ldots \ldots \ldots \ldots \ldots$	Colourless
Calcium hydroxide	Blue	Pink
Nitric acid	$\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots$	Colourless

(a) Complete the table by filling in the missing colours
(b) Identify indicator \mathbf{W}
12. (a) Flower extracts can be used as Acid-base indicators. Give two limitations of such indicators
(b) The diagram below shows spots of pure substances \mathbf{W}, \mathbf{X}, and \mathbf{Y} on a chromatography paper. Spot \mathbf{Z} is that of a mixture

After development \mathbf{W}, \mathbf{X}, and \mathbf{Y} were found to have moved $9 \mathrm{~cm}^{3}, 4 \mathrm{~cm}^{3}$ and $7 \mathrm{~cm}^{3}$ respectively. \mathbf{Z} has separated into two spots which have moved $7 \mathrm{~cm}^{3}$ and $9 \mathrm{~cm}^{3}$:-
On the diagram:-
I. Label the baseline and solvent front
II. Show the position of all the spots after development
III. Identify the substances present in mixture \mathbf{Z}
13. A beekeeper found that when stung by a bee, application of a little solution of sodium hydrogen carbonate helped to relieve the irritation of the affected area. Explain
14. 10 g of sodium hydrogen carbonate were dissolved in $20 \mathrm{~cm}^{3}$ of water in a boiling tube. Lemon juice was then added dropwise with shaking until there was no further change.
(a) Explain the observation which was made in the boiling tube when the reaction was in progress
(b) What observations would be made if the lemon juice had been added to copper turnings in a boiling tube?
15. (a) Complete the table below to show the colour of the given indicator in acidic and basic solutions:

Indicator	Colour in acidic solution	Basic solution
Methyl orange	Pink	
Phenolphthalein		Pink

16. Solutions can be classified as acids, bases or neutral. The table below shows solutions and their pH values:-

Solutions	PH VALUES
K	1.5
L	7.0
M	14.0

(i) Select any pair that would react to form a solution of PH 7
(ii) Identify two solutions that would react with aluminium hydroxide. Explain

Air and combustion

1. The set-up below was used to prepare a sample of oxygen gas. Study it and answer the questions that follow.

(i) Complete the diagram to show how Oxygen can be collected
(ii) Write a chemical equation of the reaction to produce oxygen
2. Air was passed through several reagents as shown below:

(a) Write an equation for the reaction which takes place in the chamber containing Magnesium powder
(b) Name one gas which escapes from the chamber containing magnesium powder. Give a reason for your answer
3. (a) What is rust?
(b) Give two methods that can be used to prevent rusting
(c) Name one substance which speeds up the rusting process
4. 3.0 g of clean magnesium ribbon 8.0 g of clean copper metal were burnt separately in equal volume of air and both metals reacted completely with air;
a) State and explain where there was greater change in volume of air $\mathrm{Mg}=24 \mathrm{Cu}=64$
b) Write an equation for the reaction between dilute sulphuric acid and product of burnt copper
5. Oxygen is obtained on large scale by the fractional distillation of air as shown on the flow chart bellow.

a) Identify the substance that is removed at the filtration stage
b) Explain why Carbon (IV) oxide and water are removed before liquefaction of air
c) Identify the component that is collected at $-186^{\circ} \mathrm{C}$
6. The set-up below was used to study some properties of air.

Moist iron wool

State and explain two observations that would be made at the end of the experiment
7. A form two student in an attempt to stop rusting put copper and Zinc in contact with iron as shown:-

(ii)
(a) State whether rusting occurred after one week if the set-ups were left out
(b) Explain your answer in (a) above
8. In an experiment, a piece of magnesium ribbon was cleaned with steel wool. 2.4 g of the clean magnesium ribbon was placed in a crucible and completely burnt in oxygen. After cooling the product weighed 4.0 g
a) Explain why it is necessary to clean magnesium ribbon
b) What observation was made in the crucible after burning magnesium ribbon?
c) Why was there an increase in mass?
d) Write an equation for the major chemical reaction which took place in the crucible
e) The product in the crucible was shaken with water and filtered. State and explain the observation which was made when red and blue litmus paper were dropped into the filtrate
9. In an experiment a gas jar containing some damp iron fillings was inverted in a water trough containing some water as shown in the diagram below. The set-up was left un-disturbed for three
days. Study it and answer the questions that follow:
Damp iron

(a) Why were the iron filings moistened?
b) State and explain the observation made after three days.
(c) State two conclusions made from the experiment.
d) Draw a labelled set-up of apparatus for the laboratory preparation of oxygen using Sodium Peroxide
(e) State two uses of oxygen
10. In an experiment, a piece of magnesium ribbon was cleaned with steel wool. 2.4 g of the clean magnesium ribbon was placed in a crucible and completely burnt in oxygen. After cooling the product weighed 4.0 g
a) Explain why it is necessary to clean magnesium ribbon
b) What observation was made in the crucible after burning magnesium ribbon?
c) Why was there an increase in mass?
d) Write an equation for the major chemical reaction which took place in the crucible
e) The product in the crucible was shaken with water and filtered. State and explain the observation which was made when red and blue litmus paper were dropped into the filtrate
11. The set-up below was used to collect gas \mathbf{F} produced by the reaction between sodium peroxide and water

(i) Name gas \mathbf{F}.
(ii) At the end of the experiment, the solution in the round bottomed flask was found to be a strong base. Explain why this was so
(iii) Which property of gas \mathbf{F} makes it be collected by the method used in the set-up?
(iv) Give one industrial use of gas \mathbf{F}
12. . The set-up below was used to investigate properties of the components of air:

(i) State two observations made during the experiment
(ii) Write two chemical equations for the reactions which occurred
(iii) The experiment was repeated using burning magnesium in place of phosphorous. There was greater rise of water than in the first case. Explain this observation
(iv) After the two experiments, the water in each trough was tested using blue and red litmus papers. State and explain the observations of each case.
(a) Phosphorous experiment
b) magnesium experiment
(v) Briefly explain how a sample of nitrogen gas can be isolated from air in the laboratory
13. (a) A group of students burnt a piece of Mg ribbon in air and its ash collected in a Petri dish. The ash was found to comprise of magnesium Oxide and Magnesium nitride
(i) Write an equation for the reaction leading to formation of the magnesium nitride
(ii) A little water was added to the products in the Petri dish. State and explain the observation made.
(iii) A piece of blue litmus paper was dipped into the solution formed in (b) above. State the observation made.
14. A form one class carried out an experiment to determine the active part of air. The diagram below shows the set-up of the experiment and also the observation made.
(i) At the beginning

(ii) observation at the end of the experiment

(a) (i) Identify substance \mathbf{M}
(ii) State two reasons for the suitability of substance \mathbf{M} for this experiment
(b) Write the equation for the reaction of substance \mathbf{M} and the active part of air
(c) (i) Using the letters \mathbf{Y} and \mathbf{X} write an expression for the percentage of the active part of air
(ii) The expression in (c)(i) above gives lower value than the expected. Explain
(d) (i) Explain the observation made when litmus paper is dipped into the beaker at the end of the experiment
(ii) Name the active part of air \qquad
(iii) Suggest another method that can be used to determine the active part of air
15. A piece of phosphorous was burnt in excess air. The product obtained was shaken with a small amount of hot water to make a solution
i) Write an equation for the burning of phosphorus in excess air
ii) The solution obtained in (b) above as found to have pH of 2. Give reasons for this observation
16. Study the set-up below and answer the questions that follow:-

(a) State two observations that would be made after one week. Explain
(b) Write the equation of the reaction taking place in the test-tube
17. $\mathrm{Fe}_{3} \mathrm{O}_{4}$ and FeO are oxides of iron which can be produced in the laboratory
(a) Write chemical equation for the reaction which can be used to produce each of the oxides
(b) Wire an ionic equation for the reaction between the oxide, $\mathrm{Fe}_{3} \mathrm{O}_{4}$ and a dilute acid.
18. Below is a list of oxides.
$\mathrm{MgO}, \mathrm{N}_{2} \mathrm{O}, \mathrm{K}_{2} \mathrm{O}, \mathrm{CaO}$ ans $\mathrm{Al}_{2} \mathrm{O}_{3}$
Select:-
a) A neutral oxide.
b) A highly water soluble basic oxide.
c) An oxide which can react with both sodium hydroxide solution and dilute hydrochloric acid.
19. The diagram below shows students set-up for the preparation and collection of oxygen gas

(a) Name substance \mathbf{X} used
(b) Write an equation to show the reaction of sodium peroxide with the substance named in $\mathbf{1 (a)}$

5. Water and hydrogen

1. (a) Hydrogen can reduce coppers Oxide but not alluminium oxide. Explain
(b) When water reacts with potassium metal the hydrogen produced ignites explosively on the surface of water.
(i) What causes this ignition?
(ii) Write an equation to show how this ignition occurs
2. In an experiment, dry hydrogen gas was passed over hot copper (II) oxide in a combustion

(a) Complete the diagram to show how the other product, substance \mathbf{R} could be collected in the laboratory.
(b) Describe how copper could be obtained from the mixture containing copper (II) oxide
3. The setup below was used to investigate the reaction between metals and water.

(a) Identify solid \mathbf{X} and state its purpose

Solid X
Purpose
(b) Write a chemical equation for the reaction that produces the flame.
4. Gas \mathbf{P} was passed over heated magnesium ribbon and hydrogen gas was collected as shown

Mocks Topical Analysis
(i) Name gas \mathbf{P}
(ii) Write an equation of the reaction that takes place in the combustion tube
(iii) State one precaution necessary at the end of this experiment
5. When hydrogen is burnt and the product cooled, the following results are obtained as shown

(a) Write the equation for the formation of liquid \mathbf{Y}
(b) Give a chemical test for liquid \mathbf{Y}
6. Jane set-up the experiment as shown below to collect a gas. The wet sand was heated before

Wet sand
(a) Complete the diagram for the laboratory preparation of the gas
(b) Why was it necessary to heat wet sand before heating Zinc granules?
7.

(a) Between \mathbf{N} and \mathbf{M} which part should be heated first? Explain
(b) Write a chemical equation for the reaction occurring in the combustion tube.
8. The set-up below was used to investigate electrolysis of a certain molten compound;-

(a) Complete the circuit by drawing the cell in the gap left in the diagram
(b) Write half-cell equation to show what happens at the cathode
(c) Using an arrow show the direction of electron flow in the diagram above
9. Hydrogen can be prepared by reacting zinc with dilute hydrochloric acid.
a) Write an equation for the reaction.
b) Name an appropriate drying agent for hydrogen gas.
c) Explain why copper metal cannot be used to prepare hydrogen gas.
d) Hydrogen burns in oxygen to form an oxide.
(i) Write an equation for the reaction.
(ii) State two precautions that must be taken before the combustion begins and at the end of the combustion.
e) Give two uses of hydrogen gas.
f) When zinc is heated to redness in a current of steam, hydrogen gas is obtained. Write an equation for the reaction.
g) Element \mathbf{Q} reacts with dilute acids but not with cold water. Element \mathbf{R} does not react with dilute acids. Elements \mathbf{S} displaces element \mathbf{P} from its oxide. \mathbf{P} reacts with cold water. Arrange the four elements in order of their reactivity, starting with the most reactive.
h) Explain how hydrogen is used in the manufacture of margarine.
10. a) The set-up below is used to investigate the properties of hydrogen.

i) On the diagram, indicate what should be done for the reaction to occur
ii) Hydrogen gas is allowed to pass through the tube for some time before it is lit. Explain
iii) Write an equation for the reaction that occurs in the combustion tube
iv) When the reaction is complete, hydrogen gas is passed through the apparatus until they cool down. Explain
v) What property of hydrogen is being investigated?
vi) What observation confirms the property stated in (v) above?
vii) Why is zinc oxide not used to investigate this property of hydrogen gas?
11. The set up below was used to collect gas \mathbf{K}, produced by the reaction between water and

(a) Name gas \mathbf{K}
(b) At the end of the experiment, the solution in the beaker was found to be a weak base. Explain why the solution is a weak base

6. Structure of the atom and the periodic table

1. In an experiment an unknown mass of anhydrous sodium carbonate was dissolved in water and the solution made up to $250 \mathrm{~cm}^{3} .25 \mathrm{~cm}^{3}$ of this solution neutralized $20 \mathrm{~cm}^{3}$ of 0.25 M nitric acid.
$(\mathrm{Na}=23.0 \mathrm{C}=12.0 \mathrm{O}=16.0)$
Calculate:
(a) Moles of Nitric acid used
(b) Moles of sodium carbonate in 25 cm of the solution
(c) Mass of unknown sodium carbonate used
2. Element \mathbf{A} has atomic mass 23 and element \mathbf{B} has atomic mass 7 and also have 12 neutorns and 4 neutrons respectively.
(a) Write the electronic arrangement of \mathbf{A} and \mathbf{B}
(b) Which element has higher ionization energy? Explain
3. The table below shows the relative atomic masses and the percentage abundance of isotope M_{1} and M_{2} of element \mathbf{M}.

	Relative atomic mass	\% abundance
M_{1}	62.93	69.09
M_{2}	64.93	30.91

Calculate the relative atomic mass of element \mathbf{M}
4. (a) Element \mathbf{V} has two isotopes. Two thirds of $\quad \mathbf{V}$ and one third of V . What is the relative atomic mass of element \mathbf{V} ?
(b) The following refers to element \mathbf{Y}

Isotope	A	B	C
Isotope mass	54	56	57

Given that isotope \mathbf{C} contains 31 neutrons in its nucleus find the number of protons in isotope \mathbf{B}
5. The table below shows the relative atomic masses and the percentage abundance of the isotopes L_{1} and L_{2} of element L .

	Relative atomic mass	\% abundance
L_{1}	62.93	69.09
$\mathrm{~L}_{2}$	64.93	30.91

Calculate the relative atomic mass of element K .
6. An element \mathbf{M} has two isotopes \mathbf{M} and \mathbf{M}. The relative atomic mass of the naturally occurring is 63.55. Calculate the percentage of each isotope
7. An oxide of element \mathbf{G} has the formula as $\mathrm{G}_{2} \mathrm{O}_{3}$
(a) State the valency of element \mathbf{G}
(b) In which group f the periodic table is element \mathbf{G} ?
8. The table below gives information about the ions T^{+}and \mathbf{Z}^{2-}

Ion	\mathbf{T}^{+}	$\mathbf{Z}^{\mathbf{2 -}}$
Electron arrangement	2.8	2.8 .8
Number of neutrons	12	16

(a) How many protons are there in the nucleus of?
(i) Element T?
(ii) Element \mathbf{Z} ?
(b) Determine the relative formula mass of the compound formed between \mathbf{T} and \mathbf{Z}
(c) State two conditions under which the compound would conduct electricity
9. Carbon and silicon belong to the same group of the periodic table, yet Carbon (IV) oxide is a gas while silicon (IV) oxide is a solid with a high melting point. Explain this difference
10. An ion of oxygen is larger than oxygen atom. Explain
11. Copper (II) oxide and charcoal are black solids. How would you distinguish between the two solids?
12. (a) Element X is found in period III and group IV. It consists of two isotopes ${ }^{28} \mathrm{X}$ and ${ }^{9} \mathrm{X}$. A sample of X was found to consist of 90% of ${ }^{28} \mathrm{X}$. If the relative atomic mass of X is 28.3, work out the number of neutrons in ${ }^{\mathrm{Q}} \mathrm{X}$
(b) Draw an electrochemical cell for the above cell
13. Study the table below and answer the questions that follows:- (Letters are not the actual symbols of element)

Element	Electronic arrangement	Electrical conductivity
L1	2.8 .2	Higher electrical conductivity
L2	2.8 .1	High electrical conductivity
L3	2.8 .3	Highest electrical conductivity

L3 has the highest electrical conductivity. Explain
14. Define the term melting point of a substance
15. Use the information in the table below to answer the questions that follow.
(The letters do not represent the actual symbols of the elements).

Element	Q	P	R	S	T
Atomic number	18	5	3	5	20
Mass number	40	10	7	11	40

(a) Which two letters represent the same element? Give a reason
(b) Give the number of neutrons in an atom of element \mathbf{R}
16. The table below gives some elements in the periodic table. Use it to answer the questions that Follow. The letters do not represent the actual symbols of the elements.

Element	A	B	C	D	E
Atomic number	12	13	14	15	16

Which of the above letters represent:
a) A metallic element which forms ions with the smallest ionic radius? Explain
b) A non metallic element with the largest bbatomic size? Explain
17. The grid below is part of the periodic table. Use it to answer the questions that follow:
(The letters are not the actual symbols).

a) Write down the formula of the compound formed between C and A .
b) Which element has the same electron arrangement as the stable ion of:
(i) \mathbf{F}
(ii) \mathbf{A}
c) Element \mathbf{Q} has atomic number 15. Indicate its position on the grid.
d) Explain how the atomic radii of the following compare:
(i) C and F
(ii) C and D
e) Write the type of bond present in a compound formed between D and A.
f) Compound C and G were completely burned in oxygen.
(i) Write down equations to show the combustion of each of the elements.
(ii) State whether each of the oxides (i) above is basic or acidic.
18. The following flow chart shows the industrial manufacture of Nitric (V) acid.
a) Identify substance $\mathbf{B}, \mathbf{C}, \mathbf{E}$ and \mathbf{F}.
b) Describe what happens in the catalytic chamber.

c) State what takes place in chamber \mathbf{D}.
d) $60-65 \%$ nitric (V) acid is produced in the absorption chamber. Describe how the acid can be concentrated.
e) State why nitric (V) acid is stored in dark bottles.
f) Copper reacts with nitric (V) acid and not hydrochloric acid. Explain.
19. The number of protons, neutrons and electrons in atoms \mathbf{A} to \mathbf{F} are given in the table below the letters do not represent the actual symbol of the elements:-

Atoms	Protons	Neutrons	Electrons
A	3	4	2
B	9	10	10
C	12	12	12
D	17	18	17
E	18	20	17
F	22	18	

(a) Choose from the table the letters that represent:
(i) An atom of a metal
(ii) A neutral atom of a non-metal
\qquad
(iii) An atom of a noble gas
(iv) A pair of isotopes
(v) A cation
(b) The grid below shows a part of the periodic table. The letters do not represent the actual symbols.
Use it to answer the questions that follow:-

Mocks Topical Analysis
eeducationgroup.com
(a) How do the atomic radius of element \mathbf{X} and \mathbf{Y} compare
(b) (i) Using crosses (\mathbf{X}) to represent electrons, draw the atomic structure of element \mathbf{Q}
(ii) State the period and the group to which element \mathbf{Q} belong
(c) (i) The ionic configuration of element \mathbf{G} is $2.8 \mathbf{G}$ forms an ion of the type \mathbf{G}^{-1}. Indicate on the grid, the position of element \mathbf{G}.
(ii) To which chemical family does element \mathbf{G} belong?
(iii) State one use of element \mathbf{U}
(iv) What is the nature of the compound formed between \mathbf{K} and \mathbf{U}
20.
(a) Study the table below and answer the questions that follow.

Particle	Atomic number	Ionic configuration	Formula of oxide	Atomic radii	Ionic radii
\mathbf{P}	4	$\ldots \ldots \ldots \ldots \ldots$	$\ldots \ldots \ldots \ldots \ldots$	0.110	0.031
\mathbf{Q}	$\ldots \ldots \ldots \ldots \ldots$	2.8 .8	QO	0.200	0.099
\mathbf{R}	$\ldots \ldots \ldots \ldots$	2.8 .8	$\mathrm{R}_{2} \mathrm{O}$	0.230	0.133
\mathbf{S}	17	2.8 .8	$\mathrm{~S}_{2} \mathrm{O}_{7}$	0.099	0.181
\mathbf{T}	16	$\ldots \ldots \ldots \ldots$	$\ldots \ldots \ldots$	0.104	0.231

(i) Complete the table above
(ii) From the table, choose the most reactive metal. Explain
(iii) Which element is the most electronegative. Explain
(iv) Using dots (.) and crosses (x) to represent electrons, show the bonding in the chloride of \mathbf{Q}
(v) Explain the solubility of element \mathbf{T} in water
(b) (i) Why is aluminium used to make utensils yet it is a reactive metal?
(ii) Distinguish between valency and oxidation number
21. a) Work out the oxidation number of phosphorous in the following compound $\mathrm{H}_{3} \mathrm{PO}_{3}$
b) Study the equation below:

$$
\mathrm{Mg}_{(\mathrm{s})}+2 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})} \longrightarrow \mathrm{Mg}(\mathrm{OH})_{2(\mathrm{aq})}+\mathrm{H}_{2(\mathrm{~g})}
$$

Which species has undergone oxidation .Explain
22. The grid below represents part of the periodic table. The letters do not represent the actual symbols of the elements. Study it and answer the questions that follow:

\mathbf{L}		\mathbf{L}	\mathbf{L}					
\mathbf{M}	\mathbf{P}			\mathbf{T}		\mathbf{J}	\mathbf{U}	\mathbf{X}
\mathbf{N}	\mathbf{Q}		\mathbf{R}	\mathbf{S}			\mathbf{V}	\mathbf{Y}
							\mathbf{W}	

(a) Explain why element \mathbf{L} appears in two different groups in the grid above
(b) State the name of the chemical family to which \mathbf{P} and \mathbf{Q} belong
(c) Write the formula of the compound formed between \mathbf{P} and \mathbf{V}
(d) Compare the melting points of \mathbf{Q} and \mathbf{S}. Explain
(e) Identify an element whose oxide dissolves in both acids and alkalis
(f) Write the equation for the burning of \mathbf{T} in excess air
(g) Using dots (\cdot) and cross (\mathbf{x}) to represent electrons, draw a diagram to illustrate bonding in the sulphide of \mathbf{Q}
(h) State one use of element \mathbf{X}
23. The grid below represents part of the periodic table. Study it and answer the questions that follow:

S			R	E		X	
Q	Z				M	T	V

(a) (i) Identify the element that gains electrons most readily
(ii) Which of the metal is most reactive? Explain
(iii) What name is given to the family of elements to which elements \mathbf{X} and \mathbf{T} belong?
(iv) Explain why:-
(I) Ionic radius of \mathbf{Q} is larger than that of \mathbf{M}
(II) Atomic radius of \mathbf{Q} is greater than that of \mathbf{S}
(v) Which of the element in the table does not have the ability to form an ionic or covalent bond? Explain
(vi) Give the formula of the compound formed between \mathbf{R} and \mathbf{Z}
24. The grid below is part of the periodic table. The elements are not represented by their actual symbols. Use the information to answer the questions that follow.

a) (i) Which is the most reactive
(I) Non — metal?

> Explain
(II) Metal?

Explain
(ii) Name the family to which elements \mathbf{T} and \mathbf{Q} belongs.
(iii) Write the formula of the compound formed when \mathbf{W} reacts with \mathbf{S}.
(iv) Name the type of bond and structure formed when elements \mathbf{R} and \mathbf{K} react.
(v) Explain why element \mathbf{N} doesn't form compounds with other elements.
(vi) Compare the atomic radii of \mathbf{T} and \mathbf{Q}. Explain.
25. Study the data given in the following table and answer the questions that follow. The letters are not the actual symbols of elements.

Element	Number of protons	Melting point	Bpt $^{\mathbf{}} \mathbf{C}$
\mathbf{A}	11	98	890
\mathbf{B}	12	650	1110
\mathbf{C}	13	60	2470
\mathbf{D}	14	1410	2360
\mathbf{E}	15	442	280

		590	
\mathbf{F}	16	113	445
		119	
\mathbf{G}	17	-101	-35
\mathbf{H}	18	-189	-186

(i) State and explain the trend in melting point in A B C
(ii) Explain why the melting point and boiling points of element \mathbf{D} is the highest
(iii) Explain why the element represented by letter \mathbf{E} has two melting point values
(iv) Write down the chemical formula between element \mathbf{C} and sulphate ions
(v) Name the chemical family in which \mathbf{H} belong and state one use of the element
(vi) What is the nature of the oxide of the elements represented by letters \mathbf{C} and \mathbf{F} ?
26. An element \mathbf{W} has an atomic number 13.
a) Write the electronic configuration of the most stable ion of \mathbf{W}
b) Write the formula of the oxide of the element \mathbf{W}
27. Identify the particles that facilitate the electric conductivity of the following substances
(i) Sodium metal
(ii) Sodium Chloride solution
(iii) Molten Lead Bromide
28. Compare with a reason the atomic radius of Sodium to that of Aluminum.
29. Study the information in the table below and answer the questions that follow:

Ion	No. of protons	No. of electrons
P^{3-}	7	10
Q^{+}	19	18
R^{2+}	12	10

a) Write the electron arrangement of element P.
b) Give the group and period to which elements Q and R respectively.

```
Q
```

R \qquad
30. Ethanol is a liquid at room temperature but does not conduct electricity. Explain.
31. Electronic configuration for elements represented by $\mathbf{P}, \mathbf{Q}, \mathbf{R}$ and \mathbf{S} are:-
$\mathrm{P}=2.8 .6, \mathrm{Q}=2.8 .2, \mathrm{R}=2.8 .1 \mathrm{D}=2.8 .8$.
(a) Select the element which forms
(i) A double charged ion
(ii) A soluble carbonate
32. The table below gives information on four elements by letters $\mathbf{K}, \mathbf{L}, \mathbf{M}$ and \mathbf{N}. Study it and answer the questions that follow. The letters do not represent the actual symbol of the elements.

Element	Electron arrangement	Atomic radius (nm)	Ionic radius (nm)
K	2.8 .2	0.136	0.065
L	2.8 .7	0.099	0.181
M	2.8 .8 .1	0.203	0.133
N	2.8 .8 .2	0.174	0.099

(a) Which two elements have similar properties? Explain
(b) What is the most likely formula of the oxide of \mathbf{L} ?
(c) Which element is non-metal? Explain
33. Study the information given below and answer the questions that follow:

Element	Atomic radius (nm)	Ionic radius (nm)	Formula of oxide	Melting point of oxide (${ }^{\circ} \mathbf{C}$)
\mathbf{A}	0.364	0.421	$\mathrm{~A}_{2} \mathrm{O}$	-119
\mathbf{D}	0.830	0.711	DO_{2}	837
\mathbf{E}	0.592	0.485	$\mathrm{E}_{2} \mathrm{O}_{3}$	1466
\mathbf{G}	0.381	0.446	$\mathrm{G}_{2} \mathrm{O}_{5}$	242
\mathbf{J}	0.762	0.676	JO	1054

(i) Write the formula of the compound formed when \mathbf{J} combined with \mathbf{G}
(b) Explain why the melting point of the oxide of \mathbf{E} is higher than that of the oxide of \mathbf{G}

Chemical families

1. Study the information in the table below and answer the questions that follow:

Element	Atomic radius (nm)	Ionic radius (nm)
\mathbf{W}	0.114	0.195
\mathbf{X}	0.072	0.136
\mathbf{Y}	0.133	0.216
\mathbf{Z}	0.099	0.181

(a) Would these form part of a metallic or a non-metallic group? Explain
(b) Suggest an element in the table above likely to be the most reactive. Explain

2 State the reason for using Argon in electric light bulbs
3. Study the information in the table below and answer the questions that follow. The letters do not represent the actual symbols of the elements.

Element	Electronic configuration	Boiling point
X	2.7	$-188^{\circ} \mathrm{C}$
Y	2.8 .7	$-35^{\circ} \mathrm{C}$
Z	2.8 .8 .7	$59^{\circ} \mathrm{C}$

(a) What is the general name given to the group in which the elements \mathbf{X}, \mathbf{Y} and \mathbf{Z} belong?
(b) Select two elements which are coloured gases
(c) Explain why \mathbf{Z} has the highest boiling point
(d) Write an equation for the reaction of element \mathbf{Z} with iron metal
(e) Element \mathbf{Y} was dissolved in water and a piece of blue litmus paper was put into the resulting solution. State and explain the observation that was made on the litmus paper
4. The table below shows elements $\mathbf{A}, \mathbf{B}, \mathbf{C}, \mathbf{E}, \mathbf{F}$, and \mathbf{G}. Elements in group \mathbf{X} have a valency of 2 while elements in group \mathbf{Y} have a valency of 1 . Use the table to answer the questions that follow:-

	GROUP X			GROUP Y		
Element	A	B	C	E	F	G
Atomic radius (nm)	14.0	19.5	19.7	5.2	7.9	11.3
Ionic radius (nm)	7.6	10.5	12.4	12.6	16.1	19.6

(i) Atomic radius increases from \mathbf{A} to \mathbf{C} and from \mathbf{E} to \mathbf{G}. Explain
(ii) Explain the difference in the atomic and ionic radii of group \mathbf{X} elements
(iii) Elements \mathbf{C} and \mathbf{G} belong to the same period. Explain why the atomic radius of \mathbf{C} is greater than that of \mathbf{G}
(iv) Give the formula of the compound formed when \mathbf{B} and \mathbf{F} react
(v) What type of bonding is formed in the compound above? Explain
(vi) Starting with the least reactive, arrange the elements in group \mathbf{Y} in the order of reactivity. Explain:
5. The information in the table below relates to elements in the same group of the periodic table. Study it and answer the question that follows.

Element	Atomic size (nm)
\mathbf{P}	0.19
\mathbf{Q}	0.23
\mathbf{R}	0.15

Which element has the highest ionization energy? Explain
6. Starting with Lead (II) carbonate explain how you would prepare a pure sample of Lead (II) sulphate
7. a) What is an isotope?
b) An element \mathbf{Q} consists of 3 isotopes of mass 28, 29, 30 and percentage abundance of 92.2, $4.7,3.1$ respectively. Determine the relative atomic mass of the element?
8. Study the information in the table below and answer the questions that follow.
(The letters do not represent the actual symbols of the elements)

Element	Electronic configuration	Ionization energy Kj/mol)
\mathbf{P}	2.2	1800
\mathbf{Q}	2.8 .2	1450
\mathbf{R}	2.8 .8 .2	1150

(a) What is the general name given to the group in which elements \mathbf{P}, \mathbf{Q} and \mathbf{R} belong?
(b) Explain why \mathbf{P} has the highest ionization energy
(c) Write a balanced chemical equation for the reaction between element \mathbf{Q} and water

Structure and bonding

1. Ethanol is a liquid at room temperature but does not conduct electricity. Explain.
2. a) Distinguish between a covalent bond and a co-ordinate bond.
b) Draw a diagram to show bonding in an ammonium ion. $(\mathrm{N}=7, \mathrm{H}=1)$
3. a) Explain why the metals magnesium and aluminium are good conductors of electricity.
b) Other than cost, give two reasons why aluminium is used for making electric cables while magnesium is not.
4. Explain why the boiling point of ethanol is higher than that of hexane.
(Relative molecular mass of ethanol is 46 while that of hexane is 86).
5. a) What is meant by dative covalent bond?
6. Sodium and Magnesium belong to the same period on the periodic table and both are metals. Explain why magnesium is a better conductor of electricity than sodium.
7. Using dots and crosses to represent electrons, draw the structures of the following:
(a) Phosphorous chloride $\left(\mathrm{PCl}_{3}\right)$
(b) Hydroxonium ion $\left(\mathrm{H}_{3} \mathrm{O}^{+}\right)$
8. Between aluminium and copper which one is a better conductor? Explain
9. Water has a boiling point of $100^{\circ} \mathrm{C}$ while hydrogen chloride has a boiling point of $-115^{\circ} \mathrm{C}$. Explain
10. Explain why luminous flame is capable of giving out light and soot
11. When blue litmus paper is dipped in a solution of aluminium chloride it turns red. Explain
12. Carbon and Silicon are in the same group of the periodic table. Silicon (IV) Oxide melts at $2440^{\circ} \mathrm{C}$ while solid Carbon (IV) Oxide sublimes at $-70^{\circ} \mathrm{C}$. In terms of structure and bonding, explain this difference
13. Element \mathbf{A} has an atomic number of 6 and b has an atomic number of 9 :
(i) Write the electron arrangements for elements \mathbf{A} and \mathbf{B}
(ii) Using $\operatorname{dot}(\bullet)$ and cross (X)diagram, show how \mathbf{A} and \mathbf{B} combine to form a compound
14. (a) Explain why aluminium is a better conductor of electricity than magnesium
(b) Other than cost and ability to conduct, give a reason why aluminium is used for making cables while magnesium is not
15. Explain how electrical conductivity can be used to distinguish between magnesium oxide and silicon (IV) oxide
16. a) The diagram below represents part of the structure of sodium chloride crystal

The position of one of the sodium ions in the crystal is shown as;
i) On the diagram, mark the positions of the other three sodium ions
ii) The melting and boiling points of sodium chloride are 801 C and 1413C respectively. Explain why sodium chloride does not conduct electricity at 25 C , but does not at temperatures between 801 C and 1413 C
b) Give a reason why ammonia gas is highly soluble in water c) The structure of ammonium ion is shown below;

Name the type of bond represented in the diagram by $\mathrm{N} \longrightarrow \mathrm{H}$
d) Carbon exists in different crystalline forms. Some of these forms were recently discovered in soot and are called fullerenes
i) What name is given to different crystalline forms of the same element
ii) Fullerenes dissolve in methylbenzene while the other forms of carbon do not. Given that soot is a mixture of fullerenes and other solid forms of carbon, describe how crystals of fullerenes can be obtained from soot
iii) The relative molecular mass of one of the fullerenes is 720 . What is the molecular mass of this fullerene
17. (a) Explain the following observations:-
(i) NaCl allows electric current to pass through them in molten state
(ii) Graphite is a non-metal yet it is a conductor of electricity
18. Study the table below and answer the questions that follow:-

Substance	\mathbf{A}	B	\mathbf{C}	\mathbf{D}	\mathbf{E}	F									
Melting Point $\left({ }^{\circ} \mathbf{C}\right)$	801	113 119	-39	5	-101	1356									
										1410	445	457	54	-36	2860
Boiling point $\left({ }^{\circ} \mathbf{C}\right)$	Poor	Good	Poor	Poor	Poor										
Electrical Conductivity	Solid	Poor	Piquid	Good	Poor	Good									
	Poor	Poor	Poor												

I Identify with reasons the substances that:
(i) Have a metallic structure
(ii) Have a molecular structure and exist in the liquid state at room temperature and pressure(
(iii) Suggest a reason why substance \mathbf{B} has two melting points
(iv) Substances \mathbf{A} and \mathbf{C} conduct electric current in the liquid state. State how the two substances differ as conductors of electric current
19. (I) Sodium metal tarnishes when exposed to the air where a white powder is formed on its surface. A small piece of this sodium metal was dropped into 25 g of ethanol and $1200 \mathrm{~cm}^{3}$ of hydrogen gas was evolved at r.t.p. The unreacted ethanol was evaporated and a white solid remained. $\quad\left(\mathrm{Na}=23\right.$, molar gas volume at r.t.p $\left.=24 \mathrm{dm}^{3}, \mathrm{C}=12, \mathrm{O}=16, \mathrm{H}=1\right)$
(a) Write a chemical equation for the reaction between ethanol and sodium metal
(b) Determine the mass of sodium that reacted with ethanol
(c) What mass of ethanol evaporated?
(d) The ethanol was evaporated at $80^{\circ} \mathrm{C}$, while the white solid remained unaffected at this temperature. What is the difference in structure of ethanol and the white solid?
(II) (a) Name an inorganic liquid which liberates hydrogen gas with sodium metal
(b) What two differences would you observe if similar pieces of sodium were dropped separately into small beakers containing equal amount of ethanol and the liquid named in (II)(a) above respectively
(III) (a) Give the name of the white powder formed on the original piece of sodium metal (b) Explain how the white powder named in (III)(a) is formed
20. The grid below represents part of the periodic table. The letters do not represent actual symbols of the elements. Study it and answer the questions that follow:-

\mathbf{F}			\mathbf{P}			\mathbf{G}	\mathbf{N}	\mathbf{I}								
	\mathbf{Q}		\mathbf{J}	\mathbf{K}		\mathbf{L}	\mathbf{M}									
\mathbf{N}		$\mathbf{X}-\mathbf{Z}$														

(a) What type of bond would you expect in the compound formed between \mathbf{H} and \mathbf{F}. Explain
(b) (i) Which of the elements \mathbf{J} and \mathbf{M} will have a greater atomic radius? Explain
(ii) Elements \mathbf{F} and \mathbf{N} are in the same group of periodic table. How do their atomic radius compare? Explain
(c) An element \mathbf{W} has atomic number 15. Indicate the position it would occupy in the table above
(d) What is the name given to elements $\mathbf{X}-\mathbf{Z}$?
(e) Why is \mathbf{J} used in electric cables where \mathbf{Q} is not
(f) \mathbf{P} and \mathbf{J} are termed as metalloids. What does the term metalloid mean?
(g) How would you expect the reactivity of \mathbf{H} and \mathbf{M} to compare? Explain
21. (a) Part of the periodic table is given below study it and answer the questions that follow.

The letters do not represent the actual elements

(i) What type of bond is formed when \mathbf{Y} reacts with \mathbf{Z}. Explain
(ii) Explain the difference in the atomic radii of element \mathbf{A} and \mathbf{B}
(iii) Explain the difference in the reactivity of \mathbf{Z} and \mathbf{B}
(b) Study the information in the table below and answer the questions that follow:
(The letters do not represent the actual symbols of the elements)

Element	Electronic configuration	Ionization energy KJmol $^{\mathbf{- 1}}$
\mathbf{P}	$2: 1$	519
\mathbf{Q}	$2: 8: 1$	494
\mathbf{R}	$2: 8: 8: 1$	418

(i) What is meant by ionization energy?
(ii) Element \mathbf{R} has the lowest ionization energy. Explain
(iii) When a piece of element \mathbf{Q} is placed on water it melts and a hissing sound is produced as it moves on the water surface. Explain these observations
(iv) Write the equation for the reaction between element \mathbf{Q} and water
22. The table below shows the elements in the third period, the oxides of the third period and their properties. The letters are not the actual symbols of the elements. Study the information and answer
the questions that follow:

Element	Atomic number	Atomic radius(nm)	Oxide	State at $\mathbf{R T}$	oxide melting point ${ }^{\circ} \mathbf{C}$
\mathbf{M}	11	0.191	$\mathrm{M}_{2} \mathrm{O}$	Solid	1132
\mathbf{N}	$\ldots \ldots \ldots$	0.160	NO	Solid	2852
$\ldots \ldots$.					
\mathbf{P}	13	0.130	$\ldots \ldots \ldots$	Solid	2072
\mathbf{Q}	14	0.118	QO_{2}	$\ldots \ldots \ldots$.	1610
\mathbf{R}	$\ldots \ldots \ldots$	0.110	$\ldots \ldots \ldots$	Solid	580
\mathbf{S}	16	0.102	SO_{2}	$\ldots \ldots \ldots$	-75
\mathbf{T}	17	0.099	TO_{2}	Gas	-60
\mathbf{V}	18	0.095	X	X	X

a) i) Complete the table above
ii) Explain the trend in the atomic radius across the period
iii) Explain why the oxide of element \mathbf{V} does not exist
b) Name the type of structure and bond in the following oxide

Oxide	Structure	Bond type
NO		
TO_{2}		

ii) Using dots and crosses to represent electrons. Show the bonding in the oxide, $\mathbf{Q O}_{2}$
c) i)Explain why elements \mathbf{P} conducts electricity but \mathbf{T} does not
ii) The oxide of \mathbf{P} reacts both acids and alkalis. Give the name of this kind of oxide
23. The table below gives information about elements $\mathrm{A}_{1}, \mathrm{~A}_{2}, \mathrm{~A}_{3}$ and A_{4}

Element	Atomic number	Atomic radius (nm)	Ionic radius (nm)
A_{1}	3	0.134	0.74
$\mathrm{~A}_{2}$	5	0.090	0.012
$\mathrm{~A}_{3}$	13	0.143	0.050
$\mathrm{~A}_{4}$	17	0.099	0.181

(i) In which period of the periodic table is element A_{2} ? Give a reason
(ii) Explain why the atomic radius of:
I. A_{1} is greater than that of A_{2}
II. A_{4} is smaller than its ionic radius
III. Select the element which is in the same group as A_{3}
IV. Using dots $(\boldsymbol{\bullet})$ and cross (\mathbf{x}) to represent outermost electrons, draw a diagram to show the bonding in the compound formed when A_{1} reacts with A_{4}
24. The atomic number of element \mathbf{P} is $\mathbf{1 1}$ and that of \mathbf{Q} is $\mathbf{8}$
a) Write down the possible formula of the compound formed between \mathbf{P} and \mathbf{Q}
b) Using dots (\cdot) and $\operatorname{crosses}(\mathbf{x})$ to represent electrons draw a diagram to represent the bonding in the compound in (a) above
25. Name the type of bonding and structure found in: -
(a) Ice
(b) Magnesium chloride
26. Name the type of bonding and structure found in: -
(a) Ice
(b) Magnesium chloride
27. Use the scheme to answer the questions that follow:

(a) Identify solid \mathbf{N}
(b) Write a balanced equation for the formation of \mathbf{Q}
(c) Write the formula of the complex ion formed when sodium hydroxide is added to solution \mathbf{L} in excess
28. (a) Using dots (\bullet) and crosses (\mathbf{x}) to represent electrons show bonding in:
$\mathrm{NH}_{2}^{-}(\mathrm{N}=7, \mathrm{H}=1) \quad \mathrm{S}_{8} \quad(\mathrm{~S}=16)$
(b) Show bonding in Carbon (II) Oxide by use of $(-)$ or (\rightarrow) to represent bonds.
29. In terms of structure and bonding, explain why diamond is the hardest naturally occurring Substance
30. Identify the bond types in the diagram
31. Elements A, B, C, and \mathbf{D} are not actual symbols, have atomic numbers $\mathbf{1 9}, \mathbf{9}, \mathbf{1 2}$ and $\mathbf{1 0}$ respectively.
(a) Which two elements represent non-metals
(b) Write the formula of the compound formed between elements \mathbf{B} and \mathbf{C} and identity the bond present in the compound
32. (a) Distinguish between a covalent and dative bond
(b) Explain why nitrogen gas reacts with oxygen at very high temperature
33. Draw a dot ($\boldsymbol{\bullet}$) and cross (\mathbf{x}) diagram to show bonding in:-
(i) Ammonium ion $\left(\mathrm{NH}_{4}{ }^{+}\right.$
($\mathrm{N}=7.0, \mathrm{H}=1$)
(ii) Silane $\left(\mathrm{SiH}_{4}\right)$
($\mathrm{Si}=14, \mathrm{H}=1$)
34. Below is a table oxides of some period three elements

Mocks Topical Analysis eeducationgroup.com

Oxides	$\mathrm{Na}_{2} \mathrm{O}$	$\mathrm{P}_{4} \mathrm{O}_{6}$	SO_{2}	$\mathrm{Cl}_{2} \mathrm{O}$
State at room temp	Solid	Solid	Gas	Gas

(a) Give the systematic name of $\mathrm{Cl}_{2} \mathrm{O}$
(b) Explain why $\mathrm{Na}_{2} \mathrm{O}$ exists as a solid whereas SO_{2} is a gas at room temperature
35. The table below shows properties of period three chlorides

Formular of compound	NaCl	MgCl_{2}	AlCl_{3}	SiCl_{4}
$\mathbf{B p}{ }^{\circ} \mathrm{C}$	$1470^{\circ} \mathrm{C}$	$1420^{\circ} \mathrm{C}$	$180^{\circ} \mathrm{C}$	$60^{\circ} \mathrm{C}$

Explain why AlCl_{3} solid has a much lower boiling point than MgCl_{2} solid

Salts

1. Study the flow chart below and answer the questions that follow:

a) Name reagent Z.
b) Describe the process which takes place in step 2 .
c) Identify the white solid.
2. a) Starting from solid magnesium oxide, describe how a solid sample of magnesium hydroxide can be prepared.
b) Give one use of magnesium hydroxide.
3. Starting with lead (II) oxide, describe how you would prepare a solid sample of lead (II) Carbonate
4. Study the diagram below and answer the questions that follow:

(a) Name the two salts formed in tube \mathbf{A}
(b) State the observations made in tube \mathbf{C}
(c) Name gas \mathbf{P}
5. Study the information in the table below and answer the questions that follow:-

PARTICLE	MASS NUMBER	NUMBER OF PROTONS	NUMBER OF NEUTRONS	NUMBER OF ELECTRONS
E	37	17	(i)	18
F	32	(ii)	16	16
G	(iii)	19	20	18
\mathbf{H}	40	20	(iv)	18

(a) Complete the table by filling in the blank spaces (i), (ii) (iii), and (iv)
(b) Identify the particles which are electrically charged
6. Sodium Carbonate Decahydrate crystals were left exposed on a watch glass for two days.
a) State the observations made on the crystals after two days.
b) Name the property of salts investigated in the above experiment
7. Starting with sodium oxide, describe how a sample of crystals of sodium hydrogen carbonate may be prepared
8. In an experiment, ammonium chloride was heated in test-tube. A moist red litmus paper placed at the mouth of test first changed blue then red. Explain these observations:-
9. Using dots (\cdot) and cross (x), show the structure of ammonium ion
10. a) Give the name of each of the processes described below which takes place when salts are exposed to air for sometime
i) Anhydrous copper sulphate becomes wet
ii) Magnesium chloride forms an aqueous solution
iii) Fresh crystals of sodium carbonate, $\mathrm{Na}_{2} \mathrm{CO}_{3} \cdot 10 \mathrm{H}_{2} \mathrm{O}$ become covered with white powder of formula $\mathrm{Na}_{2} \mathrm{CO}_{3} \cdot \mathrm{H}_{2} \mathrm{O}$
b) Write the formula of the complex ion formed in each of the following reactions described below;
i) Zinc metal dissolves in hot alkaline solution
ii) Copper hydroxide dissolves excess ammonia solution

11 (a) Write an equation to show the effect of heat on the nitrate of:-
(i) Potassium
(ii) Silver
12. (a) The scheme below shows some reactions starting with magnesium oxide. Study it and answer the questions that follow:-

Aqueous Magnesium Chloride		Magnesium Carbonate
	STEP 5	

(i) Name the reagents used in steps 2 and 4
(ii) Write an equation for the reaction in step 3
(iii) Describe how a solid sample of anhydrous magnesium carbonate is obtained in step 5
13. In the preparation of magnesium carbonate, magnesium was burnt in air and the product collected. Dilute sulphuric acid was then added and the mixture filtered and cooled. Sodium carbonate was added to the filtrate and the contents filtered. The residue was then washed and dried to give a white powder.
(a) Give the name of the product
(b) Write the chemical equation for the formation of the product
(c) (i) Name the filtrate collected after sodium carbonate was added.
(ii) Write down the chemical formula of the white powder
(d) Write a chemical equation for the reaction between product in (a) and the acid
(e) Write an ionic equation to show the formation of the white powder.
(f) Write an equation to show what happens when the white powder is strongly heated.
(g) Identify the ions present in the filtrate after addition of sodium carbonate.
(h) What is the name given to the reaction that takes place when sodium carbonate was added to the filtrate?
(i)Explain the observations made when crystals of sodium carbonate decahydrate are left exposed to the atmosphere for two days
14. a) Give the name of each of the processes described below which takes place when salts are exposed to air for sometime
i) Anhydrous copper sulphate becomes wet
ii) Magnesium chloride forms an aqueous solution
iii) Fresh crystals of sodium carbonate, $\mathrm{Na}_{2} \mathrm{CO}_{3} \cdot 10 \mathrm{H}_{2} \mathrm{O}$ become covered with white powder of formula $\mathrm{Na}_{2} \mathrm{CO}_{3} . \mathrm{H}_{2} \mathrm{O}$
15. You are provided with the following:- solid lead (II) nitrate, magnesium oxide powder, dilute sulphuric (VI)acid and distilled water. Describe how you can prepare a dry sample of lead (II) sulphate
16. Use the scheme to answer the questions that follow:

(a) Identify solid \mathbf{N}
(b) Write a balanced equation for the formation of \mathbf{Q}
(c) Write the formula of the complex ion formed when sodium hydroxide is added to solution \mathbf{L} in excess
17. When exposed to air, crystals of hydrated sodium carbonate loses water of crystallizations;-
(i) Name this process
(ii) Write the formula of hydrated sodium carbonate
18. A student poured sodium iodide solution into a small portion of solution \mathbf{Q}, a yellow precipitate was formed.
(i) Which ion was most likely in solution \mathbf{Q} ?
(ii) Write an ionic equation leading to the formation of the yellow precipitate
19. Calcium oxide can be used as a solid drying agent for some laboratory gases. Explain
20. A piece of marble chips was strongly heated in air for about 30 minutes. Some drops of water
were added drop by drop to the product when it was still warm.
Using equation, explain:
(i) What happens when the piece of marble chips is heated?
(ii) The reaction that takes place when water is added to the final warm product.
21. Study the flow chart below and answer the questions that follow

a) Identify ;
i) gases \mathbf{C} and \mathbf{B}
ii) Ions likely to be presented in solid \mathbf{A}
22. Potassium nitrate crystals in a test-tube were heated strongly for some time. State the observation made:
(a) When a glowing splint is introduced into the test-tube during the heating
(b) At the end of the heating
23. Name the process which takes place when:
(a) Anhydrous iron (III) chloride absorb water vapour from the air to form solution
(b) Zinc chloride vapour changes directly to zinc chloride solid
24. (a) Starting form solid magnesium oxide, describe how a solid sample of magnesium hydroxide can be prepared
(b) Give one use of magnesium hydroxide
25. The diagram below represents a set-up that was used to show that part of air s used during burning

(a) State two sources of errors in this experiment
26. In an experiment the following solids were provided to form three students; $\mathrm{Ca}\left(\mathrm{NO}_{3}\right)_{2(\mathrm{~s})}$, $\mathrm{NaH}_{2} \mathrm{PO}_{4(\mathrm{~s})} ; \mathrm{Mg}(\mathrm{OH}) \mathrm{Cl}_{(\mathrm{s})}$ and $\mathrm{Fe}\left(\mathrm{NH}_{4}\right)_{2}\left(\mathrm{SO}_{4}\right)_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}$. They were then told to dissolve the given solids in differently in 20 ml of water.
(a) Classify the given salts accordingly
(b) (i) Explain the process which takes place when FeCl_{3} is dissolved in water
(ii) A student placed a moist litmus paper on the product in (i) above. State and explain the observation made

Effect of an electric current on substances

1. The set-up was used to electrolyse Lead (II) bromide. Study it and answer the questions that follow;

(a) Write an ionic equation for the reaction that occurred at the cathode
(b) State and explain what happened at the anode
2. When an electric current was passed through two molten substances \mathbf{E} and \mathbf{F} in separate voltammeters. The observations recorded below were made:-

Substance	Observation	Type of structure
\mathbf{E}	Conducts electric current and a gas is formed at one of the electrodes	
\mathbf{F}	Conducts an electric current and is not decomposed	

Complete the table above
3. (a) Differentiate the following terms :-

Electrolyte and non-electrolyte
(b) The diagram below is a set-up used to investigate the conductivity of electric current by some aqueous solution. Study it and answer the questions that follow;

(i) State the observation made on the bulb when each of the following solution were put onto the beaker
(a) Sugar solution
(b) (i) Salt solution
(ii) Classify the substance in (i) above as either electrolyte or non-electrolyte
(b) If in the above set-up of apparatus, the substance to be tested is Lead II Bromide, what modification should be included in the set-up?
(c) Write an Ionic equation at the electrodes and state the observation:-

Anode
4. (a) The diagram below shows the set up used to investigate the effect of an electric current on molten lead (II) bromide

i. Explain what happens to the lead II bromide during electrolysis ii. Why is it important to carry out the experiment in a fume chamber?
5. (I) Define the following terms:
(a) Crystallization
(b) (i) Salting out as used in soap making
(ii) Starting with barium carbonate solid, dilute sulphuric acid and dilute nitric acid, describe how you would prepare dry barium sulphate solid
(iii) Study the scheme below and answer the questions which follow:

(b) Write an equation to show how solid \mathbf{S} is heated in process \mathbf{T}
(iv) Copper II chloride solution dissolves in excess ammonia solution to form a deep blue solution. Give the ion responsible for the deep blue solution
(v) A solution of hydrogen chloride is an electrolyte but a solution of hydrogen chloride in methylbenzene in a non-electrolyte. Explain
6. (i) State Faraday's first law of electrolysis
(ii) The diagram below shows a set-up used for the electrolysis of molten Lead bromide:-

State the observations that would be made at the anode and cathode as the electrolysis progressed
7. (a) (i) Describe how you would prepare pure crystals of lead II nitrate in the laboratory from lead II oxide
(ii) Write an equation for the reaction that takes place in (a)(i) above
(b) (i) State what happens when lead II nitrate is strongly heated
(ii) Write an equation for the reaction in $\mathbf{b}(\mathbf{i})$ above
(c) (i) State what is observed when ammonia solution is gradually added to a solution of
lead II nitrate until the alkali is in excess
(ii) Write an ionic equation for the reaction that takes place in (i) above
8. The diagram show an experiment for investigating electrical conduction in lead (II) fluoride. Study it and answer the questions that follow:

(a) On the diagram
(ii) Show the direction of movement of electrons
(iii) Complete the diagram by indicating the condition that is missing but must be present for electrical conduction to take place.
(b) Why is it necessary to leave a gap between the cork and the boiling tube?
(c) State the observations that are expected at the electrodes during electrical conduction and at the experiment
(d) Write equations for the reactions that take place at the electrodes
(e) Why should this experiment be carried out in a fume chamber?
II. The table below shows the electrical conductivity of substance A, B and C

Substance	Solid state	Molten state	Aqueous solution
A	Conducts	Conducts	Not soluble
B	Doesn't conduct	Conducts	Conducts
C	Doesn't conduct	Doesn't conduct	Not soluble

(a) Which one of the substance is likely to be plastic?
(b) Explain why the substance you have given in (a) above behaves in the way it does
(c) Which of the substances is likely to be sodium chloride? Explain
(d) Give the type of structure and bonding that is present in substance \mathbf{A}
9. Study the diagram below and use it to answer the questions that follow:-

(a) Identify electrodes A and B
(b) Name the product formed at the anode
(c) Write the electrode half equation of reaction at electrode \mathbf{A}
10. Explain the differences in electrical conductivity between melted sodium chloride and liquid mercury
11. Below is part of a flow diagram for the contact process:

(a) Name :
I. Liquid \mathbf{Y} \qquad
II. Liquid \mathbf{N}
(b) Write the equation for the reaction taking place in;
I. Chamber \mathbf{Q}
II. Chamber \mathbf{R}
12. In an experiment to investigate the conductivity of substances, a student used the set-up shown below.
The student noted that the bulb did not light.
a) What had been omitted in the set up.
b) Explain why the bulb lights when the omission is corrected.

Carbon and its compounds

1. (a) State one use of graphite
(b) Both graphite and diamond are allotropes of element Carbon. Graphite conducts electricity whereas diamond does not. Explain
2. Below is a simplified scheme of solvay process. Study it and answer the questions that follow:

Ammonia
solution

Gas R

Sodium Carbonate
a) Identify gas R.
b) Write an equation for the process III.
c) Give one use of sodium carbonate.
3. A burning magnesium continues to burn inside a gas jar full of carbon (IV) oxide. Explain.
4. The diagram below shows a jiko when in use

(a) Identify the gas formed at region \mathbf{H}
(b) State and explain the observation made at region \mathbf{G}
5. Study the diagram below and use it to answer the questions that follow.

(a) State the observation made in the combustion tube.
(b) Write an equation for the reaction that took place in the combustion tube
(c) Give one use of \mathbf{P}
6. (a) Identify two substance that are reacted to regenerate ammonia gas in the solvary process
(b) Write down a balanced chemical equation for the reaction above
7. When the oxide of element \mathbf{H} was heated with powdered Carbon, the mixture glowed and Carbon (IV) oxide was formed. When the experiment was repeated using the oxide of element \mathbf{J}, there was no apparent reaction
(a) Suggest one method that can be used to extract element \mathbf{J} from its oxide
(b) Arrange the elements \mathbf{H}, \mathbf{J} and Carbon in order of their decreasing reactivity
8. (i) Diamond and silicon (IV) Oxide have a certain similarity in terms of structure and bonding. State it
(ii) State one use of diamond
9. (a) What is allotropy?
(b) Diamond and graphite are allotropes of Carbon. In terms of structure and bonding explain why graphite conducts electricity but not diamond
10. The diagram below shows a charcoal stove with different regions

Air in

(a) Write an equation for the formation of the product in region \mathbf{B}
(b) How would one avoid the production of the product at B ? Give a reason for your answer
11. Study the diagram below and answer the questions that follow:

(a) Explain the observation made in the combustion tube during the experiment
(b) Write an equation for the reaction that takes place in the combustion tube
12. Diamond and graphite are allotropes of carbon:-
(a) What is meant by allotropes?
(b) How do they differ in their structure and bonding
13. Study the experimental set-up below:

a) State two observations made in the set up as the experiment progressed
b) By use of a chemical equation, explain the changes that occurred in the boiling tube
c) Why was it necessary to burn the excess gas?
14. The diagram below shows the heating curve of a pure substance. Study it and answer the questions that follow:

points \mathbf{A} and \mathbf{C}
(d) The substance under test is definitely not water; Give a reason for this
(e) What would happen to the melting point of this substance if it were contaminated with sodium chloride?
(f) What happens to the temperature between points \mathbf{B} and \mathbf{C} ?
15. Study the set-up below and answer the questions that follow:

(a) (i) Name Gas \mathbf{X}
(ii) State the effect of releasing gas \mathbf{X} to the environment
(b) Write down equations for the reactions taking place in;
(i) Tube I
(ii) Tube II
(iii) Flask
(c) State the observation made in tube III
(d) Write down an equation for the reaction which could be used to generate Carbon (IV) Oxide for the above set up
(e) Name the reagents used to generate gas \mathbf{x} in the laboratory
(f) Complete the diagram above to show how excess gas \mathbf{x} can be collected
16. The figure below shows the stages in the manufacture of sodium carbonate. Study the diagram below and use it to answer the questions that follow.

a) (i) Name three starting materials in the manufacturer of sodium carbonate.
(ii) Which substances are recycled in this process?
(iii) Identify the chambers in which the recycled substances are regenerated.
(iv) Name the substances \mathbf{U} and \mathbf{V}.
b) Give an equation for the reaction which occurs:
(i) In the reaction chamber 1
(ii) When solid V is heated.
(iii) In the reaction chamber 3 .
c) State one commercial use for
(i) Sodium carbonate.
17. The set-up below was used to prepare dry carbon (II) Oxide gas. use it to answer the questions below it:

(a) (1) State two mistakes committed in the set-up arrangement above
(ii) The student produced carbon (IV) oxide gas from the reaction between Lead (II) Carbonate and dilute hydrochloric acid. The gas was produced for a short time and the reaction came to a stop. Explain
(iii) Write the equation for the reactions taking place in the combustion tube and the conical flask:
Combustion tube: \qquad

Conical flask \qquad
(iv) State one use of carbon (IV) Oxide gas apart from fire extinguisher
(v) Give two properties that make carbon (IV) Oxide to be used as fire extinguisher
(b) $\mathrm{PbO}_{(\mathrm{s})}+\mathrm{CO}_{(\mathrm{g})} \longrightarrow \mathrm{Pb}_{(\mathrm{s})}+\mathrm{CO}_{2(\mathrm{~g})}$

Which property of carbon (II) Oxide is demonstrated by the above equation?
(c) Aluminium carbonate does not exist. Give a reason
(d) Ammonium carbonate decomposes when heated. Write a chemical equation to represent this decomposition
18. State and explain the observation made when a piece of charcoal is dropped in a jar containing concentrated nitric (V) acid
19. When Carbon (IV) oxide is passed through lime water, a white precipitate is formed but when excess Carbon (IV) Oxide is passed, the white precipitate disappears;
(a) Explain why the white precipitate disappears
(b) Give an equation for the reaction that takes place in (a) above
20. The set-up below was used to prepare a carbon (II) oxide gas.

(a) Give the name of substance \mathbf{A}
(b) Complete the diagram to show how the gas can be collected
(c)Write the equation for the reaction

Gas laws

1. A sample of unknown compound gas \mathbf{X} is shown by analysis to contain Sulphur and Oxygen. The gas requires 28.3 seconds to diffuse through a small aperture into a vacuum. An identical number of oxygen molecules pass through the same aperture in 20seconds. Determine the molecular mass of gas $\mathrm{X}(\mathrm{O}=16, \mathrm{~S}=32)$
2. (a) State Graham's Law of diffusion
(b) Gas \mathbf{V} takes 10 seconds to diffuse through a distance of one fifth of a meter. Another gas \mathbf{W} takes the same time to diffuse through a distance of 10 cm . if the relative molecular mass of gas \mathbf{V} is 16.0 ; calculate the molecular mass of \mathbf{W}
3. (a) State Charles' Law
(b) The volume of a sample of nitrogen gas at a temperature of 291 K and 1.0×10^{5} Pascals was $3.5 \times 10^{-2} \mathrm{~m}^{3}$. Calculate the temperature at which the volume of the gas would be $2.8 \times 10^{-2} \mathrm{~m}^{3}$ at 1.0×10^{5} pascals.
4. $60 \mathrm{~cm}^{3}$ of oxygen gas diffused through a porous partition in 50 seconds. How long would it take $60 \mathrm{~cm}^{3}$ of sulphur (IV) oxide gas to diffuse through the same partition under the sane conditions? ($\mathrm{S}=32.0, \mathrm{O}=16.0$)
5. (a) State Graham's law of diffusion
(b) $30 \mathrm{~cm}^{3}$ of hydrogen chloride gas diffuses through a porous pot in 20 seconds. How long would it take $42 \mathrm{~cm}^{3}$ of sulphur(IV) oxide gas to diffuse through the same pot under the same conditions $\quad(\mathrm{H}=1 \quad \mathrm{Cl}=35.5 \quad \mathrm{~S}=32 \quad \mathrm{O}=16)$
6. a) State Boyles law
b) Sketch a graph that represents Charles' law
c) A gas occupied a volume of $250 \mathrm{~cm}^{3}$ at $-23^{\circ} \mathrm{C}$ and 1 atmosphere. Determine its volume at $127^{\circ} \mathrm{C}$ when pressure is kept constant.
7. A factory produces Calcium Oxide from Calcium Carbonate as shown in the equation below:-
$\mathrm{CaCO}_{3(\mathrm{~s})} \xrightarrow{\text { Heat }} \mathrm{CaO}_{(\mathrm{s})}+\mathrm{CO}_{2(\mathrm{~g})}$
(a) What volume of Carbon (IV) Oxide would be produced from 1000kg of Calcium

Carbonate at s.t.p $\left(\mathrm{Ca}=40, \mathrm{C}=12, \mathrm{O}=16\right.$, Molar gas volume at s.t.p $\left.=22.4 \mathrm{dm}^{3}\right)$
8. A fixed mass of gas occupies $200 \mathrm{~cm}^{3}$ at a temperature of $23^{\circ} \mathrm{C}$ and pressure of 740 mmHg . Calculate the volume of the gas at $-25^{\circ} \mathrm{C}$ and 780 mmHg pressure
9. Gas \mathbf{K} diffuses through a porous material at a rate of $12 \mathrm{~cm}^{3} \mathrm{~s}^{-1}$ where as \mathbf{S} diffuses through the same material at a rate of $7.5 \mathrm{~cm}^{3} \mathrm{~s}^{-1}$. Given that the molar mass of \mathbf{K} is 16 , calculate the molar mass of \mathbf{S}
10. (a) State Gay Lussac's law
.11. (a) What is the relationship between the rate of diffusion of a gas and its molecular mass?
(b) A sample of Carbon (IV) Oxide takes 200 seconds to diffuse across a porous plug. How long will it take the same amount of Carbon (II) Oxide to diffuse through the same plug? $(\mathrm{C}=12, \mathrm{O}=16)$
12. Below are structures of particles. Use it to answer questions that follow. In each case only electrons in the outermost energy level are shown
key
$\mathrm{P}=$ Proton
$\mathrm{N}=$ Neutron
$\mathrm{X}=$ Electron

(a) Identify the particle which is an anion
(b) Choose a pair of isotopes. Give a reason
13. The figure below shows two gases \mathbf{P} and \mathbf{Q} diffusing from two opposite ends 18 seconds after the experiment

(a) Which of the gases has a lighter density?
(b) Given that the molecular mass of gas \mathbf{Q} is 17, calculate the molecular mass of \mathbf{P}
14. Identify the particles that facilitate the electric conductivity of the following substances
(i) Sodium metal
(ii) Sodium Chloride solution
(iii) Molten Lead Bromide
15. Gas B takes 110 seconds to diffuse through a porous pot, how long will it take for the same amount of ammonia to diffuse under the same conditions of temperature and pressure? $($ RMM of $\mathbf{B}=34 \mathrm{RMM}$ of ammonia $=17$)
16. A gas occupies $5 \mathrm{dm}^{3}$ at a temperature of $-27^{\circ} \mathrm{C}$ and 1 atmosphere pressure. Calculate the volume occupied by the gas at a pressure of 2 atmospheres and a temperature of $127^{\circ} \mathrm{C}$
17. A fixed mass of gas occupies $200 \mathrm{~cm}^{3}$ at a temperature of $23^{\circ} \mathrm{c}$ and a pressure of 740 mm Hg . Calculate the volume of the gas at $-25^{\circ} \mathrm{c}$ and 790 mm Hg pressure.
18. (a) State the Graham's law
(b) $100 \mathrm{~cm}^{3}$ of Carbon (IV) oxide gas diffused through a porous partition in 30 seconds. How long would it take $150 \mathrm{~cm}^{3}$ of Nitrogen (IV) oxide to diffuse through the same partition under the same conditions? $(\mathrm{C}=12.0, \mathrm{~N}=14.0, \mathrm{O}=16.0)$

The mole

1. In an experiment magnesium ribbon was heated in air. The product formed was found to be heavier than the original ribbon. Potassium manganate (VII) was on the other hand, heated in air and product formed was found to be lighter. Explain the differences on the observation made
2. In a filtration experiment $25 \mathrm{~cm}^{3}$ of a solution of Sodium Hydroxide containing 8 g per litre was required for complete neutralization of 0.245 g of a dibasic acid. Calculate the relative molecular mass of the acid $(\mathrm{Na}=23.0, \mathrm{O}=16, \mathrm{H}=1)$
3. D grams of Potassium hydroxide were dissolved is distilled water to make $100 \mathrm{~cm}^{3}$ of solution. $50 \mathrm{~cm}^{3}$ of the solution required $50 \mathrm{~cm}^{3}$ of 2.0 M nitric acid for complete neutralization.
Calculate the mass D of Potassium hydroxide (RFM of $\mathrm{KOH}=56$)

$$
\mathrm{KOH}_{(\mathrm{aq})}+\mathrm{HNO}_{3(\mathrm{aq})} \longrightarrow \mathrm{KNO}_{3(\mathrm{aq})}+\mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})}
$$

4. When excess dilute hydrochloric acid was added to sodium sulphite, $960 \mathrm{~cm}^{3}$ of sulphuric (IV) Oxide gas was produced. Calculate the mass of sodium sulphate that was used. (Molar gas volume $=24000 \mathrm{~cm}^{3}$ and Molar mass of sulphite $=126 \mathrm{~g}$)
5. The equation of the formation of iron (III) chloride is
$2 \mathrm{Fe}_{(\mathrm{s})}+3 \mathrm{Cl}_{2(\mathrm{~g})} \longrightarrow 2 \mathrm{FeCl}_{3}$
Calculate the volume of chlorine which will react with iron to form 0.5 g of Iron (III) chloride. ($\mathrm{Fe}=56 \mathrm{Cl}=35 \cdot 5$). Molar gas volume at $298 \mathrm{~K}=24 \mathrm{dm}^{3}$)
6. $\quad 15.0 \mathrm{~cm}^{3}$ of ethanoic acid $\left(\mathrm{CH}_{3} \mathrm{COOH}\right)$ was dissolved in water to make $500 \mathrm{~cm}^{3}$ of solution. Calculate the concentration of the solution in moles per litre
[$\mathrm{C}=12, \mathrm{H}=1, \mathrm{O}=16$, density of ethanoic acid is $1.05 \mathrm{~g} / \mathrm{cm}^{3}$]
7. When 1.675 g of hydrated sodium carbonate was reacted with excess hydrochloric acid, the volume carbon (IV) oxide gas obtained at room temperature and pressure was $150 \mathrm{~cm}^{3}$. Calculate the number of moles of water of crystallization in one mole of hydrated sodium carbonate:- $\quad\left(\mathrm{Na}=23, \mathrm{H}=1, \mathrm{C}=12, \mathrm{O}=16\right.$, MGV at R.T. $\left.\mathrm{P}=24000 \mathrm{~cm}^{3}\right)$
8. How many chloride ions are present in 1.7 g of magnesium chloride crystals? (Avogadro's constant $=6.0 \times 10^{23}, \mathrm{Mg}=24, \mathrm{Cl}=35.5$)
9. $\quad 0.84 \mathrm{~g}$ of aluminium reacted completely with chlorine gas. Calculate the volume of chlorine gas used $\quad\left(\right.$ Molar gas volume is $24 \mathrm{dm}^{3}, \mathrm{Al}=27$)
10. 6.4 g of a mixture of sodium carbonate and sodium chloride was dissolved in water to make $50 \mathrm{~cm}^{3}$ solution. $25 \mathrm{~cm}^{3}$ of the solution was neutralized by $40 \mathrm{~cm}^{3}$ of $0.1 \mathrm{M} \mathrm{HCl}_{\text {(aq). }}$. What is he percentage of sodium chloride in the solid mixture?

An unknown mass, \mathbf{x}, of anhydrous potassium carbonate was dissolved in water and the solution made up to $200 \mathrm{~cm}^{3} .25 \mathrm{~cm}^{3}$ of this solution required $18 \mathrm{~cm}^{3}$ of 0.22 M nitric (V) acid for complete neutralization. Determine the value of $\mathbf{x} .(\mathrm{K}=39.0, \mathrm{C}=12.0, \mathrm{O}=16.0)$
12. Calculate the volume of oxygen gas used during the burning of magnesium $(\mathrm{O}=16$, molar gas volume $=24,000 \mathrm{~cm}^{3}$ at room temperature)
13. A hydrated salt has the following composition by mass. Iron 20.2%, oxygen 23.0%, sulphur 11.5%, water 45.3%
i) Determine the formula of the hydrated salt $(\mathrm{Fe}=56, \mathrm{~S}=32, \mathrm{O}=16, \mathrm{H}=11)$
ii) 6.95 g of the hydrated salt in $\mathbf{c}(\mathbf{i})$ above were dissolved in distilled water and the total
volume made to $250 \mathrm{~cm}^{3}$ of solution. Calculate the concentration of the resulting salt solution in moles per litre. (Given that the molecula mass of the salt is 278)
14. (i) Lead (II) ions react with iodide ions according to the equation;
$\mathrm{Pb}^{2+}{ }_{(\mathrm{aq})}+2 \mathrm{I}_{(\mathrm{aq})}^{-} \longrightarrow \mathrm{PbI}_{2(\mathrm{~s})}$
$300 \mathrm{~cm}^{3}$ of a 0.1 m solution of iodide ions was added to a solution containing excess lead II ions.
Calculate the mass in grams of lead II iodide formed
(ii) Identify the colour of the product formed in (d) (i)
15. a) The diagram below represents part of the structure of sodium chloride crystal

The position of one of the sodium ions in the crystal is shown as;
i) On the diagram, mark the positions of the other three sodium ions
ii) The melting and boiling points of sodium chloride are 801 C and 1413 C respectively. Explain why sodium chloride does not conduct electricity at 25 C , but does not at temperatures between 801 C and 1413 C
b) Give a reason why ammonia gas is highly soluble in water
c) The structure of ammonium ion is shown below;

Name the type of bond represented in the diagram by $\mathrm{N} \longrightarrow \mathrm{H}$
d) Carbon exists in different crystalline forms. Some of these forms were recently discovered in soot and are called fullerenes
i) What name is given to different crystalline forms of the same element
ii) Fullerenes dissolve in methylbenzene while the other forms of carbon do not. Given that soot is a mixture of fullerenes and other solid forms of carbon, describe how crystals of fullerenes can be obtained from soot
iii) The relative molecular mass of one of the fullerenes is 720 . What is the molecular mass of this fullerene
16. Calculate the volume of oxygen gas used during the burning of magnesium $(\mathrm{O}=16$, molar gas volume $=24,000 \mathrm{~cm}^{3}$ at room temperature)
17. Study the information in the table below and answer the questions that follow

Number of carbon atoms per molecule	Relative molecular mass of the hydrocarbon
2	28
3	42
4	56

i) Write the general formula of the hydrocarbons in the table
ii) Predict the relative atomic mass of the hydrocarbons with 5 carbon atoms
iii) Determine the relative atomic mass of the hydrocarbon in (ii) above and draw its structural formula ($\mathrm{H}=1.0, \mathrm{C}=12.0$)
18. A hydrated salt has the following composition by mass. Iron 20.2%, oxygen 23.0%, sulphur 11.5%, water 45.3%
i) Determine the formula of the hydrated salt $(\mathrm{Fe}=56, \mathrm{~S}=32, \mathrm{O}=16, \mathrm{H}=11)$
ii) 6.95 g of the hydrated salt in $\mathbf{c}(\mathbf{i})$ above were dissolved in distilled water and the total volume made to $250 \mathrm{~cm}^{3}$ of solution. Calculate the concentration of the resulting salt solution in moles per litre. (Given that the molecula mass of the salt is 278)
19. a) Galvanized iron sheets are made by dipping the sheets in molten Zinc.
i) Explain how zinc protects iron from rusting
ii) Name the process applied in galvanization of iron with zinc
20. Calculate the percentage of copper in 1.0 g of the alloy
($\mathrm{Cu}=63.5 \mathrm{Mg}=24$)
21. A factory uses nitric acid and ammonia gas as the only reactant for the preparation of the fertilizer if the daily production of the fertilizer is 4800 kg . Calculate the mass of ammonia gas used daily
($\mathrm{N}=14.0, \mathrm{O}=16.0, \mathrm{H}=1.0$)
22. Calculate the volume of sulphur (VI) oxide gas that would be required to produce 178 kg of oleum in step 3 molar gas volume at s.t. $p=22.4$ litres $\mathrm{H}=1 \mathrm{O}=16 \mathrm{~S}=32$
23. Using the answer in d (ii) above, determine:
i) The volume of 1 M nitric acid that would react completely with one mole of copper ($\mathrm{Cu}=63.5$)
ii) The volume of Nitrogen (IV) oxide gas produced when one mole of copper reacts with excess 1 M nitric acid at room temperature
24. A sample of biogas contains 35.2% by mass of methane. A biogas cylinder contains 5.0 kg of the gas. Calculate:
(i) Number of moles of methane in the cylinder (Molar mass of methane $=16$)
(ii) Total volume of carbon (IV) oxide produced by the combustion of methane in the cylinder (Molar gas volume $=24.0 \mathrm{dm}^{3}$ at room temperature and pressure)
25. $\quad 0.84 \mathrm{~g}$ of aluminium were reacted completely with chlorine gas. Calculate the volume of chlorine gas used. (Molar gas volume is $24 \mathrm{dm}^{3}, \mathrm{Al}=27$)
26. 3.52 g of Carbon (IV) Oxide and 1.40 g of water are produced when a mass of a hydrocarbon is completely burnt in oxygen. Determine the empirical formula of the hydrocarbon; $(\mathrm{H}=1, \mathrm{C}=12, \mathrm{O}=16)$
27. Calculate the number of water molecules when $34.8 \mathrm{~g} \mathrm{Na}_{2} \mathrm{CO}_{3} \mathrm{xH}_{2} \mathrm{O}$ is heated and 15.9 g of anhydrous $\mathrm{Na}_{2} \mathrm{CO}_{3}$ obtained ($\mathrm{H}=1, \mathrm{O}=16, \mathrm{Na}=23, \mathrm{C}=12$)
28. A weighed sample of crystallined sodium carbonate $\left(\mathrm{Na}_{2} \mathrm{CO}_{3} \mathrm{nH}_{2} \mathrm{O}\right)$ was heated in a crucible until there was no further change in mass. The mass of the sample reduced by 14.5%. Calculate the number of moles (n) of water of crystallization $(\mathrm{Na}=23, \mathrm{O}=16, \mathrm{C}=12, \mathrm{H}=1)$
29. In a reaction $20 \mathrm{~cm}^{3}$ of 0.1 M Sodium Carbonate completely reacted with $13 \mathrm{~cm}^{3}$ of dilute
sulphuric acid. Find the molarity of the sulphuric acid used.
30. An organic compound P contains 68.9% carbon, 13.5% hydrogen and 21.6% oxygen.

The relative formula mass of \mathbf{p} is 74 . Determine its molecular formula. [$\mathrm{C}=12, \mathrm{H}=1,0=16$]
31. Campers GAZ cylinder contains about $1.12 \mathrm{dm}^{3}$ of butane measured at 0° and 1 atm . Given that 25% of heat is lost, what is the maximum volume of water at room temperature which can be boiled to $100^{\circ} \mathrm{C}$ in order to make some coffee?
$\mathrm{C}_{4} \mathrm{H}_{10(\mathrm{~g})}+61 / 2 \mathrm{O}_{2(\mathrm{~g})} \quad 4 \mathrm{CO}_{2(\mathrm{~g})}+5 \mathrm{H}_{2} \mathrm{O}_{(1)} ; \Delta \mathrm{H}^{\theta}=-3,000 \mathrm{KJmol}^{-1}$
(Specific heat capacity of water $=4.2 \mathrm{~J} \mathrm{~g}^{-1} \mathrm{C}^{-0 \mathrm{c}}$, density of water $1 \mathrm{gcm}^{-3} \mathrm{Molar}$ gas volume 22.41 at s.t.p)
32. An aqueous solution containing anhydrous sodium carbonate was prepared by dissolving 19.6 g of the salt in $250 \mathrm{~cm}^{3}$ of distilled. Calculate the volume of $\mathbf{2 M}$ of magnesium chloride solution required to precipitate all the carbonate ions in the solution.

$$
(\mathrm{Na}=23, \mathrm{C}=12 ; \mathrm{O}=16 ; \mathrm{Mg}=24 ; \mathrm{Cl}=35.5)
$$

33. 10.08 g of ethanedioic acid $\left(\mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4} \times \mathrm{H}_{2} \mathrm{O}\right)$ crystals were dissolved in water and made to $1 \mathrm{dm}^{3}$ solution. $25.0 \mathrm{~cm}^{3}$ of this solution was completely neutralized by $20 \mathrm{~cm}^{3}$ of 0.2 M sodium hydroxide solution.

Calculate

i) Molarity of the acid
ii)the value of \mathbf{x} in $\mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4} \mathbf{x} \mathrm{H}_{2} \mathrm{O}$ acid
34. 1.6 g of magnesium metal is reacted with excess hydrochloric acid. Calculate the volume of hydrogen gas produced
(Molar gas volume at $\mathrm{stp}=22.4 \mathrm{dm}^{3} \quad \mathrm{Mg}=24$)
35. 60 litres of sulphur(IV) oxide were made to react with 40 litres of oxygen.
a) Which reactant was in excess and by how much?
b) What is the volume of the product?
36. During welding of cracked railway lines by thermite 12.0 g of oxide of iron is reduced by aluminium to 8.40 g of iron. Determine the empirical formula of the oxide ($\mathrm{Fe}=56.0, \mathrm{O}=16.0$)

Organic chemistry 1

1. Use the flow chart below to answer the questions that follow:

(a) What observation would be made in process \mathbf{K} ?
(b) Name another conditions necessary for process \mathbf{J} to take place
(c) Give the name of substance \mathbf{V}
2. But-z-ene undergoes hydrogenation according to the equation given below

(a) Name the product formed when but-z-ene reacts with hydrogen gas
(b) State one industrial use of hydrogenation
3. Write the structures of the following compounds:-
(a) But-2-yne
(b) 2,2-dimethylpropane
4. a)What is meant by Isomerism?
b) Draw and name two Isomers of butane.
5. Study the information in the table below and answer the questions that follow:

Ion	No. of protons	No. of electrons
P^{3-}	7	10
Q^{+}	19	18
R^{2+}	12	10

a) Write the electron arrangement of element P.
b) Give the group and period to which elements Q and R respectively.

Q
R \qquad
6. Compound W reacted with chlorine to form compound \mathbf{X} only. The structural formula of \mathbf{X} is shown below:

(a) Give the structural formula and name of compound \mathbf{W}
(b) Name compound \mathbf{X}
7. In petrol chemical industries, long chain alkanes are broken down in to simpler substances in a process called cracking
a) Why is cracking necessary?
b) State the two conditions required in cracking
c) Draw the structure of 1-chloro-2, 2-dimethylpropane
8. In a reaction an alcohol \mathbf{K} was converted to hex-1-ene
a) Name reagent and condition necessary for the reaction in $\mathbf{6}$ (a) above to occur
9. (a) Give the IUPAC systematic names of compounds \mathbf{Q} and \mathbf{R}

Q: $\mathrm{CH}_{2} \mathrm{CHClCHICH}_{2} \mathrm{CH}_{3}$
R: $\mathrm{CH}_{3} \mathrm{CHClCH}_{2} \mathrm{ClCH}_{3}$
(b) The organic compounds \mathbf{Q} and \mathbf{R} in (b) above, are formed when one mole of hydrocarbon \mathbf{N} reacts with two moles of hydrogen chloride gas;
(i) Structural formula of \mathbf{N}
(ii) The IUPAC systematic name of \mathbf{N}
10. Distinguish between the isotopes and isomers
11. Polymerisation of ethene takes place as shown in the equation below

Mocks Topical Analysis

Name the type of polymerisation undergone by ethene in the reaction above
12. (a) State Gay Lussac's law
13. $10 \mathrm{~cm}^{3}$ of methane $\left(\mathrm{CH}_{4}\right)$ gas is exploded with $150 \mathrm{~cm}^{3}$ of air containing 20% oxygen and 80% nitrogen. The products were allowed to cool to room temperature. What will be the total volume of the gases at the end of the reaction?
14. Give the open structures of:-
(i) 3-chlorohex-l-yne
(ii) $\mathrm{CH}_{3} \mathrm{OH}$
15. A fixed mass of gas occupies $105 \mathrm{~cm}^{3}$ at $-14^{\circ} \mathrm{C}$ and 650 mmHg pressure. At what temperature in degrees Celsius will it have a volume of $15 \mathrm{~cm}^{3}$ if the pressure is adjusted to 690 mmHg pressure?
16. Write an equation for the reaction that takes place between ethene and concentrated Sulphuric (VI) acid
17. Petroleum (crude oil) is a mixture of several compounds which are separated in a Changamwe refinery by means of apparatus as shown below:

(a) (i) What is the name of the apparatus above
(ii) What is the name of the process which is used in separation of crude oil
(iii) What physical property of compounds in the mixture does the separation depend
(iv) Use the letter \mathbf{A} to \mathbf{G} to describe where the following could be formed:.
I. The fraction that represents gases
II. The fraction that represents the largest molecules
III. The fraction that represents liquids with the lowest boiling points
(b) State the use of product produce at
G.
C.
(c) Draw apparatus for the separation of the product produce at \mathbf{D} and water
18. Study the flow chart below and answer the questions that follow:-

(i) Give the name of the substance $\mathrm{CH} \equiv \mathrm{CH}$ \qquad
(ii) To which group of hydrocarbons does the substance in (i) above belong?
(iii) Give two reagents that can be used to prepare the substance named in (i) above
(iv) State two physical properties of the substances in (i) above
(v) Give the names to the process in step I and 2
(vi) Write an equation to show how substance \mathbf{A} is formed
(iv) Identify substance B
19. The diagram below represents a large-scale fractional distillation plant used to separate the components $\mathbf{A}, \mathbf{B}, \mathbf{C}$ and \mathbf{D} in a mixture

(a) The components have the following average relative molecular masses not necessarily in that order; $282,184,44$ and 128.
(a) (i) What is the physical state of \mathbf{B} at the position marked \mathbf{Q} ?
(ii) Which component has an average relative molecular mass of 128? Explain
(iii) State with a reason whether \mathbf{C} is pure or impure
(iv) Explain how the mixture is separated into its components
(v) Name two naturally occurring mixtures that are separated using this process
20. The diagram below represents a large-scale fractional distillation plant used to separate the components $\mathbf{A}, \mathbf{B}, \mathbf{C}$ and \mathbf{D} in a mixture

(a) The components have the following average relative molecular masses not necessarily in that order; 282, 184, 44 and 128.
(a) (i) What is the physical state of \mathbf{B} at the position marked \mathbf{Q} ?
(ii) Which component has an average relative molecular mass of 128? Explain
(iii) State with a reason whether \mathbf{C} is pure or impure
(iv) Explain how the mixture is separated into its components
(v) Name two naturally occurring mixtures that are separated using this process
21. a) The table below gives information about the major constituents of crude oil. Study it and answer the questions that follow:

Constituent	Boiling point $^{\circ} \mathbf{C}$
Gases	Below 40
Petrol	$40-175$
Kerosene	$175-250$
Diesel	$250-350$
Lubricating oil	$350-400$
Bitumen	Above 400

i) Which of the constituents of crude has molecules with the highest number of carbon atoms? Explain
ii) Name the process you would use to separate a mixture of petrol and diesel and explain how the separation takes place
iii) Explain why the constituents of crude oil do not have a sharp boiling point
iv) Name the gas that is likely to be a constituent of crude oil and write its formula
b) i) What condition could cause a poisonous gas to be formed when kerosene is burnt. Explain
ii) Give one use of bitumen
22. (a) The set-up below was used to prepare ethyne gas

(i) Identify solid \mathbf{E}
(ii) Complete the diagram to show how the gas can be collected
(iii) Write an equation to show how the gas is formed
(iv) Complete the equation below:

$$
\mathrm{C}_{2} \mathrm{H}_{2}+2 \mathrm{I}_{2}
$$

(v) What is the role of sand in the experiment?
(b) (i) Explain the meaning of esterification
(ii) Complete the equation below :
$\mathrm{CH}_{3} \mathrm{COOCH}_{3}+\mathrm{H}_{2} \mathrm{O}$
(iii) What type of reaction is occurring above
(c) Given the reaction:
$\mathrm{C}_{8} \mathrm{H}_{18} \xrightarrow{\text { Solid } \mathbf{F}} \mathrm{N}+\mathrm{C}_{2} \mathrm{H}_{4}$
(i) Identify substance:
F.
(ii) Name the process represented above?
(d) Give one use of substance \mathbf{N}
23.

(i) Name another source of hydrogen apart from electrolysis of water
(ii) What conditions are necessary for step III to occur?
(iii) Write the equation for the formation of colourless gas \mathbf{Q}
(iv) Give one use of nitric (V) acid
(b) State and explain the observations that would be made if a sample of copper metal is heated with concentrated nitric (V) acid
24. (a) Give the systematic names of the following compounds:-
(i)

(ii) $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{C} \equiv \mathrm{CH}$
(b) State the observations made when buton-l-ol reacts with:-
(i) Acidified potassium dichromate (VI) solution
(ii) Potassium metal
(c) Ethanol obtained from glucose can be converted to ethene as shown below:-
$\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6} \xrightarrow{\text { Step I }} \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH} \xrightarrow{\text { Step II }} \mathrm{CH}_{2}=\mathrm{CH}_{2}$
Name and describe the processes that take place in steps I and II
(d) Compounds \mathbf{A} and \mathbf{B} have the same molecular formula $\mathrm{C}_{3} \mathrm{H}_{6} \mathrm{O}_{2}$. Compound \mathbf{A} librates Carbon (IV) Oxide on addition of aqueous sodium carbonate while compound \mathbf{B} does not. Compound B has a sweet smell. Draw the possible structures of:-
(e) Give two ways how the disposal of polymers such as polychloroethene by burning pollutes the environment
25. (a) Name the following compounds $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}$

Use the flow chart below to answer the questions that follow:-
Mocks Topical Analysis eeducationgroup.com

(b) (i) Name the following :-
I. Gas \mathbf{S}
()
II. Gas \mathbf{P}
III. J
(ii) Name the processes involved in the following steps:
I. Step I
II. Step II
III. Step III
(iii) Write a chemical equation for the complete combustion of substance \mathbf{M}
(iv) Name the condition and reagent in step III Condition
Reagent
(v) Calculate the mass of salt \mathbf{R} that would be formed by using 21.9 tonnes of \mathbf{N} when it reacts with excess sodium hydroxide ($\mathrm{C}=12.0 \quad \mathrm{H}=1.0 \quad \mathrm{Na}=23$)
(vi) Draw the structure of polymer \mathbf{K}
II. State one use of the above polymer
(c) (i) Name the class to which the following cleansing agents belong:-
i)
$\mathrm{R}-\mathrm{COONa}^{+}$
(ii)

II. Which cleaning agent above is not environmental friendly? Explain
26. The molecular formula of a hydrocarbon is $\mathrm{C}_{6} \mathrm{H}_{14}$. The hydrocarbon can be converted into two other hydrocarbon as shown by the equation below:
$\mathrm{C}_{6} \mathrm{H}_{14} \longrightarrow \mathrm{C}_{2} \mathrm{H}_{6}+\mathbf{X}$
Mocks Topical Analysis eeducationgroup.com
(i) Name and draw the possible structural formula of \mathbf{X}
(ii) State and explain the observations that would be made if a few drops of bromine water were added to a sample of \mathbf{X}
(iii) Write an equation for the complete combustion of $\mathrm{C}_{3} \mathrm{H}_{8}$
27. (a) Give the names of the following
(i) $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{3}$
(ii) $\mathrm{CH}_{3} \mathrm{CCCH}_{3}$
(b) Ethene is used in making polyethene bag in a process called polymerization
(i) Name the type of polymer that is formed when ethane polymerise
(ii) Describe a simple chemical test that can be used to identify ethane gas in the laboratory
(c) Study the information in the table below and answer the questions that follow:-

No. of carbon atoms	R.M.M of the Hydrocarbon
2	28
3	42
4	56

i. Write the general formula of the hydrocarbons in the table above
ii. Determine the molecular of a hydrocarbon with 5 carbon atoms and draw its structural formula

Molecular formula
Structural formula
(d) Study the scheme below and answer the questions that follow

Step I
Step II
Step IV
(ii) Write an equation for the complete combustion of $\mathrm{CH} \equiv \mathrm{CH}$
(iii) Give two uses of CH_{4}
28. Give the systematic names of the following compounds;

29. Study the data given in the following table and answer the questions that follow. The letters are not the actual symbols of elements.

Element	Number of protons	Melting point	Bpt $^{\mathbf{}} \mathbf{C}$
\mathbf{A}	11	98	890
\mathbf{B}	12	650	1110
\mathbf{C}	13	60	2470
\mathbf{D}	14	1410	2360
\mathbf{E}	15	442	280
		590	
\mathbf{F}	16	113	445

		119	
\mathbf{G}	17	-101	-35
\mathbf{H}	18	-189	-186

(i) State and explain the trend in melting point in $\mathbf{A} \mathbf{B C}$
(ii) Explain why the melting point and boiling points of element \mathbf{D} is the highest
(iii) Explain why the element represented by letter \mathbf{E} has two melting point values
(iv) Write down the chemical formula between element \mathbf{C} and sulphate ions
(v) Name the chemical family in which \mathbf{H} belong and state one use of the element
(vi) What is the nature of the oxide of the elements represented by letters \mathbf{C} and \mathbf{F} ?
30. a) The table below gives information about the major constituents of crude oil. Study it and answer the questions that follow:

Constituent	Boiling point ${ }^{\circ} \mathbf{C}$
Gases	Below 40
Petrol	$40-175$
Kerosene	$175-250$
Diesel	$250-350$
Lubricating oil	$350-400$
Bitumen	Above 400

i) Which of the constituents of crude has molecules with the highest number of carbon atoms? Explain
ii) Name the process you would use to separate a mixture of petrol and diesel and explain how the separation takes place
iii) Explain why the constituents of crude oil do not have a sharp boiling point
iv) Name the gas that is likely to be a constituent of crude oil and write its formula
b) i) What condition could cause a poisonous gas to be formed when kerosene is burnt.

Explain
ii) Give one use of bitumen
31. Study the information in the table below and answer the questions that follow

Number of carbon atoms per molecule	Relative molecular mass of the hydrocarbon
2	28
3	42
4	56

i) Write the general formula of the hydrocarbons in the table
ii) Predict the relative atomic mass of the hydrocarbons with 5 carbon atoms
iii) Determine the relative atomic mass of the hydrocarbon in (ii) above and draw its structural formula ($\mathrm{H}=1.0, \mathrm{C}=12.0$)
32. Substance "M" with a general formula $\mathrm{C}_{2} \mathrm{Hy}$ burnt in chlorine gas with a red flame producing a cloud of black specks and colourless gas \mathbf{G}.
(a) State the collective name for compounds which ' \mathbf{M} ' belongs
(b) With reason, state the identity of the black specks and colour gas "G".
33. 2.63 g of a solution of sodium chloride at $20.0^{\circ} \mathrm{C}$ was reacted with silver nitrate. After filtration, washing and drying, 2.36 g of silver chloride was obtained. Determine the solubility of sodium chloride at $20.0^{\circ} \mathrm{C} .(\mathrm{Na}=23, \mathrm{Cl}=35.5, \mathrm{Ag}=108)$
(b) Determine the number of moles of carbon (IV) Oxide gas produced when sodium carbonate reacted with dilute sulphuric (VI) acid (Molar gas volume $=24 \mathrm{dm}^{3}$)
34. Write down all the isomers of but-z-ene and give their IUPAC names
35. (a) A hydrocarbon compound \mathbf{Z} decolourizes bromine liquid in the presence of light but does not decolourize acidified potassium manganate (VII). Name and draw the structural formula of the eighth member of this homologous series
36. (a) What is meant by isomerism?
(b) Draw and name two isomers of Butyne

Nitrogen and its compounds

1. The apparatus below was set-up to show the catalytic oxidation of ammonia. Study the diagram and answer the questions that follow:-

Dry $\mathrm{NH}_{3}(\mathrm{~g})$
(i) Write an equation for the reaction that takes place

(ii) Why is it necessary to have a hot nichrome wire in the gas jar?
(iii) Write the formula of the complex ion formed when excess ammonia gas is passed through a solution containing Zn^{2+} ions
2. The diagram below shows the catalytic oxidation of ammonia gas. Use it to answer the questions that follow:-

(a) What metal could $\operatorname{rod} \mathbf{M}$ be made of?
(b) State and explain two observations made inside the conical flask
3. Ammonia gas is prepared in the laboratory by the action of an alkali on an ammonium salt. A student wanted to prepare a sample of ammonia gas in the laboratory.

(a) Give one alkali that can be used in the above experiment
(b) Write an equation for the reaction that takes place in the above experiment
4. (a) Explain the importance of the high percentage of nitrogen in air
(b) Why is nitrogen used for storage of semen in artificial insemination?
5. The diagram below is used in preparation of a gas in the laboratory. Answer the questions that follow;

(a) Name gas \mathbf{X}
(b) State one physical property which makes it possible for the gas to be collected as shown*
(c) State one commercial use of gas \mathbf{X}

6 Study the flow charts below and use them to answer the questions that follow:

(i) Solution \mathbf{A}
(ii) Solution B
(b) State and explain the observations made when a sample of dry white precipitate \mathbf{B} is heated in a test-tube
7. The set-up below is an arrangement showing how metals react with nitrogen (IV) oxide.

Study it and answer the questions that follow:-
 Give a reason for this
(b) State the observations that would be made at the end of the experiment in the combustion tube
(c) Name gas \mathbf{N}
8. (a) In haber process hydrogen and nitrogen react in the presence of finely divided iron catalyst.

Explain why the catalyst is finely divided
(b) A mixture of $\mathrm{N}_{2}, \mathrm{H}_{2}$ and NH_{3} was bubbled through 0.2 M hydrochloric acid solution.

The final concentration of the acid was found to be 0.1 M . Give explanation
9. In an experiment, a few drops of concentrated nitric acid were added to aqueous iron II sulphate in a test-tube. Excess ammonia solution was then added to the mixture
(a) State the observations that were made when:-
(i) Concentrated nitric acid was added to aqueous iron (II) sulphate
(ii) Excess ammonia was added to the mixture
(b) Write an ionic equation for the reaction which occurred in a (ii) above
10. The chart below shows a summary for the preparation of nitrogen gas from air

(a) What is the purpose of the sodium hydroxide?
(b) Write an equation for the reaction taking place in chamber II
(c) The nitrogen gas obtained is not pure. Explain
11. Dilute nitric acid is added to excess green solid. Effervescence occurs and a blue solution is formed. When excess ammonia solution is added to a sample of the solution a deep blue solution is formed
(a) Identify the anion and cation in the green solid:
(b) Write an ionic equation for the reaction forming deep blue solution
12. The diagram below is a set-up for preparation and collection of a gas. Study it answer the questions that follow:

(i) Identify gas \mathbf{X}
(ii) Write an equation for the formation of gas \mathbf{X}
(iii) What precaution should be observed when preparing gas \mathbf{X} by the above method?
(iv) Describe the suitable drying agent for gas \mathbf{X}
(v) How can one confirm that the gas collected is gas \mathbf{X} ?
(vi) State two physical properties of gas \mathbf{X}
(b) The diagram below is a set-up used in preparation of ammonia solution. Study it and answer the questions that follow

(i) What is the purpose of the filter funnel in the set-up above?
(ii) What would happen if a delivery tube was used in place of the filter funnel?
(iii) What observation would be made on litmus paper placed into the solution in the beaker at the end of the experiment?
13. The following flow chart shows the industrial manufacture of Nitric (V) acid.
a) Identify substance $\mathbf{B}, \mathbf{C}, \mathbf{E}$ and \mathbf{F}.

c) State what takes place in chamber \mathbf{D}.
d) $60-65 \%$ nitric (V) acid is produced in the absorption chamber. Describe how the acid can be concentrated.
e) State why nitric (V) acid is stored in dark bottles.
f) Copper reacts with nitric (V) acid and not hydrochloric acid. Explain.
14. The flow chart below illustrates two industrial processes, Haber process and the Contact process:

(i) Give the name of the process by which air is seperated into oxygen and nitrogen
(ii) Apart from oxygen and nitrogen gases produced from process (a)(i) Name one other gas produced
(b) Name the substances represented by the letters $\mathbf{A}, \mathbf{B}, \mathbf{C}$ and \mathbf{E}
(c) Name the catalysts used in:
(i) Haber Process
(ii) Contact Process
(d) Explain the role of the catalysts in both the Haber and the Contact processes
(e) Write a chemical equation for the formation of compound \mathbf{B}
(f) Calculate the percentage by mass of the nitrogen present in compound \mathbf{D}
(g) Give one major use of compound \mathbf{E}
15. The diagram below represents a set-up used to obtain nitrogen from air. Study it and answer the questions that follow:-

(i) Name solid \mathbf{Q}
(ii) What is the purpose of sodium hydroxide
(iii) Write an equation for the reaction which took place in tube " \mathbf{P} "
(iv) Give the name of one impurity in the nitrogen gas obtained
(v) Give a reason why liquid nitrogen is used for storage of semen for artificial insemination
(b) The set-up below was used to prepare nitric acid.

(i) Give the name of liquid ' \mathbf{R} '
(ii) Explain the following:-
(a) Nitric acid is stored in dark bottles
(b) The reaction between copper metal with 50% nitric acid in an open tube gives brown fumes
16. Study the flow chart below and answer the questions which follow:

(i) Give one source of the following raw materials
(s)
(a) Nitrogen gas
(b) Hydrogen gas
(ii) State three conditions required in process I
(iii) Name: catalyst \mathbf{P}

Gas M
(iv) Write chemical equations for;
(a) Formation of gas \mathbf{M}
(b) The reaction in the absorption tower
(v) Give two reasons why step IV is necessary
(vi) Describe how you would test if a given liquid is a nitrate
(vii) Give three uses of nitric acid
17. The diagram below shows the apparatus for the laboratory preparation of one of the oxides of Nitrogen

a) (i) Name the gas being produced
(ii) Write the equation for the thermal decomposition of ammonium Nitrate
(iii) The gas is being collected over hot water. Explain
(iv) State and explain the observations made when burning sulphur is lowered into a
gas jar containing the gas
(b) (i) Name the catalyst used during catalytic oxidation of ammonia
(ii) Nitrogen (IV) oxide is the final product during catalytic oxidation of ammonia. Write a chemical equation for its formation
(iii) State two physical differences between Nitrogen (I) oxide and Nitrogen (IV) Oxide
(c) Nitric acid is prepared in the laboratory by action of concentrated sulphuric (VI) acid on a suitable Nitrate and distilling off the Nitric acid, in all glass apparatus.
(i) Why must the apparatus be made of glass?
(ii) Hot concentrated Nitric acid reacts with sulphur in the equation below:-

$$
\mathrm{S}_{(\mathrm{s})}+6 \mathrm{HNO}_{3(\mathrm{aq})} \longrightarrow \mathrm{H}_{2} \mathrm{SO}_{3(\mathrm{aq})}+6 \mathrm{NO}_{2(\mathrm{~g})}+2 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})}
$$

(I) Identify the species :-

Oxidised
Reduced \qquad
(II) Pure nitric acid is colourless but the product during its preparation is usually pale yellow. Explain
18. a) Describe the process by which oxygen can be obtained from air on large scale
b) The flow chart below shows the industrial manufacture of nitric (V) acid

i) Identify substances \mathbf{X} and \mathbf{Y}
ii) Write an equation for the reaction taking place in the absorption tower
iii) The concentration of the acid obtained is about 60%. How can this concentration be increased to about 65% ?
iv) A factory uses nitric (V) acid and ammonia as the only reactants for the production of a fertilizer.

If a mass of 9600 kg of fertilizer was produced, calculate the mass of ammonia gas needed $(\mathrm{N}=14, \quad \mathrm{H}=1, \quad \mathrm{O}=16)$

(a) Name another substance which can be used instead of sodium hydroxide
(b) What is the function of filters?
(c) Identify the substance removed at step III
(d) At what temperature does liquid oxygen distil?
(e) Identify process \mathbf{X}
(f) Describe how process \mathbf{X} occurs
(g) I. State one industrial use of Nitrogen
(II) Air is a mixture but not a compound. Give two reasons
20. Using chemical equations show the bleaching actions of chlorine and sulphur(IV)oxide
21. The diagram below represents an in complete set-up for preparation of a dry sample of gas R

a) Complete the set-up to show how a dry sample of gas \mathbf{R} is collected
b) Write a chemical equation for the reaction that produces gas \mathbf{R}
22. The diagram below was used to investigate the reaction between nitrogen(I)oxide and copper turnings. Study it and answer the questions that follow:

a) What has been omitted in the set-up? (show it on the diagram)
b) Write a chemical equation for the reaction that took place in the combustion tube
c) State one use of gas \mathbf{P}
23. When sulphur powder is heated to over $400^{\circ} \mathrm{C}$ the following changes are observed:At $113^{\circ} \mathrm{C}$ it melts into light brown liquid. The liquid then darkens to become reddish-brown and very viscous at $160^{\circ} \mathrm{C}$. Above $160^{\circ} \mathrm{C}$ the liquid becomes almost black. At the boiling point the liquid becomes mobile. Explain these observations
24. Concentrated sodium chloride (Brine) was electrolysed using platinum electrodes. What would be the difference in terms of products at each electrode if dilute sodium chloride solution was used in place of brine. Explain
25. (i) Nitrogen (I) Oxide supports, combustion of burning charcoal. Write an equation to show this reaction
(ii) Ammonium nitrate can be heated to give off nitrogen (I) Oxide. However, a mixture of $\mathrm{NH}_{4} \mathrm{Cl}$ and NaNO_{3} is preferred. Explain
(iii) Ammonia turns wet red litmus paper blue. Which ion is responsible for this reaction
26. Study the scheme below and answer the questions that follow:

(a) Name solids \mathbf{E} and \mathbf{F}
(b) Write down a balanced equation for the reactions that lead to formation of solid \mathbf{F}
27. When a few drops of aqueous ammonia were added to a colourless solution \mathbf{X}, a white precipitate was formed. On addition of more aqueous ammonia, the white precipitate dissolved to a colourless solution \mathbf{Q}
(a) Name the white precipitate formed
(b) Write formula of the complex ion present in the colourless solution \mathbf{Q}
(c) Write an ionic equation for the formation of the white precipitate
28. The first step in the industrial manufacture of nitric cid is the catalytic oxidation of ammonia gas.
a) What is the name of the catalyst used?
b) Write the equation for the catalytic oxidation of ammonia gas.
c) Nitric acid is used to make ammonium nitrate. State one use of ammonium nitrate.
29. Explain what is observed when ammonia gas is bubbled into Copper (II) sulphate solution till in excess.
30. (a) State the conditions under which nitrogen react with hydrogen to form ammonia during Haber process
(b) When dry ammonia gas is passed over hot copper (II) Oxide, a shinny brown residue and a colourless droplets are formed. Explain these two observations
31. Study the flow chart below and answer the questions that follow

(a) State the observation made when ammonia is passed over heated Copper (II) Oxide
(b) Identify:-
(i) Gas \mathbf{A}
(ii) Liquid B

Sulphur and its compounds

1. Sulphur is extracted from underground deposits by a process in which three concentric pipes are sunk down to the deposits as shown below

(a) Name the process represented above
(b) What is passed down through pipe \mathbf{J} ?
(c) Name the two allotropes of sulphur
2. Commercial sulphuric acid has a density of $1.8 \mathrm{gcm}^{3}$.
(a) Calculate the molarity of this acid
(b) Determine the volume of commercial acid in (a) above that can be used to prepare $500 \mathrm{~cm}^{3}$ of $0.2 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}$ solution
3. Oleum $\left(\mathrm{H}_{2} \mathrm{~S}_{2} \mathrm{O}_{7}\right)$ is an intermediate product in the industrial manufacture of sulphuric acid
(a) How is oleum converted into sulphuric (IV) acid?
(b) Give one use of sulphuric acid
4. Differentiate between the bleaching action of chloride and sulphur (IV) oxide gas.
5. (i) Is concentrated sulphuric acid a weak acid or a strong acid?
(ii) Explain your answer in (i) above.
6. In the manufacture of sulphuric acid, sulphur (IV) oxide is oxidized to sulphur (VI) oxide.
a) Name the catalyst used
b) Write the equation representing the conversion of sulphur (IV) oxide to sulphur(VI)oxide
c) Explain using equations how dilute sulphuric acid is finally obtained from sulphur (VI) oxide
7. When a mixture of concentrated sulphuric acid and copper turnings is strongly heated, a colourless gas and solid mixture of white and black solids are formed. When this solid mixture is treated with distilled water, and filtered, a blue solution and black solid residue are collected. Explain the observations on the solid mixture formed in the above experiment
8. The set-up below is used to prepare dry sulphur (IV) Oxide in the laboratory. Answer questions that follow:

(a) Identify the mistake in the set-up
(b) Write an equation for the reaction in the set-up
(c) State how the polluting effects of the gas on the environment can be controlled
9. (a) State the observation made at the end of the experiment when a mixture of iron powder and sulphur are heated in a test-tube
(b) Write an equation for the reaction between the product in (a) above and dilute hydrochloric acid
(c) When a mixture of iron powder and sulphur is heated it glows more brightly than that of iron fillings and sulphur. Explain this observation
10. (a) Name one reagent that can be reacted with dilute hydrochloric acid to produce Sulphur (IV) oxide
(b) What would be observed if moist blue litmus paper is dropped into a gas jar of sulphur (IV) oxide? Explain your answer with an equation
11. (a) State two properties that vulcanized rubber posses as a result of vulcanization
(b) During Frasch process molten sulphur flows out through the middle pipe but not through the outer pipe. Give a reason
12. (a) Give two reasons why during the manufacture of sulphuric (VI) acid, sulphur (VI) Oxide, is dissolved in concentrated Sulphuric (VI) acid instead of dissolving in water
b) State one use of sulphuric (VI) acid
13. The diagram below may be used to react hydrogen sulphide and sulphur (IV) oxide. Study it and answer the questions that follow:-

(a) What is observed in the jars
(b) Write an equation for the reaction
(c) What is the role of sulphur (IV) oxide in the reaction
14. The diagram below shows the extraction of sulphur by Frasch process.

a) State the uses of pipes A, B and C.
b) Give two crystalliric allotropes of sulphur.
c) Write an equation for the combustion of sulphur.
d) Name the product formed when a mixture of sulphur and Iron is heated.
e) Give two uses of sulphur.
f) $6.0 \mathrm{dm}^{3}$ of sulphur (IV) oxide were oxidized by oxygen to sulphur (VI) oxide.
(i) Write an equation for the reaction.
(ii) Calculate the number of moles of sulphur (IV) oxide and oxygen used at R.T.P.
(iii) Determine the volume of oxygen used.
(Molar volume of a gas at R.T.P. is $24.0 \mathrm{dm}^{3}$)
15. The diagrams below represent two allotropes of Sulphur. Study them and answer the questions which follow:-

(i) Name the two allotropes labelled \mathbf{X} and \mathbf{Y}
(ii) (I) Explain why a piece of burning magnesium continues to burn in a gas jar of Sulphur (IV) Oxide
(II) Explain how one of the products formed in (I) above can be obtained from the mixture
16. (a) (i) Name the two crystalline forms of sulphur
(ii) Briefly explain how plastic sulphur is formed
(b) The scheme below represents the steps followed in the contact process. Study it and answer the questions that follow:-

(a) Name two possible identities of solid \mathbf{A}
(b) Name one impurities removed by the purifier
(c) Why is it necessary to remove impurities?
(d) Write down the equation of the reaction taking place in the converter
(e) (I) Name the two catalysts that can be used in the converter
(II) What is the function of heat exchanger?
(f) Sulphuric (VI) Oxide is not dissolved directly into water? Explain
(g) (I) Name the main pollutant in the contact process.
(II) How can the pollution in (g) (I) above be controlled?
(h) Give one use of sulphuric (VI) acid
17. The set-up below was used to prepare dry sample of hydrogen sulphide gas

(a) (i) Complete the diagram to show how the gas was collected
(ii) Identify the following:-
I. Solid H \qquad
II. Solid I \qquad
(iii) Write an equation for the reaction that occurred in the flask between solid \mathbf{H} and dilute

Hydrochloric acid
(b) When hydrogen sulphide gas was passed through a solution of Iron (III) chloride, the following observations were made:-
(i) the colour of the solution changed from reddish-brown to green and
(ii) a yellow solid was deposited

Explain the observation
(c) In the manufacture of Sulphuric (VI) acid by contact process sulphur (IV) oxide is made to react with air to form sulphur (VI) oxide as shown:-
$2 \mathrm{SO}_{2(\mathrm{~g})}+\mathrm{O}_{2(\mathrm{~g})} \rightleftharpoons 2 \mathrm{SO}_{3(\mathrm{~g})} \quad \Delta \mathrm{H}=-196 \mathrm{KJ}$
(i) Name the catalyst in this reaction
(ii) State and explain the effect of the following changes on the yield of sulphur (VI) oxide I. Increasing the pressure
II. Using a catalyst
(iii) Explain why sulphur (VI) oxide gas is absorbed in concentrated sulphur (VI) acid before dilution
18. The flow chart below shows a sequence of chemical reactions starting with sulphur. Study it and answer the questions that follow:-

(a) (i) State one observation made when the reaction in step 1 was in progress
(ii) Explain why dilute hydrochloric acid cannot be used in step 1
(iii) Write the equation for the reaction that took place in step 1
(iv) Name the reactions that took place in step 4
(v) Name solution A
(vi) State and explain the harmful effects on the environment of the gas \mathbf{C} produced in step 1
a) Sulphur occurs naturally in two different forms called allotropes;
i) What are allotropes
ii) the two allotropes of sulphur are stable at different temperatures, as shown in the equations below.
above 95.5°
Rhombic sulphur \rightleftharpoons monoclinic sulphur
below 95.5°
Give the name to the temperature $95.5^{\circ} \mathrm{C}$
b) below is a flow diagram for the contact process for manufacture of sulphuric acid(VI)

Mocks Topical Analysis
eeducationgroup.com
i) Give the name of the chambers labelled
($11 / 2 \mathrm{mks}$)
ii) State the three conditions in the converter
($11 / 2 \mathrm{mks}$)
iii) Explain why the gases are passed though:
I. The dust precipitator and drying power
II. The chamber labeled \mathbf{Y}
(iv) Write the balanced equations for the reactions in :

Step 2
Step 3
Step 4
20. Study the figure below:

State and explain the observations made in:
Test tube \mathbf{L}
Test tube K
21. The set-up below was used to prepare and collect hydrogen sulphide gas. Study it and answer the questions that follow:-

(a) Name solid \mathbf{V}
(b) Give a reason why warm water is used in the set-up
22. Sulphur (IV) oxide and nitrogen (II) oxide are some of the gases released from internal combustion engines. State how these gases affect the environment
23. When hydrogen sulphide gas was bubbled into an aqueous solution of Iron (III) chloride, a yellow precipitate was formed.
a) State another observation that was made.
b) Write an equation for the reaction that took place.
c) What type of reaction was undergone by hydrogen sulphide in this reaction?
24. In an attempt to prepare Sulphur (IV) Oxide gas, dilute Sulphuric acid was reacted with barium carbonate. The yield of Sulphur dioxide was found to be negligible.
Explain

Chlorine and its compounds

1. (i) State one observation made in this experiment
(ii) Identify the substances formed in the above reaction
2. Hydrogen chloride gas was passed into water as shown below:

(a) When a blue litmus paper was dropped into the resulting solution, it turned red. Give a reason for this observation
(b) What is the function of the funnel?
3. A group of compounds called chlorofluoro-carbons have a wide range of uses but they also have harmful effects on the environment. State one:-
a) Use of chlorofluoro carbons
b) Harmful effect of chlorofluoro carbons on the environment.
4. a) Water from a town in Kenya is suspected to contain chloride ions but not sulphate ions. Describe how the presence of the chloride ions in the water can be shown.
5. In an experiment, chlorine was passed into moist hydrogen sulphide in a boiling tube as shown below:

-

Chlorine gas

(a) What observation was made in the boiling tube?
(b) Write an equation of the reaction that took place in the boiling tube
(c) What precaution should be taken in carrying out this experiment? Give a reason
6. Heated iron can react with both chlorine gas and hydrogen chloride gas
i) Write equations for the reactions
ii) Chlorine gas has no effect on dry blue litmus paper. Explain
7. The following diagram represents a set-up that can be used in the laboratory to prepare and collect a sample of chlorine gas:

(a) No gas bubbles were produced in the above experiment. Explain the observation
(b) Complete the following equation

$$
\mathrm{Cl}_{2} \mathrm{O}_{(\mathrm{g})}+\mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})} \longrightarrow
$$

(c) Describe the bleaching property of chlorine water
8. Study the flow diagram below and answer the questions that follow:

(a) Name gas \mathbf{L}
(b) Write a balanced equation for the reaction between hydrochloric acid and manganese
(IV) oxide
(c) Explain what happens to coloured petals when dropped into a solution of \mathbf{M}
9. Carbon (IV) Oxide, methane, nitrogen (I) Oxide and trichloromethane are green house gases
(i) State one effect of an increased level of these gases to the environment
(ii) Give one source from which each of the following gases is released to the environment;
(i) Nitrogen (I) Oxide
(ii) Tricholomethane
10. (a) Two reagents that can be used to prepare chlorine gas are manganese (IV) oxide and concentrated hydrochloric acid.
(i) Write an equation for the reaction
(ii) Give the formula of another reagent that can be reacted with concentrated hydrochloric acid to produce chlorine gas
(iii) Describe how the chlorine gas could be dried and collected in the laboratory
(b) In an experiment, dry chlorine gas was reacted with aluminium as shown in the diagram below

(ii) Write an equation for the reaction that took place in the combustion tube
(iii) State the function of the calcium chloride in the set-up above
11. The figure below was set by a student to investigate the reaction between chlorine gas and hydrogen gas:

(a) Write an equation for the reaction that took place in the flask
(b) What observation was made in the flask?
(c) What precaution should be taken in carrying out the experiment?
12. In an attempt to prepare a gas, Sabulei added concentriqted hydrochloric acid to Potassium manganate. The products were then passed through two wash bottles containing water and concentrated sulphuric acid
(a) Name the gas prepared.
(b) Name the purpose of wash bottle:
(i) Containing water?
(ii) Containing concentrated sulphuric acid?
13. Study the scheme below and answer the questions that follow.

(a) Write the formula of the cation present in the yellow solution \mathbf{F}
(b) What property of chlorine is shown in Step II?
(c) Write an equation for the reaction in step III
14. (i) Name one drying agent for hydrogen Chloride
(ii) State and explain the observation that would be made when hydrogen Chloride gas is bubbled into a solution of Silver nitrate

Acids, bases and salts

1. Study the reaction below and answer the questions that follow

$$
\underset{\text { eterm acid }}{\left.\mathrm{NH}_{3}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}\right)} \rightleftharpoons \mathrm{NH}_{4}^{+}{ }_{(\mathrm{aq})}+\mathrm{OH}_{(\mathrm{aq})}^{-}
$$

(a) Define the term acid
(b) Identify an acid in the above reaction
(c) Explain your answers in (b) above
2. A student mixed equal volumes of Ethanol and butanoic acid. He added a few drops of concentrated Sulphuric (VI) acid and warmed the mixture
(i) Name and write the formula of the main products

Name
Formula
(ii) Which homologous series does the product named in (i) above belong?
3. A sample of water from a village in Trans Mara East District was divided into equal portions and each mixed with equal volume of soap solution. The observations made are tabulated below:

Sample of water	Treatment before adding soap	Observations made on shaking with soap
I	Boiled	Lather form immediately
II	No treatment	Slight lather form slowly
III	Treatment with washing soda	Lather formed immediately

(a) What type of hardness is present in water from the village. Explain
(b) State one advantage of hard water
4. The solubility of Iron (II) Sulphate crystals are $22^{\circ} \mathrm{C}$ is 15.65 g per 100 g of water. Calculate the mass of iron(II) sulphate crystals in 45 g of saturated solution at the sae temperature
5. Hardness of water may be removed by either boiling or addition of chemicals:
(a) Write an equation to show how boiling removes hardness of water
(b) Name two chemicals that are used to remove hardness of water
6. State one advantage of drinking hard water rather than soft water.

7 Given this reaction;

$$
\mathrm{RNH}_{2}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{RNH}_{3}^{+}+\mathrm{OH}^{-}
$$

a) Identify the acid in the forward reaction .Explain
b) Dilute nitric acid can react with a solution of sodium carbonate. Write an ionic equation for the reaction
8. Magnesium hydrogen carbonate is responsible for the temporary hardness of water.

This type of hardness can be removed by addition of ammonia solution
(a) Describe how temporarily hard water is formed
b) Write an equation to show the softening of temporarily hard water by the addition of aqueous ammonium solution
 formed which dissolved in excess potassium hydroxide solution to form solution \mathbf{L}. solution \mathbf{R} forms a white precipitate with sodium chloride solution:
(a) Identify the cation in solution \mathbf{R}
(b) Name precipitate \mathbf{T}
(c) Write the molecular formula of the compound in solution \mathbf{L}
10. Below is a table showing the solubilities of salts \mathbf{Q} and \mathbf{R} at different temperatures.

Temperature $^{\mathbf{0}} \mathbf{C}$		0	10	20	30	40	50
Solubilities in grammes per 100g of water	Salt Q	3.0	5.0	7.4	10.0	14.0	19.0
	Salt R	15.0	17.0	20.7	25.7	28.7	33.0

(a) Define the term "Solubility of salt"
(b) If both salts \mathbf{Q} and \mathbf{R} are present in $100 \mathrm{~cm}^{3}$ of saturated solution at $50^{\circ} \mathrm{C}$, what will be the total mass of crystals formed if the solution was cooled to $20^{\circ} \mathrm{C}$?
11. The following results were obtained during an experiment to determine the solubility of potassium chlorate(V)in water at $30^{\circ} \mathrm{C}$.
Mass of evaporating dish $=15.86 \mathrm{~g}$

Mass of evaporating dish + saturated solution at $30^{\circ} \mathrm{C}=26.8 \mathrm{~g}$
Mass of evaporation dish +solid potassium chlorate (v) after evaporation to dryness $=16.86 \mathrm{~g}$ Calculate the mass of the saturated solution containing 60.0 g of water at $30^{\circ} \mathrm{C}$
12. (a) What is meant by the term solubility of salts?
(b) Calculate the solubility of salt given that 15 g of the salt can saturate $25 \mathrm{~cm}^{3}$ of water
(c) The table below gives the solubility of salt \mathbf{X} in grams per 100 g of water at different temperatures

Temp $^{\circ} \mathrm{C}$	10	20	30	40	50	60	70	80	90	100
Solubility $(\mathrm{g} / 100 \mathrm{~g})$ water	5.0	7.5	10.5	14.0	18.5	24.0	30.0	38.0	46.0	50.1

(i) Plot a solubility curve for salt \mathbf{X} (solubility in $\mathrm{g} / 100 \mathrm{~g}$ water Y - axis) (temp ${ }^{\circ} \mathrm{C}$ (X -axis)
(ii) What is meant by the points plotted in (i) above?..
(iii) From your graph determine the solubility of salt \mathbf{X} at the following temperatures

I $44^{\circ} \mathrm{C}$
II $\quad 62^{\circ} \mathrm{C}$
(iv) What mass of crystals of the salt will be formed if the solution was cooled from $62^{\circ} \mathrm{C}$ to $44^{\circ} \mathrm{C}$
(v) Name two areas where knowledge of solubility curves is applied
13. You are given a mixture of Lead (II) Chloride, Iodine, ammonium chloride and sodium chloride. Explain how you would separate all the four solids using methylbenzene, a source of heat and water
14. (a) The table below shows the solubility of potassium chlorate at different temperatures

Temperature $\left({ }^{\circ} \mathrm{C}\right)$	10°	20°	30°	40°	50°	60°	70°
Solubility $\mathrm{g} / 100 \mathrm{~g}$ water	27	30	36	55	80	110	140

(i) Plot a graph of solubilities of potassium chlorate against temperature
(ii) Using your graph:
(I) Determine the solubility of potassium chlorate at $47^{\circ} \mathrm{C}$
(II) Determine the concentration in moles per litre of potassium chlorate at $47^{\circ} \mathrm{C}$ $(\mathrm{K}=39, \mathrm{Cl}=35.5, \mathrm{O}=16)$ density of solution $=1 \mathrm{~g} / \mathrm{cm}^{3}$
(III) Determine the mass of potassium chlorate that would crystallize if the solution is cooled from $62^{\circ} \mathrm{C}$ to $45^{\circ} \mathrm{C}$
(b) In an experiment to determine the solubility of sodium hydroxide, $25 \mathrm{~cm}^{3}$ of a saturated solution of sodium hydroxide weighing 28 g was diluted in a volumetric flask and the volume made to $250 \mathrm{~cm}^{3}$ mark. $20 \mathrm{~cm}^{3}$ of this reacted completely with $25 \mathrm{~cm}^{3}$ of 0.2 M hydrochloric acid according to the equation.

$$
\mathrm{NaOH}_{(\mathrm{aq})}+\mathrm{HCl}_{(\mathrm{aq})} \longrightarrow \mathrm{NaCl}_{(\mathrm{aq})}+\mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})}
$$

Calculate:

(i) The number of moles of hyrdrochloric acid used
(ii) The number of moles of sodium hydroxide in $20 \mathrm{~cm}^{3}$
(iii) The moles of sodium hydroxide in $250 \mathrm{~cm}^{3}$ of solution
(iv) The mass in grams of sodium hydroxide in $250 \mathrm{~cm}^{3}$ of solution
(v) The solubility of sodium hydroxide in $\mathrm{g} / 100 \mathrm{~g}$ water
15. a) Define the term solubility of a substance
b) The table below shows the solubilities of two salts \mathbf{L} and \mathbf{M} at different temperatures.

Temperature $\left({ }^{\mathbf{}} \mathbf{C}\right.$)	10	20	30	40	50	
Solubility in $\mathbf{g} / \mathbf{1 0 0 g}$ of water.	\mathbf{L}	11.0	14.0	20.1	28.0	36.0
	\mathbf{M}	15.0	17.0	19.0	21.2	25.0

Mocks Topical Analysis eeducationgroup.com
i) Name the method that can be used to separate the two salts
ii) Plot on the same axes a graph of solubilities of \mathbf{L} and \mathbf{M} against temperature
iii) From the graph determine:-

The temperature at which solubilities are equal
The solubility at the temperature mentioned above
iv) If the relative formula mass of \mathbf{M} is 132 , determine the concentration of \mathbf{M} in moles per litre in (iii) II above
16. The graph below shows the changes in conductivity when $50 \mathrm{~cm}^{3}$ of 0.1 M Nitric (V) acid is titrated with potassium hydroxide (curve I) and when $50 \mathrm{~cm}^{3}$ of 0.1 M methanoic acid is

(a) (i) Explain the changes in conductivity in the regions:
\qquad BC. \qquad
(ii) Using curve (I), explain why the conductivity does not have a value of zero at end-point
(iii) Calculate the concentration of KOH with reference to curve II
(iv) Explain why the two curves shows different trends in conductivity
(b) $50 \mathrm{~cm}^{3}$ of 0.1 M methanoic acid was reacted with $20 \mathrm{~cm}^{3}$ of a solution of sodium carbonate of unknown concentration. Work out the concentration of the carbonate
17. The flow charts below show an analysis of a mixture \mathbf{R} that contains two salts. Study the analysis and answer the questions that follow:-

(i) State:-
(I) The condition in step I
(II) The process in step II
(ii) A small portion of mixture \mathbf{R} is added to dilute nitric (V) acid in a test-tube. What would be observed?
(iii) Write an equation for the reaction between the cation in filtrate \mathbf{X} and sodium hydroxide solution
(iv) Explain how water vapour in step I could be identified
(b)

(i) State and explain the conclusion that can be made from step IV only
(ii) Name the anion present in residue \mathbf{U}. Explain
(iii) From the flow chart in (a) and (b);
(I) Write the formulae of cations present in mixture \mathbf{R}
18. a) Define the term solubility of a substance.
b) The table below shows the solubilities of two salts \mathbf{L} and \mathbf{M} at different temperatures.

Temperature (${ }^{\circ} \mathbf{C}$)	Type of salt	10	20	30	40	50
Solubility $\mathbf{g} / \mathbf{1 0 0 g}$ of water	\mathbf{L}	11.0	14.0	20.1	28.0	36.0
	\mathbf{M}	15.0	17.0	19.0	21.2	25.0

(i) Name the method that can be used to separate the two salts.
(ii) Plot on the same axes a graph of solubilities of \mathbf{L} and \mathbf{M} against temperature
(iii) From the graph, determine:
I. The temperatures at which solubilities are equal
II. The solubility at the temperature mentioned above
(iv) If the relative formula mass of \mathbf{M} is 132, determine the concentration of \mathbf{M} in moles per litre in (iii) II above.
v) A solution contains 38 g of \mathbf{L} and 22 g of \mathbf{M} at $50^{\circ} \mathrm{C}$. Calculate the total mass of crystals obtained in cooling this solution to $30^{\circ} \mathrm{C}$.
19. a) Define:
(i) A saturated solution.
(ii) Solubility of a solute.
b) In an experiment to determine solubility of sodium chloride, $10.0 \mathrm{~cm}^{3}$ of a saturated solution of sodium chloride weighing 10.70 g were placed in a volumetric flask and diluted to a total of 500 $\mathrm{cm}^{3} .25 .0 \mathrm{~cm}^{3}$ of the diluted solution of sodium chloride reacted completely with $24.0 \mathrm{~cm}^{3}$ of 0.1 M silver nitrate solution. The equation for the reaction is
AgNO_{3} (aq)) $\mathrm{NaCl}\left({ }_{\text {aq }} \longrightarrow \mathrm{AgCl}(\mathrm{s})+\mathrm{NaNO}_{3}{ }_{(\text {aq }}\right)$
I. Calculate;
(i) Moles of silver nitrate in $24.0 \mathrm{~cm}^{3}$ of solution.
(ii) Moles of NaCl in $25.0 \mathrm{~cm}^{3}$ of solution.
(iii) Moles of NaCl in $500 \mathrm{~cm}^{3}$ of solution.
(iv) Mass of NaCl in $10.0 \mathrm{~cm}^{3}$ of saturated sodium chloride $(\mathrm{Na}=23, \mathrm{Cl}=35.5)$
(v) Mass of water in $10.0 \mathrm{~cm}^{3}$ of saturated solution.
(vi) The solubility of NaCl in $\mathrm{g} / 100 \mathrm{~g}$ of waters.
20. Describe how you would prepare a dry sample of crystals of potassium sulphate starting with $100 \mathrm{~cm}^{3}$ of 1 M sulphuric (VI) acid.
21. The table shows solubility of potassium chlorate \mathbf{V}

Temp $\left({ }^{\circ} \mathrm{C}\right)$	$45^{\circ} \mathrm{C}$	80°
Solubility	39	63

(a) Calculate the mass of solute and solvent in 90 g of the saturated solution of the salt at $45^{\circ} \mathrm{C}$
(b) A solution of the salt in 100 g water contains 63 g at $95^{\circ} \mathrm{C}$. At what temperature will the solution start forming crystals when cooled
22. Two samples of hard water \mathbf{C} and \mathbf{D} were boiled. When tested with drops of soap, sample D formed lather easily while \mathbf{C} did not:-
(a) Name the possible salt that caused hardness in sample \mathbf{D}
(b) Explain how distillation can remove hardness in sample \mathbf{C}
(c) Give one advantage of hard water
23. A student attempted to prepare a gas using the set-up below. She could not collect any gas

(a) Give two reasons why no gas was collected
(b) Which gas did the student intend to prepare?
24. Water from a town in Kenya is suspected to contain chloride ions but not sulphate ions.
(a) Describe how the presence of chloride ions in the water can be shown
(b) State one advantage of drinking hard water rather than soft water
25. Study the following tests and observation and answer the questions that follow:-

	TEST	OBSERVATION
I	- Add few drops of acqueous ammonia to copper (II) nitrate solution	- Light blue precipitate is formed
II	- Add excess of ammonia to copper (II) nitrate	- Deep blue solution
III	- Add cold dilute hydrochloric acid to substance E1 and warm gently	- Gas evolved, smells of rotten eggs and blackens lead acetate paper

Identify:-
(a) Substance responsible for:
I. Light blue precipitate.
II. Deep blue solution

Mocks Topical Analysis
(b) Gas evolved in test III above \qquad
26. (i) What is meant by the term solubility of salts?
(ii) Calculate the solubility of a salt given that 15 g of the salt can saturate $25 \mathrm{~cm}^{3}$ of water.
27. (a) Draw a well labeled diagram to show how to prepare an acqueous solution of hydrogen chloride gas
(b) Name one other gas whose aqueous solution can be prepared in the same way
28. In an experiment to determine the solubility of solid Y in water at $30^{\circ} \mathrm{C}$ the following results were obtained;
Mass of empty evaporating dish $=26.2 \mathrm{~g}$
Mass of evaporating dish + saturated solution $=42.4 \mathrm{~g}$
Mass of evaporating dish + dry solid $\mathrm{Y}=30.4 \mathrm{~g}$
(a) Use the data to calculate the solubility of solid \mathbf{Y} at $30^{\circ} \mathrm{C}$
(b) State one application of solubility curves and values
29. Study the table below showing the solubility of substance \mathbf{K} at various temperatures

Temperature (${ }^{\mathbf{}} \mathbf{C}$)	Solubility (g/100g water)
0	30
30	24
70	19
100	14

(a) What would happen if a sample of a saturated solution of the substance at $30^{\circ} \mathrm{C}$ is heated to $70^{\circ} \mathrm{C}$. Explain.
(b) What is the most likely state of substance \mathbf{K} \qquad
30. In the equilibrium given below:-
$\mathrm{Fe}^{3+}{ }_{\text {(aq) }}+\mathrm{SCN}_{\text {(aq) }}$
Brown $\stackrel{[\mathrm{Fe}(\mathrm{SCN})]^{2+}{ }_{\text {(aq) }}}{\text { Red }}$
What would be observed when Iron (III) Chloride is added to the equilibrium mixture. Explain
31. Sodium Carbonate Decahydrate crystals were left exposed on a watch glass for two days.
a) State the observations made on the crystals after two days.
b) Name the property of salts investigated in the above experiment
32. The label on a bottle of mineral; water had the information below.

Ions present	Concentration (g/litre)
Ca^{2+}	0.10
Mg^{2+}	0.20
$\mathrm{Na}+$	0.01
$\mathrm{~K}+$	0.01
SO_{4}	0.14
HCO_{3}	0.26

(a) Name the compound that causes temporary hardness in the mineral water.
(b) Using an equation, describe how the water can be made soft by adding sodium carbonate solution.
(c) Give one advantage of drinking mineral water such as the one above
33. A solution of hydrogen chloride gas in methylbenzene has no effect on calcium carbonate.

A solution of hydrogen chloride in water reacts with calcium carbonate to produce a gas. Explain
34 (i) Is concentrated sulphuric acid a weak acid or a strong acid?
(ii) Explain your answer in (i) above.
35. When water reacts with potassium metal the hydrogen produced ignites explosively on the surface of water.
(i) What causes this ignition?
(ii) Write an equation to show how this ignition occurs
36. In an experiment, soap solution was added to three samples of water. The results below show the volume of soap solution required to lather with 500 cm 3 of each water sample before and after boiling

	Sample 1	Sample 2	Sample3
Volume of soap used before water boiled	26.0	14.0	4.0
Volume of soap after water boiled	26.0	4.0	4.0

(i) Which water samples are likely to be soft?
(ii) Explain the change in volume of soap solution used in sample 2
37. How does the ${ }^{\checkmark} 1$

Energy changes in chemical and physical processes

1. 6 g of Potassium nitrate solid was added to $120 \mathrm{~cm}^{3}$ of water in a plastic beaker. The mixture was stirred gently and the following results were obtained.

Initial temperature $=21.5^{\circ} \mathrm{C}$
Final temperature $=17.0^{\circ} \mathrm{C}$
(a) Calculate the enthalpy change for the reaction
(Density $=1 \mathrm{~g} / \mathrm{cm}^{3}, \mathrm{C}=4.2 \mathrm{jg}^{-1} \mathrm{~K}^{-1}$)
(b) Calculate the molar enthalpy change for the dissolution of potassium nitrate ($\mathrm{K}=39, \mathrm{~N}=14, \mathrm{O}=16$)
2. (a) The heat of combustion of ethanol, $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$ is $1370 \mathrm{KJ} /$ mole.
(i) What is meant by heat of combustion?
(ii) Calculate the heating value of ethanol
($\mathrm{H}=1.0, \mathrm{C}=12.0, \mathrm{O}=16.0$)
3. Use the information below to answer the questions that follow:-
$\mathrm{Ca}_{(\mathrm{s})}+1 / 2 \mathrm{O}_{2(\mathrm{~g})} \longrightarrow \mathrm{CaO}_{(\mathrm{s})} \Delta \mathrm{H}=-635 \mathrm{KJ} / \mathrm{mol}$
$\mathrm{C}_{(\mathrm{s})}+\mathrm{O}_{2(\mathrm{~g})} \longrightarrow \mathrm{CO}_{2(\mathrm{~g})} \quad \Delta \mathrm{H}=-394 \mathrm{KJ} / \mathrm{mol}$
$\mathrm{Ca}_{(\mathrm{s})}+\mathrm{C}_{(\mathrm{s})}+3 / 2 \mathrm{O}_{2(\mathrm{~g})} \longrightarrow \mathrm{CaCO}_{3} \quad \Delta \mathrm{H}=-1207 \mathrm{KJ} / \mathrm{mol}$
Calculate the enthalpy change for the reaction:
$\mathrm{Ca}_{(\mathrm{s})}+\mathrm{CO}_{2(\mathrm{~g})} \longrightarrow \mathrm{CaCO}_{3(\mathrm{~s})}$
4. $\quad 0.92 \mathrm{~g}$ of ethanol were found to burn in excess air producing a temperature rise of $32.5^{\circ} \mathrm{C}$
in $200 \mathrm{~cm}^{3}$ of water.
$\mathrm{C}=12.0 \quad \mathrm{H}=1.0 \quad \mathrm{O}=16.0$
Density of water $1 \mathrm{~g} / \mathrm{cm}^{3}$
Specific heat capacity of water $4.2 \mathrm{kj} \mathrm{kg}^{-1} \mathrm{k}^{-1}$
a) Write the equation for combustion of ethanol
b) Determine the molar heat of combustion of ethanol
5. Study the information in the following table and answer the questions that follow. The letters do not represent the actual chemical symbols of the elements.

ELEMENT	\mathbf{U}	V	W	\mathbf{X}	Y	\mathbf{Z}
NUMBER OF PROTONS	18	20	6	16	19	17
NUMBER OF NEUTRONS	22	20	8	16	20	20

Which of the above elements are:
(i) Likely to be radioactive?
(ii) Able to form a compound with the highest ionic character?
6. The diagram below shows energy levels for the reaction

Reaction path
(a) Work out the activation energy for the reaction
(b) Calculate the heat of formation of HF
(c) Is the reaction endothermic or exothermic?
7. Using the heats of combustion of the following substances, calculate the heat of formation of ethanol
$\mathrm{C}_{(\mathrm{s})}+\mathrm{O}_{2(\mathrm{~g})} \longrightarrow \mathrm{CO}_{2(\mathrm{~g})} ; \Delta \mathrm{H}=-393 \mathrm{KJmol}^{-1}$
$\mathrm{H}_{2(\mathrm{~g})}+1 / 2 \mathrm{O}_{2(\mathrm{~g})} \longrightarrow \mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})} ; \Delta \mathrm{H}=-286 \mathrm{KJmol}^{-1}$
$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH}_{(\mathrm{l})}+\mathrm{O}_{2(\mathrm{~g})} \longrightarrow 2 \mathrm{CO}_{2(\mathrm{~g})}+3 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})} ; \Delta \mathrm{H}=1386 \mathrm{KJmol}^{-1}$
8. Nitrogen and hydrogen react reversibly according to the equation:-
$\mathrm{N}_{2(\mathrm{~g})}+3 \mathrm{H}_{2(\mathrm{~g})} \quad \rightleftharpoons 2 \mathrm{NH}_{3(\mathrm{~g})} ; \Delta \mathrm{H}=-92 \mathrm{kjmol}^{-1}$
The energy level diagram for the above reaction is shown below:-

(a) How would the yield of ammonia be affected by:
(i) A decrease in temperature
(ii) An increase in pressure
(b) How does a catalyst affect reversible reaction already in equilibrium?
(c) On the above diagram, sketch the energy level diagram that would be obtained when iron catalyst is added to the reaction
9. Study the table below and answer the questions that follow

Bond type
C-C
$\mathrm{C}=\mathrm{C}$
C-H
C-Br
$\mathrm{Br}-\mathrm{Br}$
Mocks Topical Analysis
bond energy $\mathbf{k J m o l}^{-1}$
346
610
413
280
193
eeducationgroup.com
a) Calculate the enthalpy change for the following reaction
$\mathrm{C}_{2} \mathrm{H}_{4(\mathrm{~g})}+\mathrm{Br}_{2(\mathrm{~g})} \longrightarrow \mathrm{C}_{2} \mathrm{H}_{4} \mathrm{Br}_{2(\mathrm{~g})}$
b) Name the type of reaction that took place in (a) above

1 mark

10. Bond energies for some bonds are tabulated below:-

BOND	BOND ENERGY KJ/mol
$\mathrm{H}-\mathrm{H}$	436
$\mathrm{C}=\mathrm{C}$	610
$\mathrm{C}-\mathrm{H}$	410
$\mathrm{C}-\mathrm{C}$	345

Use the bond energies to estimate the enthalpy for the reaction
$\mathrm{C}_{2} \mathrm{H}_{4(\mathrm{~g})}+\mathrm{H}_{2(\mathrm{~g})} \longrightarrow \mathrm{C}_{2} \mathrm{H}_{6(\mathrm{~g})}$
11. The able shows the results obtained when 20.2 g of potassium nitrate was added in $50 \mathrm{~cm}^{3}$ of water.

Time in (min)	0.0	0.3	1.0	1.3	2.0	2.3	3.0	3.3	4.0
Temperature $\left({ }^{\circ} \mathrm{C}\right)$	25.0	25.0	25.0	25.0	17.0	17.0	20.0	20.0	20.0

(i) Draw the graph of temperature against time
(ii) Using the graph, determine the temperature change
(iii) Calculate the heat change
(iv) Find the molar heat of solution of potassium nitrate
12. When 1.6 g of ammonium nitrate were dissolved in $100 \mathrm{~cm}^{3}$ of water, the temperature dropped by $6^{\circ} \mathrm{C}$. Calculate its enthalpy change. (Density of water $=1 \mathrm{~g} / \mathrm{cm}^{3}$, specific heat capacity is $4.2 \mathrm{~kJ} \mathrm{~kg}^{-1} \mathrm{~K}^{-1}$)
13. Sodium hydrogen carbonate was strongly heated.
a) Write an equation for the reaction
b) The grid below shows part of the periodic table. Use it to answer the questions that follow. The letters are not the actual symbols.

i) Write the equation for the reaction that occurs between elements \mathbf{L} and \mathbf{D}
ii) The oxide of \mathbf{G} reacts with both hydrochloric acid and sodium hydroxide. What is the nature of the oxide of \mathbf{G} ?
iii) Explain why elements \mathbf{H} has a higher boiling points than element \mathbf{D}.
iv) State one use of element \mathbf{E}
v) Compare and explain the atomic radius of \mathbf{B} and \mathbf{C}
vi) 11.5 g of \mathbf{L} was completely burnt in oxygen .Calculate the volume of gas that was used.
($\mathrm{L}=23$, molar gas volume at room temperature is $24 \mathrm{dm}^{3}$)
14. A student has been provided with sodium hydroxide solution of 2 M and hydrobromic acid of 4 M . He was asked to investigate the equation for the reaction between these two substances and hence determine the molar enthalpy of neutralization. He carried out the reaction and obtained the following results:-

Vol. of 4M Hydrobromic acid added to $\mathbf{2 0} \mathbf{c m}^{\mathbf{3}}$ of 2M NaOH	Temperature of the mixture $\mathbf{(} \mathbf{} \mathbf{} \mathbf{C})$
4.0	26.8
6.0	30.0
8.0	33.2
10.0	36.0
12.0	35.2
14.0	34.4
20.0	30.8

(a) Draw a graph of the temperature of the mixture (vertical axis against the volume of the acid added)
(b) Using the graph estimate the temperature of the mixture when $17 \mathrm{~cm}^{3}$ of the acid was added
(c) Both solutions were at room temperature at the start of the experiment. Use your graph to estimate the room temperature
(d) What is the significance of the highest temperature of the solution mixture?
(e) The temperature of the mixture increased during the first additions of the acid. Why did the temperature increase?
(f) Suggest a reason why the temperature decreased during the latter part of the experiment
(g) Use your graph to determine the volume of 4M Hydrobromic acid which just neutralize $20 \mathrm{~cm}^{3}$ of 2 M NaOH
(h) How many moles of Hydrobromic acid are present in your answer in (g) above? *
(i) How many moles of NaOH are present in $20 \mathrm{~cm}^{3}$ of 2 M of NaOH solution? *
(j) Use your answers in (h) and (i) above to write an equation of the reaction taking place in the experiment. Explain clearly how you have used your answers
($11 / 2 \mathrm{mks}$)
(k) Determine the molar enthalpy of neutralization of hydrobromic acid
($11 / 2 \mathrm{mks}$)
15. (a) The following results were obtained in an experiment to determine the enthalpy of solution of sodium hydroxide

Mass of plastic beaker $=8.0 \mathrm{~g}$
Mass of plastic beaker + distilled water $=108.15 \mathrm{~g}$
Mass of plastic beaker + distilled water + sodium hydroxide $=114.35 \mathrm{~g}$
The table below shows the temperature at fixed times after mixing

Time $/$ seconds	0	30	60	90	120	150	180	210
Temperature (${ }^{\circ} \mathbf{C}$)	15	21	29	28	27	26	26	25

(i) Plot a graph of temperature (y-axis) against time (x-axis)
(ii) From your graph, determine the maximum temperature attained
(iii) Determine the temperature change of the reaction
(iv) Calculate the number of moles of sodium hydroxide used in the experiment ($\mathrm{Na}=11, \mathrm{H}=1, \mathrm{O}=16$)
(v) Use your results to determine the molar enthalpy solution of sodium hydroxide. (Density of solution is $1 \mathrm{~g} \mathrm{~cm}^{-3}$, specific heat capacity of solution $=4.18 \mathrm{KJ}^{-1} \mathrm{~K}^{-1}$)
(b) Below is an energy level diagram of the exothermic reaction

$\mathrm{CH}_{4(\mathrm{~g})}+2 \mathrm{O}_{2(\mathrm{~g})} \longrightarrow \mathrm{CO}_{2(\mathrm{~g})}+2 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})}$	$\Delta \mathrm{H}=-890 \mathrm{KJ}$
$\qquad \begin{array}{l}\mathrm{CH}_{4(\mathrm{~g})}+2 \mathrm{O}_{2(\mathrm{~g})}\end{array}$	
$\square \mathrm{V}=-890 \mathrm{KJ}$	
	$\mathrm{CO}_{2(\mathrm{~g})}+2 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})}$

Examine the energy level diagram below and use it to answer the questions that follow

(b) (i) Which $\Delta \mathrm{H}$ values will have negative sign?
(ii) What physical change is being represented where enthalpy change $\Delta \mathrm{H}_{4}$ is involved? ($1 / 2 \mathrm{mk}$) (iii) In terms of $\Delta \mathrm{H}_{1}, \Delta \mathrm{H}_{2}, \Delta \mathrm{H}_{3}$ and $\Delta \mathrm{H}_{4}$, give the overall enthalpy change for the reaction:-

$$
\mathrm{H}_{2(\mathrm{~g})}+1 / 2 \mathrm{O}_{2(\mathrm{~g})} \longrightarrow \mathrm{H}_{2} \mathrm{O}_{(1)}
$$

(iv) Is the reaction in (iii) above exothermic or endothermic?
16. (I) Study the graph below and answer the questions which follow:

(a) Distinguish between molar latent heat of fusion and molar latent heat of vaporization
(b) (i) Explain the changes occurring between points

BC.
(ii) In an experiment to determine molar enthalpy of neutralization of hydrochloric acid using potassium hydroxide, the data below was obtained. The concentration of potassium hydroxide used was 0.5 M

Volume of $0.5 \mathrm{M} \mathrm{KOH}\left(\mathrm{cm}^{3}\right)$	0	5	10	15	20	25	30	35
Total volume of acid + Base	20	25	30	35	40	45	50	55
Temperature $\left({ }^{\circ} \mathrm{C}\right)$	24	26	27	28	29	29	28	27

(i) Plot a graph of temperature (y-axis) against volume of potassium hydroxide used
(ii) From your graph:
(a) Determine the temperature change
(b) Find the volume of potassium hydroxide which completely neutralized $20 \mathrm{~cm}^{3}$ of the acid
(iii) Calculate the heat change for the reaction $\left(\mathrm{C}=4.2 \mathrm{Jg}^{-1} \mathrm{~K}^{-1}\right.$ density of solution $\left.=1 \mathrm{~g} / \mathrm{dm}^{3}\right)$
(iv) Calculate the molar enthalpy of neutralization of hydrochloric acid with potassium hydroxide
17. A typical electrolysis cell uses a current of 40,000 amperes. Calculate the mass
(in Kg of aluminium produced in one hour). $(\mathrm{Al}=27)($ Faraday $=96500$ Coloumbs $)$
18. (a) Biogas is a mixture of mainly Carbon (IV) Oxide and methane.
(i) Give a reason why biogas can be used as a fuel
(ii) Other than fractional distillation, describe a method that can be used to determine the percentage of methane in biogas
19. Consider the following equilibrium reaction. $\mathrm{H}_{2}(\mathrm{~g})+\mathrm{Cl}_{2}(\mathrm{~g}) \Longrightarrow 2 \mathrm{HCl}(\mathrm{g}) \quad \Delta \mathrm{H}=-74.4 \mathrm{KJ}$
a) State and explain the effect of formation of hydrogen chloride if pressure was increased in the equation above
20. Turning of fossil fuels has adverse environmental effects:-
a) Name two pollutants from the burning of petroleum products
b) Give one precaution taken to minimise the pollution by fossil fuels
21. (a) Define molar heat of neutralization
(b) The rise in temperature when $50 \mathrm{~cm}^{3}$ of sodium hydroxide is reacted with two acids is given in the table below:-

Acid	$\mathbf{5 0} \mathbf{c m}^{\mathbf{3}}$ of $\mathbf{~ H C l}$	$\mathbf{5 0 c m}$ of Oxalic acid
Temp rise $\left({ }^{\circ} \mathrm{C}\right)$	7	4

(i) Explain the difference in the temperature.
22. Calculate the latent heat of vaporization of water
$\mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})} \longrightarrow \mathrm{H}_{2} \mathrm{O}_{(\mathrm{g})}$
Given the following thermo chemical equations:-
$\mathrm{H}_{2(\mathrm{~g})}+1 / 2 \mathrm{O}_{2(\mathrm{~g})} \longrightarrow \mathrm{H}_{2} \mathrm{O}_{(\mathrm{g})} \Delta \mathrm{H}^{\theta}=-242 \mathrm{KJ} / \mathrm{Mol}$
$\mathrm{H}_{2(\mathrm{~g})}+1 / 2 \mathrm{O}_{2(\mathrm{~g})} \longrightarrow \mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})} \Delta \mathrm{H}^{\theta}=-286 \mathrm{KJ} / \mathrm{Mol}$
23. (a) Define the term fuel
(b) State four reasons why wood fuel is chosen for domestic cooking
24. The setup bellow was used to investigate the changes that take place when sodium hydroxide pellets dissolve in water.

a) Why is a plastic beaker used instead of a metallic beaker?
b) State and explain the observations made in the above reaction
25. (a) What is a fuel?
(b)Other than the cost, state two other factors to consider when choosing a fuel.
26. The equation below represents changes in the physical state of ions metal:

a) Calculate the amount of heat energy required to change 10 kg of solid iron to gaseous iron $\mathrm{Fe}=56$
b) Iodine can react with chlorine as shown below:$\mathrm{I}_{2(\mathrm{~g})}+\mathrm{Cl}_{(\mathrm{g})} \longrightarrow 2 \operatorname{lcl}_{(\mathrm{s})} \quad \mathrm{DH}=-68 \mathrm{~kJ}$

Determine the molar enthalpy change for this reaction
c) Draw an energy level diagram for the reaction in (b) above
27. Study the diagram below and answer the questions that follow:

a) What do $\Delta \mathrm{H}_{1}$ and $\Delta \mathrm{H}_{2}$ represent?
$\Delta \mathrm{H}_{1}$ \qquad
$\Delta \mathrm{H}_{2}$ \qquad
b) Write an expression to show the relationship between $\Delta \mathrm{H}_{1}, \Delta \mathrm{H}_{2}$ and $\Delta \mathrm{H}_{3}$.

Reaction rates and reversible reactions

1. Study the following equilibrium reaction and answer the questions that follow:-

$$
\underbrace{\mathrm{HL}_{(\mathrm{aq})}+\mathrm{H}_{2} \mathrm{O}(\mathrm{l})}_{\text {Red }} \rightleftharpoons \underbrace{\mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq}) \mathrm{L}^{-}(\mathrm{aq})}_{\text {Blue }}
$$

Given that in an acid solution, $\mathrm{H}_{3} \mathrm{O}^{+}{ }_{(\text {aq })}$ act in place of hydrogen ions, H^{+}, according to the equation.
$\mathrm{H}_{3} \mathrm{O}_{(\mathrm{aq})}+\mathrm{OH}_{(\mathrm{aq})}^{-} \longrightarrow 2 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})}$
Explain what would be observed when potassium hydroxide solution is added to the above equilibrium mixture
2. The scheme below shows the energy changes that take place between ice, water and steam.

Study it and answer the questions that follow:-

(a) What name is given to the energy change $\Delta \mathrm{H}_{4}$?
(b) What is the sign ΔH_{3}, give a reason
3. The table below gives bond energies for three covalent bonds

Bond	Bond energy (KJmol-1)
$\mathrm{H}-\mathrm{H}$	435
$\mathrm{Cl}-\mathrm{Cl}$	240
$\mathrm{H}-\mathrm{Cl}$	430

(a) Calculate the energy change for the following reaction:
$\mathrm{H}_{2(\mathrm{~g})}+\mathrm{Cl}_{2(\mathrm{~g})} \longrightarrow 2 \mathrm{HCl}_{(\mathrm{g})}$
Mocks Topical Analysis eeducationgroup.com
(b) Sketch an energy level diagram for the reaction in (a) above
4. The sketch below was obtained when 2 g of magnesium was reacted with excess of 2 M hydrochloric acid. The volume of hydrogen evolved was then plotted against time as shown below:
A

(a) On the same axis plot the graph that would be obtained if 1 M hydrochloric acid was used instead of 2 M hydrochloric acid. Explain
(b) Explain the significance of the flat portion $\mathbf{B C}$ of the curve
5. In a closed system an equilibrium exists between Nitrogen (IV) Oxide and dinitrogen tetraoxide as shown in the equation below:

(a) State and explain the observation when a glass syringe containing the equilibrium mixture is immersed in ice-cold water
(b) If the piston of the syringe is pushed, state the effect on the position of the equilibrium
6. The table below gives the volumes of the gas produced when different volumes of 2 M hydrochloric acid were reacted with 1.0 g of a lump of an alloy of Magnessium and copper at room temperature

Volume of 2M hydrochloric acid $\left(\mathbf{c m}^{\mathbf{3}} \mathbf{)}\right.$	Volume of gas (cm $\mathbf{3}$)
0	0
10	240
20	480
30	600
40	600
50	600

(a) Write an equation for the reaction that occurred
(b) On the grid provided below, plot a graph of the volume of the gas produced (vertical axis) against the volume of acid added (Note that before the reaction comes to completion, the volume of the gas produced is directly proportional to the volume of the acid added)
(c) From the graph, determine:
(i) The volume of the gas produced if $13.0 \mathrm{~cm}^{3}$ of 2 M hydrochloric acid had been used
(ii) The volume of 2 M hydrochloric acid required for the reaction to go to completion
(d) State and explain the effect on the rate of production of the gas if:
(i) 1.0 g of the lump of the alloy were replaced by 1.0 g powder of the alloy
(ii) The reaction was carried out at $35^{\circ} \mathrm{C}$.
7. In a series of experiments in which magnesium ribbon of uniform width reacted with 2.0 M Hydrochloric acid, the rates of evolution of hydrogen gas were found to be as follows:-

Length of ribbon (cm	1.0	2.0	3.0	4.0	5.0	6.0	7.0
Rate of Evolution of hydrogen $\left(\mathrm{cm}^{3} / \mathrm{min}\right)$	1.1	1.8	2.7	3.6	4.6	5.4	6.1

(I) (a) Draw a graph of rate of evolution of hydrogen gas against length of ribbon
(b) What conclusion can you make from this graph?
(c) Determine the rate of evolution of hydrogen gas from a piece of magnesium ribbon 12 cm long under the same conditions
(d) With dotted line, sketch on the same axis the graph that would be obtained if all the ribbons were ground into powder
(II) (a) The curves below represent the changes in concentration of substances E and F with $\stackrel{{ }^{\text {time }}}{ }$ in reaction $\stackrel{\mathrm{E}_{(\mathrm{g})}}{\sim} \mathrm{F}_{(\mathrm{g})}$

(i) Which curve represents the change in the concentration of substance F? Give a reason *
(ii) Give one reason for the shapes of the curves after two minutes *
8. A typical electrolysis cell uses a current of 40,000 amperes. Calculate the mass (in Kg of aluminium produced in one hour). ($\mathrm{Al}=27$) (Faraday $=96500$ Coloumbs $)$
9. The table below shows the volumes of nitrogen (IV) oxide gas produced when different volumes of 1 M nitric acid were each reacted with 0.635 g of copper at room temperature.

Volume of 1M nitric acid $\left(\mathbf{c m}^{\mathbf{3}}\right)$	Volume of Nitrogen (IV) oxide gas(cm $\left.\mathbf{3}^{\mathbf{3}}\right)$
5	60
15	180
25	300
35	420
45	480
55	480

a) Give a reason why hydrochloric acid can not be used instead of nitric acid
b) Explain how the rate of the reaction between copper and nitric acid would be affected if the temperature of the reaction mixture was raised
c) On the grid provided below, plot a graph of the volume of the gas produced (vertical axis) against volume of acid
d) Using the graph, determine the volume of:
(i) Nitrogen (IV) oxide produced when $30 \mathrm{~cm}^{3}$ of 1 M nitric acid were reacted with 0.635 g of copper
(ii) 1 M nitric acid which would react completely with 0.635 g of copper
10. The graph below represents the volume of gas collected against time when dilute sulphuric acid is reacted with Zinc granules:-

Time (minutes
(a) Determine the rate of reaction between the $1^{\text {st }}$ and $3^{\text {rd }}$ minute
(b) When did the reaction stop?
(c) Give a possible reason for the reaction to stop
11. The equation below represents a reaction that takes place in an industrial process
$4 \mathrm{NH}_{3(\mathrm{~g})}+5 \mathrm{O}_{2(\mathrm{~g})} \longrightarrow 6 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{g})}+4 \mathrm{NO}_{(\mathrm{g})}$
(a) Name the catalyst used
(b) What are the other conditions for the reaction?
(c) Why are the products cooled before being oxidised?
12. Nitrogen reacts with hydrogen according to the equation below:-

$$
\mathrm{N}_{2(\mathrm{~g})}+3 \mathrm{H}_{2(\mathrm{~g})} \stackrel{\left.\mathrm{NH}_{3(\mathrm{~g}}\right)}{ } \Delta \mathrm{H}=-92 \mathrm{KJ}
$$

(a) How would the yietd of ammonia be affected by increase in :-
(i) Pressure
(ii) temperature
(b) The ammonia produced is isolated form the other gases from time to time. How does this affect the equilibrium?
13. Explain how you would obtain an insoluble salt XSO_{4} when you are provided with the following
(i) Distilled water
(ii) Solid YSO_{4} which is soluble in water
(iii) Solid salt $\mathrm{X}\left(\mathrm{NO}_{3}\right)_{2}$
14. Metal \mathbf{R} and \mathbf{S} were used to form a cell. The following half equations show the standard electrode potentials of the half cells. (\mathbf{R} and \mathbf{S} are not actual symbols of the element)
$\mathrm{R}^{2+}+2 \mathrm{e}^{-} \rightleftharpoons \mathrm{R}_{(\mathrm{s})}$
$\mathrm{E}^{\theta}=-2.04 \mathrm{~V}$
$\mathrm{S}^{2+}{ }_{\text {(aq) }}+2 \mathrm{e}^{-} \rightleftharpoons \mathrm{S}_{(\mathrm{s})}$
$\mathrm{E}^{\theta}=-0.47 \mathrm{~V}$

Write the full equation for the cell and calculate the e.m.f
15. The apparatus below were used to study the properties of air

(a) State two observations made at the end of the experiment
(b) Give one simple method that can be used to prevent rusting
16. Equal volumes of 1 M monobasic acids \mathbf{K} and \mathbf{L} were each reacted with excess zinc granules. The table below shows the volumes of the gas produced after two minutes

Acid	Volume of gas $\left(\mathrm{cm}^{3}\right)$
\mathbf{K}	40
\mathbf{L}	100

(a) Explain the difference in the volumes of the gas produced
(b) How can the production of the gas be increased?
17. The following is a thermochemical equation for the reaction between hydrogen and oxygen
$\mathrm{H}_{2(\mathrm{~g})}+\mathrm{O}_{2(\mathrm{~g})} \longrightarrow \mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})} \quad \Delta \mathrm{H}=-287 \mathrm{kJmol}^{-1}$
Calculate the bond energy between the elements in water given that:
$\mathrm{O}=\mathrm{O}=+496 \mathrm{kJmol}^{-1} \quad \mathrm{H}-\mathrm{H}=+435 \mathrm{kJmol}^{-1}$
18. $\mathrm{AgClO}_{2(\mathrm{~s})} \rightleftharpoons \mathrm{Ag}_{(\mathrm{s})}+1 / 2 \mathrm{Cl}_{2(\mathrm{~g})}+\mathrm{O}_{2(\mathrm{~g})} \Delta \mathrm{H}=0.00 \mathrm{KJ} / \mathrm{mol}$

What is the effect on the position of equilibrium of the above system if temperature is decreased? Give a reason
19. Sodium carbonate was reacted with dilute sulphuric (VI) acid at $25^{\circ} \mathrm{C}$. The volume of carbon (IV) Oxide gas liberated was recorded at 10 seconds interval. Below is a graph of the volume of carbon (IV) Oxide gas evolved against time.

Mocks Topical Analysis
eeducationgroup.com
(a) On the same axes, sketch the curve labelled \mathbf{V} that would be obtained if Barium carbonate was used instead of sodium carbonate. (All conditions remain constant)
20. (a) What is meant by activation energy?
(b) A certain mass of unground compound X 1 reacted with excess dilute hydrochloric acid. The volume of carbon (IV) oxide gas liberated was measured after every 20 seconds. The results were presented as shown in the graph below:-

(i) On the same axis, sketch the curve that would bimbsined if the experiment was repeated using ground compound X 1
(ii) Explain the shape of your curve in (b) (i) above
22. The sketch below shows the rate at which substance T is converted into U. Study it and answer the questions that follows:-

When the equilibrium has been established the two curves become horizontal after sometime.
Explain the effect of the amount of the two reactants and products
23. Elements A, B, C, and \mathbf{D} are not actual symbols, have atomic numbers $\mathbf{1 9}, \mathbf{9 , 1 2}$ and $\mathbf{1 0}$ respectively.
(a) Which two elements represent non-metals
(b) Write the formula of the compound formed between elements \mathbf{B} and \mathbf{C} and identity the bond present in the compound
24. An equilibrium is established between nitrogen tetra -oxide and nitrogen (IV) oxide as shown below:

State and explain what happens when temperature is increased
$\stackrel{\substack{ \\\mathrm{N}_{2} \mathrm{O}_{4(\mathrm{l})}}}{\text { Pale yellow }} \underset{\text { Red-brown fumes }}{2 \mathrm{NO}_{2(\mathrm{~g})}}$

Mocks Topical Analysis eeducationgroup.com
25. The graph below shows the amount of calcium carbonate and calcium chloride varying with time in the reactions:

(a) Which curve shows the amount of calcium chloride varying with time?
(lmk)
(b) Explain why the two curves become horizontal after a given period of time.
(lmk)
(c) Sketch on the graph how curve II would appear if the experiment was repeated using a more dilute hydrochloric acid solution
(lmk)
26 State the effect on the equilibrium when;
a) Pressure is increased
b) Oxygen gas is added
6. An equilibrium is established between CrO_{4} and H^{+}ions as shown below:

27. State and explain and explain the observation made when aqueous sodium hydroxide is added to the equilibrium mixture
28. Two experiments were carried out as follows and the volume of hydrogen gas evolved measured at intervals of 10 seconds for 100 seconds.
(i) 8 cm of magnesium ribbon was added to 1 M hydrochloric acid
(ii) 8 cm of magnesium ribbon was added to 0.5 M hydrochloric acid

Graphs of volume of hydrogen evolved against time were plotted

(a) Which of the graph was obtained for reaction (i) above? Explain
(b) Explain the general shape of the graph
29. Bromine dissolves in water forming a brown solution, according to the dynamic equation below.

$$
\mathrm{Br}_{\text {(aq) }}+\mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})} \rightleftharpoons 2 \mathrm{H}^{+}{ }_{(\mathrm{aq})}+\mathrm{Br}_{(\mathrm{aq})}+\mathrm{OBr}_{(\mathrm{aq})}^{-}
$$

Mocks Topical Analysis
eeducationgroup.com

State and explain the observation that could be made if a solution of sodium hydroxide is added to the system

Electrochemistry

1. The setup below was used to carry out the electrolysis of Magnesium sulphate solution using inert electrodes.

(i) Name a suitable pair of electrode that can be used in the above process.
(ii) State and explain the changes on the concentration of magnesium sulphate solution as the process proceeds.
2. During purification of copper by electrolysis, 1.48 g of copper were deposited when a current was passed through aqueous copper (II) sulphate for $21 / 2$ hours. Calculate the amount of current passed.
$(\mathrm{Cu}=63.5 \quad$ 1Faraday $=96500 \mathrm{C})$
3 The diagram below represents a ${ }_{29}^{63}$ et-up that cas ${ }_{29}$ be used for the electrolysis of dilute sulphuric acid

(a) Name the electrodes A and B
(b) Write an equation for the reaction taking place at electrode \mathbf{B}
(c) What happens to the concentration dilute sulphuric acid as the reaction continues?
3. In an electrolysis, a current of 200A was passed through molten oxide of metal \mathbf{Q} for 58 minutes and 64.8 g of the metal deposited. Determine;
i) Charge on metal \mathbf{Q}
ii) The volume of oxygen gas produced at standard temperature and pressure $\mathrm{Q}=27 \quad \mathrm{IF}=96500 \mathrm{C}$, molar gas volume $\mathrm{stp}=22.4 \mathrm{dm}^{3}$
4. Consider the reduction potentials below.

$$
\begin{aligned}
& \mathrm{Pb}^{2+}(\mathrm{aq})+2 \mathrm{e} \\
& \mathrm{Mg}^{2+}(\mathrm{aq})
\end{aligned}+2 \mathrm{e} \longrightarrow \mathrm{~Pb}_{(\mathrm{s})}=-\mathrm{O} .13 \mathrm{~V}, \mathrm{Mg}_{(\mathrm{s})}=-\mathrm{O} .76 \mathrm{~V}
$$

a) Write the overall Redox reaction that takes place when the above half cells are connected.
b) Determine the E^{θ} value of the above cell.
(c) Calculate which group of the periodic table is element \mathbf{F} ?
6. An oxide of element \mathbf{F} has the following formula:- $\mathbf{F}_{2} \mathbf{O}_{5}$
(a) Determine the oxidation state of \mathbf{F}

Element	Sodium	Magnesium	Aluminium
Atomic number	11	12	13

7. The table below gives elements and their atomic numbers. Answer the questions that follow: Compare the electrical conductivity of sodium and aluminium. Explain
8. What mass of Zinc will be deposited from a solution of Zinc (II) Chloride when a current of 3A is passed through the Zinc (II) Chloride solution during electrolysis for 50minutes? ($\mathrm{Zn}=65$, 1 Faraday $=96500 \mathrm{C}$)
9. Study the flow chart below and answer the questions that follow:

10. Nitrogen and hydrogen react reversibly according to the equation:-
$\mathrm{N}_{2(\mathrm{~g})}+3 \mathrm{H}_{2(\mathrm{~g})} \quad \rightleftharpoons 2 \mathrm{NH}_{3(\mathrm{~g}) ; \Delta} \mathrm{H}=-92 \mathrm{kjmol}^{-1}$
The energy level diagram for the above reaction is shown below:-

Reaction path

(a) How would the yield of ammonia be affected by:
(i) A decrease in temperature
(ii) An increase in pressure
(b) How does a catalyst affect reversible reaction already in equilibrium?
(c) On the above diagram, sketch the energy level diagram that would be obtained when iron catalyst is added to the reaction
11. Study the electrode potentials in the table below and answer the question that follow:
(Letters are not the actual symbols of elements)

	($\mathbf{E}^{\theta} /$ Volts)	
$\mathrm{H}^{2+}{ }_{(\mathrm{aq})}+2 \mathrm{e}^{-} \longrightarrow$	$\mathrm{H}_{(\mathrm{s})}$	+0.34
$\mathrm{Z}^{2+}{ }_{(\mathrm{aq})}+2 \mathrm{e}^{-} \longrightarrow$	$\mathrm{Z}_{\text {(s) }}$	-2.38
$\mathrm{G}^{+}(\mathrm{aq})+\mathrm{e}^{-} \longrightarrow$	$\mathrm{G}(\mathrm{s})$	+0.80
$\mathrm{T}^{2+}+2 \mathrm{e}^{-} \longrightarrow$		-2.87

(a) Which one is the strongest reducing agent?
(b) Write the ionic equation for the reaction that takes place when \mathbf{Z} is dipped in a solution of G^{+}ions
(c) Calculate the E^{θ} cell value of the reaction in 22.(b) above
12. When a hydrocarbon was completely burnt in oxygen, 4.2 g of Carbon (IV) oxide and 1.71 g of water were formed. Determine the empirical of the hydrocarbon. ($\mathrm{H}=10 \quad \mathrm{C}=12.0 \quad \mathrm{O}=16.0$)
13. During electrolysis of aqueous copper (II) sulphate 144,750 coulombs of electricity were used. Calculate the mass of copper metal that was obtained ($\mathrm{Cu}=641$ Faraday $=96,5000$ coulombs)
14. Sodium metal reacts with oxygen according to the following equation:-

$$
6 \mathrm{Na}_{(\mathrm{s})}+2 \mathrm{O}_{2(\mathrm{~g})} \xrightarrow{\text { Heat }} \mathrm{Na}_{2} \mathrm{O}_{2(\mathrm{~s})}+2 \mathrm{Na}_{2} \mathrm{O}_{(\mathrm{s})}
$$

State one physical and one chemical difference between $\mathrm{Na}_{2} \mathrm{O}_{2}$ and $\mathrm{Na}_{2} \mathrm{O}$
Physical difference \qquad
Chemical difference \qquad
15. The diagram below shows an electrochemical cell:

(a) Give the formula of the possible salt \mathbf{L}
(b) On the diagram show the direction of movement of electrons
(c) Write the cell representation
6. The reaction blow is a redox reaction
$\mathrm{MnO}_{4}^{-}{ }_{(\mathrm{aq})}+8 \mathrm{H}^{+}{ }_{(\mathrm{aq})}+5 \mathrm{Fe}^{2+} \xrightarrow{(\mathrm{aq})} \longrightarrow$)
(a) Identify the species reduced. Explain
(b) Write the equation for the oxidation reaction
17. Consider the cell diagram below
$\mathrm{Cr}_{(\mathrm{s})} / \mathrm{Cr}^{3+}{ }_{(\text {aq) }} / / \mathrm{Fe}^{2+}{ }_{(\text {aq) })} / \mathrm{Fe}_{(\mathrm{s})} \quad \mathrm{E}^{\theta}=+0.30 \mathrm{~V}$
i) Write the overall cell reaction for the above electrochemical cell
ii) Given that E^{θ} value for $\mathrm{Fe}^{2+}{ }_{(\text {aq) }} / \mathrm{Fe}_{(\mathrm{s})}$ is -0.40 V , calculate the E^{θ} value for $\mathrm{Cr}^{3+}{ }_{(\mathrm{aq})} / \mathrm{Cr}_{(\mathrm{s})}$
18. (a) Describe the process by which Trichloro fluoromethane Nitrogen is obtained from air on a large scale
(b) Study the flow chart below and answer the questions that follow

(i) Identify gas \mathbf{J}
(ii) Using oxidation numbers, show that ammonia is the reducing agent in step VI
(iii) Write the equation that occurs in step \mathbf{V}
(iv) Give one use of ammonium nitrate
(c) The table below shows the observations made when aqueous ammonia was added to cations of elements \mathbf{E}, \mathbf{F} and \mathbf{G} until in excess

Cation of	Addition of a few drops of aqueous ammonia	Addition of excess aqueous ammonia
E	White precipitate	Insoluble
F	No precipitate	No precipitate
G	White precipitate	Dissolves

(i) Select the cation that is likely to be Zn^{2+}
(ii) Given that the formula of the cation of element \mathbf{E} is \mathbf{E}^{2+}, write the ionic equation for the reaction between \mathbf{E}^{2+} and aqueous ammonia
19. a) Study the standard electrode potential for the half-cells given below and answer the questions that follow.(The letter do not represent the actual symbols of the elements)

$$
\begin{array}{lcc}
\mathrm{N}^{+}\left(\mathrm{qq)}+\mathrm{e}^{-}\right. & \mathrm{N}(\mathrm{~s}) ; & -2.92 \\
\mathrm{~J}^{+}(\mathrm{aqq})+\mathrm{e}^{-} & \mathrm{J}_{(\mathrm{s})} ; & +0.52 \\
\mathrm{~K}_{(\mathrm{aq})}^{+}+\mathrm{e}^{-} & 1 / 2 \mathrm{~K}_{2(\mathrm{~g})} ; & 0.00 \\
1 / 2 \mathrm{G}_{2(\mathrm{~g})}+\mathrm{e}^{-} & \mathrm{G}-(\mathrm{aq}) & +1.36 \\
\mathrm{M}^{2+}(\mathrm{aq})+2 \mathrm{e}^{-} & \mathrm{M}_{(\mathrm{s})} ; & -0.44
\end{array}
$$

i) Identify the strongest oxidizing agents. Give a reason for your answer
ii) Which two half-cells would produce the highest potential difference when combined?
iii) In the space below draw a complete electro chemical cell of the two-half cells mentioned in (ii) above
20. Below is a simplified diagram of the Down's cell for the extraction of sodium. Study it and answer the question that follow:-
$\mathrm{NaCl}+\mathrm{CaCl}_{2}$
(i) From which substances are the electrodes made? thode.

Anode
(ii) State and explain why sodium chloride is mixed with calcium chloride
(iii) What is the role of the iron gauze
(iv) Write equations for the reaction at :-
cathode
anode
(v) Which property of sodium makes it possible to collect it as shown?
(b) When a current of 6.42 A was passed through an electrolyte Y^{2+} ions for 10 minutes, 2.74 of \mathbf{Y} were deposited
(i) Calculate the quantity of electricity passed in the experiment
(ii) Determine the relative atomic mass of \mathbf{Y} (1Faraday $=96000$ coulombs)
21. (a) The table gives the standard redox potentials for a number of half reactions. Use it to answer the questions that follow:-
($\mathbf{E}^{\theta} /$ Volts $)$

-0.44
$+0.54$
$+0.77$
$+0.88$
(i) Relative to which half-cell reaction are the above electrode potentials expressed?
(ii) Calculate the e.m.f of the cell made up by combining the $\mathrm{I}_{2(1)} / 2 \mathrm{I}_{(\mathrm{aq})}^{-}$electrode and $\mathrm{Zn}^{2+}{ }_{(\mathrm{aq})} / \mathrm{Zn}_{(\mathrm{s})}$ electrode
(ii) Which of the substances listed in the above table is :-
I. The strongest oxidising agent
II. The strongest reducing agent
(iv) Which substances could be used to convert iodide ions to iodine? Write balanced equations for any possible conversions
22. a) The standard electrode potential for the elements chlorine and magnesium are:-

i) Which one of the two elements will act as an oxidizing agent? Explain.
ii) Calculate the electromotive force of a cell where the overall reaction is:-

$$
\mathrm{Cl}_{2(\mathrm{~g})}+\mathrm{Mg}_{(\mathrm{s})} \longrightarrow \mathrm{MgCl}_{2(\mathrm{~s})}
$$

b) The table below gives the reduction standard electrode potentials for divalent metals. The letters are not their actual symbols. Use them to answer the questions that follow:-

$\underline{\text { Metal }}$	$\underline{\mathbf{E}^{\boldsymbol{\theta}} \text { (volts) }}$
P	+1.50
Q	-0.44
R	+0.34
S	+0.76

i) Select two metals whose half cells can produce the highest voltage when connected.
ii) Draw a well labelled diagram of electrochemical cell formed by half-cells of metals \mathbf{P} and \mathbf{Q}
iii) Calculate the voltage produced by the cell in (ii) above
c) When nitrate solution of a certain metal \mathbf{X} was electrolysed, 1.174 g of metal \mathbf{X} was deposited by a current of 4 amperes flowing for 16 minutes. Determine the formula of the metal nitrate. $\quad(1 \mathrm{~F}=96,500$, R.A.M of $\mathbf{X}=59)$
23. Study carefully the information given below and answer the questions that follow:-

Substance	Physical state at e.t.p	Solubility in water	Other information
A	Solid	- Soluble - Blue solution	- solution conducts electricity forming two products \mathbf{B} and \mathbf{C} $-\mathbf{B}$ is solid and \mathbf{C} is a greenish - yellow gas
D	Gas	- Soluble - - Colourless solution	- Solution forms pale blue precipitate with \mathbf{A} and then deep blue solution in excess
E	Solid	- Insoluble	- With a solution of \mathbf{A} forms B and a colourless solution at E^{2+} ions

(a) Identify the substances represented by the letters
(b) Give equations for the reactions in which:-
(i) Substance \mathbf{B} is formed from the solution of \mathbf{A} on electrolysis
(ii) Substance \mathbf{B} is formed from solution \mathbf{A} when reacted with \mathbf{E}
(c) Give one use of gas \mathbf{C}
(d) Name the ion responsible for the deep blue solution
24. (a) Study the standard electrode potentials for the elements given below and answer the questions that follow. The letters do not represent the actual symbols of the elements
(i) What is the E^{θ} value of the weakest reducing agent?
(ii) Which element is likely to be hydrogen? Give a reason for your answer
(iii) Draw a diagram for the cell that would be obtained when the half cell of elements \mathbf{S} and \mathbf{V} are combined
(iv) Calculate the e.m.f of the electrochemical cell in a (iii) above
(b) The diagram below represents the electrolysis of dilute sulphuric (VI) acid

(i) Name the gases \mathbf{X} and \mathbf{Y}
(ii) Write ionic equation for the formation of gas \mathbf{X}
(iii) At what electrode does reduction take place? Explain your answer
(iv) Name the most suitable electrodes for this experiment. Explain your answer
25. The flow chart below shows an analysis of mixture \mathbf{R} that contains two salts. Study it and answer the questions that follow:-

(i) Write two ionic equations for the reactions between the cation in filtrate \mathbf{X} and aqueous ammonia (Ammonium hydroxide)until in excess
(ii) What conclusion can be drawn from Step IV only? Explain
(iii) What observation would indicate the presence of a $\mathrm{NO}_{3}{ }^{-}$ion in step I?
(iv) Write the formula of the anion in residue \mathbf{V}. Explain
(v) Suggest the identity of the cation present in solution \mathbf{Z}
(vi) Name the two salts present in mixture \mathbf{R}
26. (a) The set-up below was used in the electrolysis of copper II nitrate solution:

(i) What is electrolysis?
(ii) Show the anode and cathode on the diagram
(iii) Explain how you would confirm gas \mathbf{P}
(iv) Write the equation for the reaction occurring at
(a) Anode
(b) Cathode
(v) State two changes that occur on the electrolyte after the experiment
(b) Below are the standard electrode potentials for electrodes \mathbf{B} and \mathbf{D}

(i) Identify the electrode which is ;
(a) The least reducing agent
(b) The strongest oxidizing agent
(ii) Calculate the e.m.f of the cell formed when the two electrodes are connected
(iii) Write a cell representative for the cell above
27. A typical electrolysis cell uses a current of 40,000 amperes. Calculate the mass (in Kg of aluminium produced in one hour). $(\mathrm{Al}=27)($ Faraday $=96500$ Coloumbs $)$
28. A strip of copper metal was immersed into a nitrate solution of metal Q overnight. Use the information below to answer questions that follow
$\left.\begin{array}{|l|l|}\hline \mathrm{Q}_{(\mathrm{aq})}+\mathrm{e}^{-} & \mathbf{E}^{\theta} \text { (Volts) } \\ \mathrm{Cu}^{2+}(\mathrm{aq})+2 \mathrm{e}^{-} \longrightarrow \mathrm{Q}_{(\mathrm{s})} & +0.80 \\ & \longrightarrow \mathrm{Cu}_{(\mathrm{s})}\end{array}\right]+0.34 \mathrm{l}$
(a) State the observations made at the end of the experiment
(b) Give a reason for the observations made in (a) above
(c) Calculate the e.m.f of the cell above
29. (a) Excess marble chips (Calcium carbonate) was put in a beaker containing $150 \mathrm{~cm}^{3}$ of dilute hydrochloric acid. The beaker was put on a weighing balance and the total loss in mass recorded after every two minutes as shown in the table below:

Time (min)	0	2	4	6	8	10
Total loss in mass (g)	0	1.8	2.45	2.95	3.2	3.3

Why was there a loss in mass?
(ii) The average rate of reaction was faster between 0 and 2 minutes than between 6 and 8 minutes. Explain why
(iii) State one way in which the rate of reaction can be increased
(iv) When aqueous sodium sulphate was added to contents of the beaker, a white precipitate was formed;
(I) Identify the white precipitate \qquad
(II) Name one use of the substance named in (iv) (I) above
b) A student performed the following experiment with an intention to extract calcium metal

(i) The student was surprised that no calcium was produced in the experiment. Explain why no calcium was produced
(ii) Write the equation for the reaction that occurred at the anode if the solution was concentrated
(iii) The electrolysis involved passing an electric current of 4A for one hour. Calculate the mass of the product at the anode. (1Faraday $=96500 \mathrm{C}, \mathrm{Cl}=35.5, \mathrm{H}=1.0, \mathrm{O}=16, \mathrm{Ca}=40$)
30. Cheptoo set-up some apparatus as shown in the diagram below:-

At the start of the experiment, the bulb did not light:-
(a) State and explain the observation made when the tap was opened to allow the hydrogen chloride gas through the water for about 20 minutes
(b) Write the chemical equation for the reaction that took place at the cathode
31. Metals \mathbf{K} and \mathbf{N} were connected to form a cell as shown in the diagram below. Their reduction potentials are as shown below:

$$
\begin{aligned}
& \mathrm{K}^{+}\left(\mathrm{aqq} / \mathrm{K}_{(\mathrm{s})} \equiv-0.17 \mathrm{~V}\right. \\
& \mathrm{N}_{(\mathrm{aq})} / \mathrm{N}_{(\mathrm{s})}=+1.16 \mathrm{~V}
\end{aligned}
$$

I. Write the equation for the half-cell reaction that occurs at

Metal K electrode
Metal \mathbf{N} electrode
II Identify \mathbf{P} and state its role in the above setup
(i). Identity of \mathbf{P}
(ii). Role of \mathbf{P} in the setup.
III. On the diagram, show the flow of
I. Electrons
II. Current.

IV Calculate cell potential (E) for the cell represented in the setup above
32. (a) The diagram below shows a Zinc-copper cell.

(i) Given the standard electrode potential of Zinc is -0.76 V and that of copper is +0.34 V , suggest;
(i)The identity of \mathbf{W}
(ii) The identity of \mathbf{X}
(iii) The equation for the overall cell reaction
(iv) The reading on the voltmeter
(b) Sodium hydroxide may be manufactured by the electrolysis of brine as in the diagram below:-

(i) State the chemical name of brine
(ii) Write the equations for the reactions are the electrodes

Anode
Cathode
Mocks Topical Analysis
(iii) Explain how sodium hydroxide is obtained from the product of this process
33. A typical electrolysis cell uses a current of 40,000 amperes. Calculate the mass (in kilograms) of aluminium produced in one hour ($\mathrm{Al}=27$, 1Faraday $=96,500$ coulombs)
34. The reaction between ammonia and oxygen to form Nitrogen (II) oxide is highly exothermic $4 \mathrm{NH}_{3(\mathrm{~g})}+5 \mathrm{O}_{2(\mathrm{~g})} \longrightarrow 4 \mathrm{NO}_{(\mathrm{g})}+6 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{g})}$
The reaction is carried out in presence of platinium-rhodium catalyst at 1173 k and a pressure of 911.952 k pa .
i) Explain how each of the following would affect the yield of Nitrogen(II) oxide gas:
a) Reduction in pressure
b) Using a more efficient catalyst
35. The following table shows the standard reduction potentials of some half cells. Study the table and refer to it to answer the questions that follow;

Half reaction

$\left.\mathrm{P}^{4+}{ }_{(\mathrm{aq})}\right)+\mathrm{e}^{-} \longrightarrow \mathrm{P}^{3+}{ }_{(\text {aq })} \quad+0.61$
$\mathrm{Q}^{3+}{ }_{(\mathrm{aq})}+\mathrm{e}^{-} \longrightarrow \mathrm{Q}^{2+}{ }_{(\mathrm{aq})} \quad+0.77$
$\mathrm{R}_{2(\mathrm{~g})}+2 \mathrm{e}^{-} \longrightarrow{2 \mathrm{R}^{-}(\mathrm{aq})}^{(} \quad+0.54$
$\mathrm{S}^{2+}{ }_{(\mathrm{aq})}+2 \mathrm{e}^{-} \longrightarrow \mathrm{S}_{(\mathrm{s})}$
$\mathrm{T}^{2+}{ }_{(\mathrm{aq})}+2 \mathrm{e}^{-} \longrightarrow \mathrm{T}_{(\mathrm{s})} \quad-0.74$
a) Identify the strongest oxidizing agent
b) Which substance would be used to oxidize R^{-}ion to the atom R
c) Study the cell represented below;

$$
\left.\mathrm{T}_{(\mathrm{s})} / \mathrm{T}^{2+}{ }_{(\mathrm{aq})} / / \mathrm{S}^{2+}{ }_{(\mathrm{aq})}\right) \mathrm{S}_{(\mathrm{s})}
$$

i) Identify the electrodes
ii) Write equations for the reaction taking place in each half- cell
iii) Determine the cell equation and the electromotive force (e.m.f) of the cell represented in (c) above
iv) In which direction does the electrons flow in the external circuit of the cell whose e.m.f is determined in (iii) above
d) A steady current of 2.5 A was passed for 15 minutes through a cell containing divalent ions M^{2+}. During this process 0.74 g of metal M was deposited ($\mathrm{IF}=96500 \mathrm{C}$)
i) Calculate the quantity of electricity passed in this cell
ii) Determine the relative atomic mass of \mathbf{M}
36. The following table shows the standard reduction potentials of some half cells.

Study the table and refer to it to answer the questions that follow;

a) Identify the strongest oxidizing agent
b) Which substance would be used to oxidize R^{-}ion to the atom R
c) Study the cell represented below;

$$
\mathrm{T}_{(\mathrm{s})} / \mathrm{T}^{2+}{ }_{(\mathrm{aq})} / / \mathrm{S}^{2+}{ }_{(\mathrm{aq})} / \mathrm{S}_{(\mathrm{s})}
$$

i) Identify the electrodes
ii) Write equations for the reaction taking place in each half- cell
iii) Determine the cell equation and the electromotive force (e.m.f) of the cell represented in (c) above
iv) In which direction does the electrons flow in the external circuit of the cell whose e.m.f is determined in (iii) above
d) A steady current of 2.5 A was passed for 15 minutes through a cell containing divalent ions M^{2+}. During this process 0.74 g of metal M was deposited ($\mathrm{IF}=96500 \mathrm{C}$)
i) Calculate the quantity of electricity passed in this cell
ii) Determine the relative atomic mass of \mathbf{M}
37. In the equation below identify the reagent that acts as an acid in the forward reaction.

Give a reason for your answer.
$\mathrm{NH}_{4}^{+}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})} \rightleftharpoons \mathrm{NH}_{3(\mathrm{aq})}+\mathrm{H}_{3} \mathrm{O}^{+}{ }_{(\mathrm{aq})}$
38. A student set up the experiment shown below. Study it and answer the questions that follow.

a) State any two observations the student made during the experiment
b) Explain what happens to the pH of the resultant solution at the end of the experiment
39. Copper (II) sulphate solution was electrolysed using copper electrode. A Current of 0.5 A was passed for 64.3 minutes and a mass of 0.64 g of copper was deposited. $\quad(\mathrm{Cu}=63.5)$
a) Which electrode decreased in mass during electrolysis? Explain
b) Calculate the quantity of charge needed to deposits 1 mole of copper
40. State and explain what is observed when crystals of iodine are heated gently
41. (a) State Faradays First Law of Electrolysis
(b) Calculate the volume at s.t.p of hydrogen evolved when 2A of electricity are passed through dilute sulphuric acid for 2 hours.
(Molar gas volume at s.t.p $=22.4 \mathrm{dm}^{3}$, one Faraday $=96500$ coulombs)
42. The following is an equation for the reaction between ammonia and water

$$
\mathrm{NH}_{3(\mathrm{~g})}+\mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})} \rightleftharpoons \mathrm{NH}_{4(\mathrm{aq})}^{+}+\mathrm{OH}^{-}(\mathrm{aq})
$$

(a) Name the base in the backward reaction
43. The common ores of Zinc are zinc blende and calamine:-
(i) Give the chemical formula of Zinc blende
(ii) Explain how the pollution caused by large scale extraction of Zinc can be reduced by having a fertilizer plant close to it
44. The oxides of calcium and phosphorous react as shown below:-

$$
6 \mathrm{CaO}_{(\mathrm{s})}+\mathrm{P}_{4} \mathrm{O}_{10(\mathrm{~s})} \longrightarrow 2 \mathrm{Ca}_{3}\left(\mathrm{PO}_{4}\right)_{2(\mathrm{~s})}
$$

(i) Give a reason why these substances react and yet both are oxides
(ii) Work out the oxidation state of phosphorous in $\mathrm{P}_{4} \mathrm{O}_{10}$
(iii) State one use of $\mathrm{Ca}_{3}\left(\mathrm{PO}_{4}\right)_{2}$
45. The standard hydrogen electrode is used as the reference electrode. Some of the difficulties in using hydrogen gas as an electrode are:

- Hydrogen is a gas at $25^{\circ} \mathrm{C}$
- Hydrogen does not conduct electricity
-The half-cell reaction, $2 \mathrm{H}^{+}{ }_{(\mathrm{aq})}+2 \mathrm{e} \rightleftharpoons \mathrm{H}_{2(\mathrm{~g})}$ is slow and takes long to reach equilibrium.
Explain how these difficulties are solved in the standard hydrogen electrode

46. The following are electrode potentials of the half cells

Half cell	$\mathrm{E}^{\boldsymbol{\theta}}$ volts
$\mathrm{M}_{\text {teqq }}^{\text {ata }} / \mathrm{M}_{(\mathrm{s})}$	-0.76
$\mathrm{C}^{2+}{ }_{(\mathrm{aq})} / \mathrm{C}_{(\mathrm{s})}$	-0.34

(a) Calculate the potential difference of the following cell.
$\mathrm{M}_{(\mathrm{s})} / \mathrm{M}^{2 \mathrm{t}}{ }_{(\mathrm{aq})} / / \mathrm{C}^{2 \mathrm{t}}{ }_{(\mathrm{aq})} / \mathrm{C}_{(\mathrm{s})}$
47. (a) Name two types of isotopes of phosphorous
(b) Explain why phosphorus is stored in water and not in oil like sodium
48. Use the cell representation below to answer the questions that follow:-
$\mathrm{X}_{(\mathrm{s})} / \mathrm{X}^{3+}{ }_{(\mathrm{aq})} / / \mathrm{W}^{2+}{ }_{(\mathrm{aq})} / \mathrm{W}_{(\mathrm{s})}$
(a) Write the equation for the cell reaction above
(b) If the e.m.f of the cell is 0.30 V and E^{θ} value for $\mathrm{W}^{2+} / \mathrm{W}$ is -0.44 volts , calculate the E^{θ} for $\mathrm{X}^{3+}{ }_{(\mathrm{aq})} / \mathrm{X}_{(\mathrm{s})}$
49. The following diagram represents the electrolysis of dilute sodium chloride solution using inert

Determine the electrode at which different electrolytic products would be produced if the solution is electrolysed for several hours. Explain
50. Complete the following redox equations by adding the correct number of electrons on either reactant or product side of the redox equations:-
(a) $\mathrm{ClO}^{-}(\mathrm{aq})+6 \mathrm{H}^{+}(\mathrm{aq})$

51. The following are standard reduction potentials;

Half-cell	$\mathbf{E}^{\theta} /$ Volts	Using iron
$\mathrm{Al}_{(\mathrm{s})} / \mathrm{Al}^{3+}{ }_{(\mathrm{aq})}$	-1.66	
$\mathrm{Zn}_{(\mathrm{s})} / \mathrm{Zn}^{2+}{ }_{\text {aq }}$	-0.76	
$\mathrm{Fe}_{(\mathrm{s})} / \mathrm{Fe}^{2+}{ }_{(\mathrm{aq}}$	0.44	
$\mathrm{Ni}_{(\mathrm{s})} / \mathrm{Ni}^{2+}{ }_{(\mathrm{aq})}$	0.25	

Rewrite the E^{θ} values of the above half-cells using iron as a reference electrode
52. Calculate the mass of metal \mathbf{J} that would be dissolved at the anode when a solution of \mathbf{J} (III) nitrite is electrolysed using a current of 1.5 amperes for 15 minutes (1 Faraday $=96,500 \mathrm{C} ; \mathrm{J}=52$)
53. Consider the following standard electrode potentials:

$\mathrm{Sn}^{2+}(\mathrm{aq})+$	$\mathrm{Sn}_{(\mathrm{s})}$	+0.14
$\mathrm{Fe}^{2+}{ }_{(\mathrm{aq})}+2 \mathrm{e}-$	$\mathrm{Fe}_{(\mathrm{s})}$	- 0.44v
$\mathrm{Zn}^{2+}{ }_{(a q)}$	$\rightarrow \mathrm{Zn}_{(\mathrm{s})}$	-0.76

Some modern cars are made from steel coated with other metals. Using this data above state and explain the best suited metal for coating steel

Metals

1.

The following diagram represents extraction of sodium by the Down's cell

(a) Why is the anode made of graphite in this case instead of steel which is a better conductor of electricity?
(b) How are the electrolytic products separated from reacting?
(c) Give reasons why large quantities of electricity is required for this process
2. a) Give one environmental hazard associated with the extraction of zinc metal
b) Suggest one manufacturing plant that can be set up near zinc extraction plant. Give reasons for your answer
c) What properties of aluminium and its alloys make it suitable for use in making aircraft parts
3. Aluminium is used in making overhead cables. State two properties of aluminium that makes it suitable for this use
4. The stages shown in the following diagram can be used to extract zinc from its oxide:-

Name the stage and the process taking place in it:-

Name each sage and the process taking place in it:
Stage 1. \qquad
Stage 2. \qquad
Stage 3 \qquad
5. Study the flow chart below and answer the questions that follow:

(a) Name gas \mathbf{Q}
(b) With the help of diagram, describe how step (V) is carried out
6. Name the following compounds using IUPAC system
(i) CCl_{4}
(ii) HOCl
7. Study the information provided:-

Element	Atomic radius (nm)	Ionic radius (nm)	Melting point of oxide (${ }^{\circ} \mathbf{C}$)
W	0.381	0.418	-117
Y	0.733	0.669	849
Z	0.544	0.489	1399

(a) Explain why the melting point of the oxide of \mathbf{W} is lower than that of the oxide of \mathbf{Z}
8. The flow chart below shows steps used in the extraction of zinc from one of its ores.

(a) Name the process that is used in step 2 to concentrate the ore
(b) Write an equation for the reaction which takes place in step 3
(c) Name one use of lead
9. Name the chief ores from which the following metals are extracted
a)Aluminium
b) Copper
10. The diagram below represents the second stage in extraction of aluminium metal

i) On the diagram label the: Anode, cathode and the electrolyte region
ii) The melting point of aluminium oxide is $2054^{\circ} \mathrm{C}$, but the electrolysis is carried out at between $800-900^{\circ} \mathrm{C}$
a) Why is the electrolysis not carried out at $2054^{\circ} \mathrm{C}$
b) What is done to lower the temperature?
iii) The aluminium which is produced is tapped off as a liquid .What does this suggest about its melting points?
11. The extraction of aluminium from its ore takes place in 2 stages. Purification stage and electrolysis stage. Below is set-up for the electrolysis stage:-

(a) (i) Name the chief ore from which aluminium is extracted
(ii) Name one impurity which is removed at the purification stage
(b) (i) Label on the diagram each of the following:-

I - Anode
II- Cathode
III- Region containing electrolyte
(ii) The melting point of aluminium oxide is $2054^{\circ} \mathrm{C}$ but the electrolysis is carried out at between $80^{\circ} \mathrm{C}$ and $900^{\circ} \mathrm{C}$
I. Why is not carried out at $2050^{\circ} \mathrm{C}$
II. What is done to lower the temperature
12. Aluminium is the most abundant metal in the earth crust and it is widely extracted for its wide range of uses.
(i) Name one major ore of aluminium and give its formula
(ii) Name two main impurities found in the ore
(iii)Aluminium oxide is heated first before it is electrolysed. Explain
(iv) Electrolysis of aluminium oxide is done as shown below:

(a) Identify the anode and cathode on the diagram
(b) What is the role of electrolyte in the extraction?
(c) Write half equations for the reactions that occur at the anode and cathode
(d) State two uses of aluminium
13. The diagram below is a flow chart for the extraction of copper. Study it and answer the questions that follow:

(a) Write the formula of the major ore of copper metal
(b) Name process II
(c) Give an equation for the reaction that occurs in stage III
(d) Explain what happens in stage IV
(e) Write half cell equations occurring at the anode and cathode in stage VII
(f) Draw a simple diagram showing the set-up that is used in electrolytic purification of copper
(g) A green rocky materials suspected to be the ore malachite $\mathrm{CuCO}_{3} . \mathrm{Cu}(\mathrm{OH})_{2}$.
14. The flow chart below illustrates the extraction of Zinc. Study it and answer the questions that

a) Name:-
i) $\operatorname{Gas} \mathbf{Q}$
ii) Liquid \mathbf{R}
(iii) Residues \mathbf{S}
b) Name the sulphide ore used
c) Before the ore is roasted, it is first concentrated;
(i) Explain why it is necessary to concentrate the ore
(ii) Explain briefly the process of concentrating the ore
d) Write an equation for the reaction that takes place in the:-
(i) Roaster

Mocks Topical Analysis
(ii) Reaction chamber
(e) (i) Name one major impurity present in the sulphide ore used
(ii) Write an equation to show how the impurity in (e)(i) above is removed
f) Given that the sulphide ore contains only 45% Zinc sulphide by mass, calculate :
(i) The mass in grams of Zinc sulphide that would be obtained from 250 kg of the ore.
(ii) The volume of Sulphur (IV) oxide that would be obtained from the mass of sulphide ore at room temperature and pressure
($\mathrm{Zn}=65.4, \mathrm{~S}=32.0, \mathrm{O}=16.0$, I mole of gas occupies 24.0 liters at r.t.p)
15. The flow chart below represents the extraction of zinc from its ore and a by-product used in the manufacture of sulphuric (VI)acid. Study it and use it to answer the questions that follow:-

a) Name;
i) The suitable zinc ore used.
ii) The main impurity in the ore
b) Describe how zinc ore is concentrated
c) Write an equation for the reaction taking place in the roasting furnace
d) Describe what happens in the reduction chamber
e) Identify substances:-
W.
($1 / 2 \mathrm{mk}$) M
($1 / 2 \mathrm{mk}$)
f) Write the equation for the reaction that occurs in chamber \mathbf{N}.
g) Explain why sulphur (VI) oxide is not dissolved directly in water
h) Explain the danger caused by this process to the environment
(2 marks)
16. The diagram below is for extraction of Aluminium from its ore. It takes place in stages. Use it to answer the questions that follow:-

(a) Name the two stages mentioned above
*
(b) Name:-
(i) The ore from which Aluminium is extracted
(ii) The impurities removed during the extraction of Aluminium *
(c) On the diagram label:-
(i) The electrodes
(ii) The region containing the electrolyte
(d) Molten cryolite is added to Aluminium Oxide during extraction. Explain
17. A current of 3 A was passed through fused aluminium oxide for 10 minutes. Calculate the mass of Aluminium obtained at one electrode $(\mathrm{Al}=27.0, \mathrm{IF}=96500 \mathrm{C})$
18. (a) Name one ore that can be used to commercially extract Zinc metal
(b) The flow chart below illustrates the extraction of zinc and preparation of zinc sulphate crystals.

(i) Name :
(1) Gas \mathbf{P}
(11) Liquid \mathbf{R}
(III) Residue \mathbf{S}
(ii) What is the role of coke in the above process?
(iii)Name the main impurity removed in the separation chamber
(iv) Write an equation for the reaction that takes place in ;
(1). Roaster
(11). Reaction chamber II
(v) Write an equation for the reaction that takes place between Zinc metal and liquid \mathbf{R}
(vi) Given that zinc Suiphide ore contains only 45% of zinc Suiphide by mass, calculate the mass in grams of zinc Sulphide that would be obtained from 250 kg of the ore .
(vii) Give one commercial use of Zinc metal
19. The flow chart below shows a sequence of chemical reactions starting with Zinc.

Study it and answer the questions that follow:-

a) In step 1 , excess 3 M hydrochloric acid was added to 0.5 g of Zinc powder
i) State two observations which were made when the reaction was in progress
ii) Explain why hydrogen gas is not liberated when dilute nitric acid is used in step 1
iii) a) Write the equation for the reaction that took place in step 1
b) Calculate the volume of 3M hydrochloric acid that was needed to react completely with 0.5 g of Zinc powder $(\mathrm{Zn}=65.0)$
20. The diagram below is a simplified apparatus for extraction of sodium. Study it and answer the equations that follow:-

(a) Which substances come out at:- $\mathbf{P} \quad \& \quad \mathbf{Q}$
(b) What is the role of the diaphragm
(c) Write the equation of the reaction forming sodium
21. The set-up below was used to investigate electrolysis of a certain molten compound;-

(a) Complete the circuit by drawing the cell in the gap left in the diagram
(b) Write half-cell equation to show what happens at the cathode
(c) Using an arrow show the direction of electron flow in the diagram above
22. (a) Name two ores from which Zinc metal is mostly extracted
(b) One of the steps in the extraction of Zinc metal from its ore is roasting of the ore in excess oxygen. Write equations for the reactions that take place when the ore in (a) above is roasted
23. Aluminum metal is mainly extruded from molten Bauxite by electrolysis.
a) Name the main impurity in this ore.
b) Briefly describe how the impurity is removed from the ore before electrolysis process. (2 mks)
24. (a) In the extraction of aluminium form its ore by the use of electrolysis, explain the following observations:-
(i) the graphite anode is replaced from time to time
(ii) the steel tank which can also serve as an electrode is also lined with graphite cathode
(b) Sodium and aluminium metals both conduct electricity, but aluminium is a better conductor of electricity than sodium. Explain

Organic chemistry II (alkanoic acids and alkanols)

1. A student mixed equal volumes of Ethanol and butanoic acid. He added a few drops of concentrated Sulphuric (VI) acid and warmed the mixture
(i) Name and write the formula of the main products

Name
Formula
(ii) Which homologous series does the product named in (i) above belong?
2. The structure of the monomer phenyl ethene is given below:-

a) Give the structure of the polymer formed when four of the monomers are added together
b) Give the name of the polymer formed in (a) above
3. Explain the environmental effects of burning plastics in air as a disposal method
4. Write chemical equation to represent the effect of heat on ammonium carbonate
5. Sodium octadecanoate has a chemical formula $\mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{6} \mathrm{COO}^{-} \mathrm{Na}^{+}$, which is used as soap.

Explain why a lot of soap is needed when washing with hard water
6. A natural polymer is made up of the monomer:

(a) Write the structural formula of the repeat unit of the polymer
(b) When 5.0×10^{-5} moles of the polymer were hydrolysed, 0.515 g of the monomer were obtained.
Determine the number of the monomer molecules in this polymer.
($\mathrm{C}=12 ; \mathrm{H}=1 ; \mathrm{N}=14 ; \mathrm{O}=16$)
7. The formula below represents active ingredients of two cleansing agents \mathbf{A} and \mathbf{B}

Agent A

$$
\mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{6} \mathrm{COO}^{-} \mathrm{Na}^{+}
$$

Agent B

Which one of the cleansing agents would be suitable to be used in water containing magnesium hydrogen carbonate? Explain
8. Study the polymer below and use it to answer the questions that follow:

(a) Give the name of the monomer and draw its structures
(b) Identify the type of polymerization that takes place
(c) State one advantage of synthetic polymers
9. Ethanol and Pentane are miscible liquids. Explain how water can be used to separate a mixture of ethanol and pentane
10.

(a) What is absolute ethanol?
(b) State two conditions required for process \mathbf{G} to take place efficiently
11. (a) (i) The table below shows the volume of oxygen obtained per unit time when hydrogen peroxide was decomposed in the presence of manganese (IV) Oxide. Use it to answer the questions that follow:-

Time in seconds	Volume of Oxygen evolved $\left(\mathbf{c m}^{\mathbf{3}}\right)$
0	0
30	10
60	19
90	27
120	34
150	38
180	43
210	45
240	45
270	45
300	45

(i) Plot a graph of volume of oxygen gas against time
(ii) Determine the rate of reaction at time 156 seconds
(iii) From the graph, find the time taken for $18 \mathrm{~cm}^{3}$ of oxygen to be produced
(iv) Write a chemical equation to show how hydrogen peroxide decomposes in the presence of manganese (IV) Oxide
(b) The diagram below shows how a Le'clanche (Dry cell) appears:-

(i) What is the function of MnO_{2} in the cell above?
(ii) Write the equation of a reaction that occurs at the cathode
(iii) Calculate the mass of Zinc that is consumed when a current of 0.1 amperes flows through the above cell for 30 minutes ($1 \mathrm{~F}=96500 \mathrm{c} \mathrm{Zn}=65$)
12. (a) Give the IUPAC names of the following compounds:
(i) $\mathrm{CH}_{3} \mathrm{COOCH}_{2} \mathrm{CH}_{3}$
(ii)

(b) The structure below shows some reactions starting with ethanol. Study it and answer the questions that follow:

Compound \mathbf{U}
(i) Write the formula of the organic compounds \mathbf{P} and \mathbf{S}
(ii) Name the type of reaction, the reagent(s) and condition for the reactions in the following steps :-

(iv) Draw the structural formula of \mathbf{T} and give its name
(v) (I) Name compound \mathbf{U}.
(II) If the relative molecular mass of \mathbf{U} is 42000 , determine the value of $\mathrm{n}(\mathbf{C}=12, \mathbf{H}=1)$
(c) State why $\mathrm{C}_{2} \mathrm{H}_{4}$ burns with a more smoky flame than $\mathrm{C}_{2} \mathrm{H}_{6}$
13. a) State two factors that affect the properties of a polymer
b) Name the compound with the formula below :

$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{ONa}$

c) Study the scheme below and use it to answer the questions that follow:-

i) Name the following compounds:-
I. Product T \quad........................... II. K
ii) State one common physical property of substance \mathbf{G}
iii) State the type of reaction that occurred in step \mathbf{J}
iv) Give one use of substance \mathbf{K}
v) Write an equation for the combustion of compound \mathbf{P}
vi) Explain how compounds $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COOH}$ and $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH}$ can be distinguished chemically vii) If a polymer \mathbf{K} has relative molecular mass of 12,600, calculate the value of $\mathbf{n}(\mathrm{H}=1 \mathrm{C}=12)$
14. Study the scheme given below and answer the questions that follow:-

(a) (i) Name compound \mathbf{P}
(ii) Write an equation for the reaction between $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COOH}$ and $\mathrm{Na}_{2} \mathrm{CO}_{3}$
(b) State one use of polymer \mathbf{Q}
(c) Name one oxidising agent that can be used in step II
(d) A sample of polymer \mathbf{Q} is found to have a molecular mass of 4200 . Determine the number of monomers in the polymer $\quad(\mathrm{H}=1, \mathrm{C}=12)$
Mocks Topical Analysis eeducationgroup.com
(e) Name the type of reaction in step I
(f) State one industrial application of step III
(g)State how burning can be used to distinguish between propane and propyne. Explain your answer
(h) $1000 \mathrm{~cm}^{3}$ of ethene $\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)$ burnt in oxygen to produce Carbon (II) Oxide and water vapour. Calculate the minimum volume of air needed for the complete combustion of ethene (Air contains 20% by volume of oxygen)
15. (a) Study the schematic diagram below and answer the questions that follow:-

(i) Identify the following:

Substance Q \qquad
Substance R
Gas \mathbf{P}.
(ii) Name:

Step 1
Step 4.
\qquad
\qquad
(iii) Draw the structural formula of the major product of step 5
(iv) State the condition and reagent in step 3
16. Study the flow chart below and answer the questions that follow

(a) (i) Name the following organic compounds:
M.
L.
(ii) Name the process in step:

> Step 2
> Step 4
(iii) Identify the reagent \mathbf{P} and \mathbf{Q}
(iv) Write an equation for the reaction between $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH}$ and sodium
17. a) Give the names of the following compounds:
i) $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH}$ \qquad
ii) $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COOH}$
iii) $\mathrm{CH}_{3} \mathrm{C}-\mathrm{O}-\mathrm{CH}_{2} \mathrm{CH}_{3}$ \qquad
18. Study the scheme given below and answer the questions that follow;

i) Name the reagents used in:

Step I:
Step II
Step III
ii) Write an equation to show products formed for the complete combustion of $\mathrm{CH}=\mathrm{CH}$
iii) Explain one disadvantage of continued use of items made form the compound formed in step III
19. A hydrated salt has the following composition by mass. Iron 20.2%, oxygen 23.0%, sulphur 11.5%, water 45.3%
i) Determine the formula of the hydrated salt $(\mathrm{Fe}=56, \mathrm{~S}=32, \mathrm{O}=16, \mathrm{H}=11)$
ii) 6.95 g of the hydrated salt in $\mathbf{c}(\mathbf{i})$ above were dissolved in distilled water and the total volume made to $250 \mathrm{~cm}^{3}$ of solution. Calculate the concentration of the resulting salt solution in moles per litre. (Given that the molecula mass of the salt is 278)
20. Write an equation to show products formed for the complete combustion of $\mathrm{CH}=\mathrm{CH}$
iii) Explain one disadvantage of continued use of items made form the compound formed in step III
21. Give the IUPAC name for each of the following organic compounds;

22. The structure below represents a cleansing agent.

a) State the type of cleansing agent represented above
b) State one advantage and one disadvantage of using the above cleansing agent.
23. The structure below shows part of polymer .Use it to answer the questions that follow.

a) Derive the structure of the monomer
b) Name the type of polymerization represented above
24. The flow chart below represents a series of reactions starting with ethanoic acid:-

(a) Identify substances \mathbf{A} and \mathbf{B}
(b) Name the process I
25. a) Write an equation showing how ammonium nitrate may be prepared starting with ammonia gas
(b) Calculate the maximum mass of ammonium nitrate that can be prepared using 5.3 kg of ammonia ($\mathrm{H}=1, \mathrm{~N}=14, \mathrm{O}=16$)
26. (a) What is meant by the term, esterification?
(b) Draw the structural formulae of two compounds that may be reacted to form ethylpropanoate
27. (a) Draw the structure of pentanoic acid
(b) Draw the structure and give the name of the organic compound formed when ethanol reacts with pentanoic acid in presence of concentrated sulphuric acid
28. The scheme below shows some reactions starting with ethanol. Study it and answer the questions that follow:-

(i) Name and draw the structure of substance \mathbf{Q}
(ii) Give the names of the reactions that take place in steps 2 and $\mathbf{4}$
(iii) What reagent is necessary for reaction that takes place in step 3
29. Substances A and B are represented by the formulae ROH and RCOOH respectively.

They belong to two different homologous series of organic compounds. If both A and B react with potassium metal:
(a) Name the common product produced by both
(b) State the observation made when each of the samples \mathbf{A} and \mathbf{B} are reacted with sodium hydrogen carbonate
(i) \mathbf{A}
(ii) \mathbf{B}
30. Below are structures of particles. Use it to answer questions that follow. In each case only electrons in the outermost energy level are shown
key
$\overline{\mathrm{P}}=$ Proton
$\mathrm{N}=$ Neutron
$\mathrm{X}=$ Electron

(a) Identify the particle which is an anion
31. Plastics and rubber are extensively used to cover electrical wires.
(a) What term is used to describe plastic and rubbers used in this way?
(b) Explain why plastics and rubbers are used this way
32. The scheme below represents the manufacture of a cleaning agent \mathbf{X}

(a) Draw the structure of \mathbf{X} and state the type of cleaning agent to which \mathbf{X} belong
(b) State one disadvantage of using \mathbf{X} as a cleaning agent
33. $\quad \mathbf{Y}$ grams of a radioactive isotope take 120days to decay to 3.5 grams . The half-life period of the isotope is 20days
(a) Find the initial mass of the isotope
(b) Give one application of radioactivity in agriculture
34. The structure below represents a polymer. Study and answer the questions that follow:-

(i) Name the polymer above
(ii) Determine the value of \mathbf{n} if giant molecule had relative molecular mass of 4956
35. $\mathrm{RCOO}^{-} \mathrm{Na}^{+}$and $\mathrm{RCH}_{2} \mathrm{OSO}_{3}{ }^{-} \mathrm{Na}^{+}$are two types of cleansing agents;
i) Name the class of cleansing agents to which each belongs
ii) Which one of these agents in (i) above would be more suitable when washing with water from the Indian ocean. Explain
iii) Both sulphur (IV) oxide and chlorine are used bleaching agents. Explain the difference in their bleaching properties
36. The formula given below represents a portion of a polymer

(a) Give the name of the polymer
(b) Draw the structure of the monomer used to manufacture the polymer

Radioactivity

1.

Complete the following equation by determining the values of \mathbf{U} and \mathbf{V}.
234

U.........
V..................
2. (a) Distinguish between nuclear fusion and fission
(b) Compete the nuclear equation below:-

3. Uranium -238 disintegrates by emitting an alpha particle to form substance \mathbf{Y}.

Nuclide \mathbf{Y} emits a beta particle to form substance \mathbf{Z}. Write down nuclear equations to show how substance \mathbf{Y} and \mathbf{Z} are formed ($\mathrm{U}=$ At No. 92)
4. (a) What is a nuclide?
(b) The graph below shows the radioactive decay of a certain nuclide. Determine the half-life of the nuclide

(e) What effect do excessful exposures of radiation have on metals?
5. (a) State one way in which nuclear reactions differ from ordinary chemical reactions
(b) The following is a part of Uranium decay series

(i) Which particles are emitted in step I and II
(ii) If a beta particle is emitted in step III, find \mathbf{Z} and \mathbf{A}
(iii) If the activity of Thorium - 234 is reduced to 25% in 48 hours, find its half life
6. Substances A and B are represented by the formulae $\mathbf{R O H}$ and $\mathbf{R C O O H}$ respectively.

They belong to two different homologous series of organic compounds. If both A and B react with potassium metal:
(a) Name the common product produced by both
(b) State the observation made when each of the samples \mathbf{A} and \mathbf{B} are reacted with sodium hydrogen carbonate
(i) A
(ii) \mathbf{B}
7. Some two elements are represented as:

(a) How many protons does \mathbf{X} have?
(b) How many neutrons does \mathbf{Y} have?
(c) Draw the structure of the compound formed between \mathbf{X} and \mathbf{Y}
8. $\quad \mathbf{Y}$ grams of a radioactive isotope take 120 days to decay to 3.5 grams . The half-life period of the isotope is 20days
(a) Find the initial mass of the isotope
(b) Give one application of radioactivity in agriculture
9. Study the nuclear reactions given and answer the questions that follow:

(a) Write an equation for the nuclear reaction in step II (lmk)
(b) Give one use of $\quad \mathbf{Y}$
10. Give two uses of radioactive isotopes in medicine.
11. Study the information in the following table and answer the questions that follow. The letters do not represent the actual chemical symbols of the elements.

ELEMENT	U	V	W	X	Y	Z
NUMBER OF PROTONS	18	20	6	16	19	17
NUMBER OF NEUTRONS	22	20	8	16	20	20

Which of the above elements are:
(i) Likely to be radioactive?
(ii) Able to form a compound with the highest ionic character?
12. The isotope decays by Beta, β-emission to a stable nuclide. The half-life of the isotope is 15 hours 2.0 g of ${ }_{11}^{24}$ is allowed to decay. Determine the mass of left after 90 hours
13. (a) Complete the following nuclear equation

(b) 100 g of a radioactive substance was reduced to 12.5 g within 15.6 years. Determine the half-life of the substance

Mocks Topical Analysis

SECTION III PRATICALS

KAKAMEGA CENTRAL DISTRICT

CONFIDENTIAL

ACCESS TO:-

- 1 M NaOH
- 1 M NH 44 OH
- 1M HCL
- 0.01m PB $\left(\mathrm{NO}_{3}\right)_{2}$
- Source of heat
- $\mathbf{p H}$ chart ($\mathrm{PH}=1$ to 14)
- 10 ml of solution K
- Sodium hydrogen carbonate

PREPARATION OF SOLUTIONS:

1. Solution J

Dissolve 17 g of ammonium iron (II) sulphate in $50 \mathrm{~cm}^{3}$ of $2 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}$ dilute to $\mathbf{1 d m}^{3}$
2. Solution K KMnO ${ }_{4}$

Dissolve 1.6 g of potassium manganate vii in $20 \mathrm{~cm}^{3}$ of $2 \mathrm{MH}_{2} \mathrm{SO}_{4}$ dilute to $1 \mathrm{dm}^{3}$
3. Solution R

Dissolve 40 g of sodium thiosulphate in $1 \mathrm{dm}^{3}$ of solution
4. Solution S

Dissolve $172 \mathrm{~cm}^{3}$ of concentrated hydrochloric acid in $1^{d^{3}}$ of solution
5. Solid Y is aluminium sulphate
6. Solid Z is oxalic acid.

Each candidate will require:
Q1.

1. Solution $J-100 \mathrm{~cm}^{3}$
2. Burette
3. Solution K-100 cm^{3}
4. Pipette
5. 2 conical flasks
6. Filter funnel
7. Retort stand
8. You are provided with:

Solution J:xM ammonium iron(II)sulphate solution
Solution K: 0.02M potassium manganate (VII)solution
You are required to determine:
-The molarity, \mathbf{x} of the ammonium iron (II) sulphate

- The amount of water of crystallisation, \mathbf{N} in ammonium iron (II) sulphate
-The formula mass of ammonium iron (II)sulphate.

Procedure

The ammonium iron (II) sulphate, $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4} \mathrm{FeSO}_{4} \mathrm{nH}_{2} \mathrm{O}$ solution provided was made by dissolving 8.5 g of the salt in $50.0 \mathrm{~cm}^{3}$ of dilute sulphuric(VI)acid, then making the solution to $250 \mathrm{~cm}^{3}$ using distilled water.
Fill the burette with solution \mathbf{K}. Pipette $25 \mathrm{~cm}^{3}$ of solution \mathbf{J} and release into a conical flask. Titrate \mathbf{J} against \mathbf{K} until the solution becomes permanent pink. Repeat two more times and complete the table below;-

Table 1

	I	II	III
Final burrete racing $\left(\mathrm{cm}^{3}\right)$			
Final burrete reading $\left(\mathrm{cm}^{3}\right)$			
Volume of Solution \mathbf{K} used $\left(\mathrm{cm}^{3}\right)$			

a) Calculate the average volume of solution \mathbf{K} used
b) The number of moles of solution \mathbf{K} reacting
c) Given that equation for the reaction is:
$\mathrm{MnO}_{4(\mathrm{aq})}+8 \mathrm{H}^{+}{ }_{(\mathrm{aq})}+5 \mathrm{Fe}^{2+}{ }_{(\mathrm{aq})} \longrightarrow \mathrm{Mn}^{2+}{ }_{(\mathrm{aq})}+5 \mathrm{Fe}^{2+}{ }_{(\mathrm{aq})}+4 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})}$

Determine:

i) The number of moles of iron (II) salt solution \mathbf{J} in $25 \mathrm{~cm}^{3}$ of the solution used
ii) The molarity of solution \mathbf{J}
iii) The concentration of solution \mathbf{J} in grams per litre
d) From your results in C (iii) above, determine:
i) the value of " \mathbf{n} " in the formula $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4} \mathrm{FeSO}_{4} \mathbf{n H} \mathrm{H}_{2} \mathrm{O}$.
$(\mathrm{N}=14, \mathrm{H}=1, \mathrm{~S}=32, \mathrm{O}=16, \mathrm{Fe}=56)$
ii) Correct formula of the iron (II) salt
iii) The formula mass of the iron (II) salt

Q2.

1. $\quad 120 \mathrm{~cm}^{3}$ of solution \mathbf{R}
2. $80 \mathrm{~cm}^{3}$ of solutions
3. $250 \mathrm{~cm}^{3}$ of tap water
4. 25 ml or 50 ml measuring cylinder
5. $100 \mathrm{~cm}^{3}$ glass beaker
$6 \quad 5 \times 5 \mathrm{~cm}$ piece of white paper
6. Stop watch or clock.
7. You are provided with:
i) Sodium thiosulphate containing $40 \mathrm{~g} / \mathrm{dm}^{3}$ solution \mathbf{R}
ii) 2 M hydrochloric acid solution S

You are to determine the rate of reaction between solution S and the thiosulphate

Procedure:

Measure $20 \mathrm{~cm}^{3}$ of solution \mathbf{R} into an empty $100 \mathrm{~cm}^{3}$ breaker. Place it on a mark ' \mathbf{X} ' on a white plain paper. Measure another $20 \mathrm{~cm}^{3}$ of solution \mathbf{S}. add into \mathbf{R} and start off the stop watch. Then record the time taken for the mark ' \mathbf{X} ' to become invisible from above. Repeat the procedure by measuring $17.5 \mathrm{~cm}^{3}$ of solution \mathbf{S} and adding $2.5 \mathrm{~cm}^{3}$ of water and complete the table;-
Table 2

Experiment	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$
Volume of solution R cm		20	20	20	20
Volume of solution S cm	20				
Volume of water $\left(\mathrm{cm}^{3}\right)$	20	17.5	15	12.5	10
Time taken for \mathbf{x} to become invisible(seconds)	0	2.5	5.0	7.5	10
$1 /$ time $\left(\right.$ Sec $\left.^{-1}\right)$					

a) Draw a graph of reciprocal time $(1 / t)$ against volume of solution S
b) Explain the shape of the graph
c) From the graph determine the time taken for the cross ' \mathbf{X} ' to be invisible at $16.5 \mathrm{~cm}^{3}$ of solution \mathbf{S} Q3.

1. Solid \mathbf{Y}-1 spatulaful
2. Solid Z-1 spatulaful
3. 6 test tubes
4. $\quad 1$ red +1 blue litmus papers
5. Metallic spatula
6. pH paper
7. You are provided with solid \mathbf{Y} and \mathbf{Z} to carry out the tests below. Write your observations and inferences in the spaces provided:-
a) i) Place all solid \mathbf{Y} in a clean test tube. Add $10 \mathrm{~cm}^{3}$ of distilled water and shake.

Divide the solution in a (i) above into 4 portions
ii) To the first portion add sodium hydroxide dropwise until in excess
iii) To the second portion add aqueous ammonia dropwise until in excess
iv) To the third portion add 5 drops of dilute hydrochloric acid
v) To the fourth portion add 3 drops of lead (II) nitrate solution
b) i) Scoop a little solid \mathbf{Z} on a metallic spatula and heat it over a bunsen flame
ii) Add all the remaining solid to $10 \mathrm{~cm}^{3}$ of distilled water in a test tube and shake.

Divide the solution into 3portions
iii)to the first portion dip a pH indicator paper
iv) to the second portion add 3 drops of acidified potassium permanganate warm gently KKC*
v)to the third portion add $1 / 2$ spatula full of sodium hydrogen carbonate

KAKAMEGA EAST DISTRICT

CONFIDENTIAL

INSTRUCTIONS

Each candidate should be provided with the following:-

1. Burette
2. Pipette
3. Two conical flasks
4. Funnel
5. Phenolphthalein indicator
6. Methyl orange indicator
7. Universal indicator
8. Solution a $100 \mathrm{~cm}^{3}$
9. Solution b $100 \mathrm{~cm}^{3}$
10. Solution c $100 \mathrm{~cm}^{3}$
11. Distilled water in wash bottle
12. 0.2 m CuSO 4 (solution Y)
13. 0.7 g zinc powder (solid Z)
14. Thermometer
15. 100 ml plastic beaker
16. Stop watch or wrist watch
17. Tissue paper $1 / 2$ metre
18. 6 test tubes
19. One boiling tube
20. Solid P
21. Solid Q
22. Filter paper
23. Means of heating
24. 2 m NaOH
25. $2 \mathrm{~m} \mathrm{H}_{2} \mathrm{SO}_{4}$
26. 0.1 m bacl $_{2}$
27.0.1m pb(no $\left.{ }_{3}\right)_{2}$
27. 2 m HCl
28. $2 \mathrm{~m} \mathrm{NH}_{3(a q)}$
29. Metallic spatula
30. 0.5 g NaHCO 3

Notes on preparation of solutions :-

- Solution A 0.05M sodium Carbonate
- Solution B $=0.1 \mathrm{M}$ of HCl
- Solution $\mathrm{C}=0.16 \mathrm{~g} \mathrm{KOH}+1.94 \mathrm{~g} \mathrm{KCl}$ in $250 \mathrm{~cm}^{3}$ solution
- Solid $\mathrm{P}=\mathrm{CaCl}_{2}$ and MgCO_{3}
- Solid $Q=$ Carboxylic acid (oxalic)

1. You are provided with:-

- Solution A containing 0.05 moles in $1 \mathrm{dm}^{3}$ of solution of anhydrous Sodium Carbonate
- Solution B, monobasic acid, HX
- Solution C, 2.1g of a mixture of potassium hydroxide (KOH) and potassium chloride (KCl) dissolved in distilled water and made up to $250 \mathrm{~cm}^{3}$ solution.
You are required to:
(a) Standardise the monobasic acid, solution \mathbf{B}
(b) Determine the percentage of potassium chloride (KCl) in the mixture.

Procedure:

Fill the burette with solution B. Pipette $25.0 \mathrm{~cm}^{3}$ of solution \mathbf{A} into a clean dry conical flask and titrate with solution \mathbf{B} using methyl orange indicator. Record your results in table 1 below:-

	1	2	3
Final burette reading $\left(\mathrm{cm}^{3}\right)$			
Initial burette reading $\left(\mathrm{cm}^{3}\right)$			
Volume of solution B used $\left(\mathrm{cm}^{3}\right)$			

(a) Calculate the average volume of solution \mathbf{B} used
(b) Given that the equation for the reaction taking place is:-
$\mathrm{Na}_{2} \mathrm{CO}_{3(\mathrm{aq})}+2 \mathrm{HX}_{(\mathrm{aq})} \longrightarrow 2 \mathrm{NaX}_{(\mathrm{aq})}+\mathrm{CO}_{2(\mathrm{~g})}+\mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})}$
Calculate the concentration of solution \mathbf{B} in moles per litre

Procedure II

Fill the burette to the 0.0 mark with solution B. Pipette $25.0 \mathrm{~cm}^{3}$ of solution \mathbf{C} into a clean dry conical flask and titrate it against solution \mathbf{B} using phenolphthalein indicator. Repeat the titration and fill table II below:-
Table II

	1	2	3
Final burette reading $\left(\mathrm{cm}^{3}\right)$			
Initial burette reading $\left(\mathrm{cm}^{3}\right)$			
Volume of solution \mathbf{B} used $\left(\mathrm{cm}^{3}\right)$			

(c)What is the average volume of solution \mathbf{B} used?
(d) Calculate the concentration of solution \mathbf{C} in :-
(i) Moles per litre
(ii) Grams per litre $(\mathrm{K}=39, \mathrm{O}=16, \mathrm{H}=1)$
(e) Calculate the percentage of potassium chloride in the mixture
2. You are provided with:-

- Solution Y containing 0.2moles of copper (II) sulphate per litre of solution
- Solid Z

You are required to:

Determine the heat evolved when 1 mole of solid \mathbf{Y} reacts with $\operatorname{solid} \mathbf{Z}$

Procedure

- Measure $40 \mathrm{~cm}^{3}$ of solution \mathbf{Y} and place it into an insulated $100 \mathrm{~cm}^{3}$ plastic beaker
- Stir the solution with the help of thermometer and record its temperature after every $1 / 2$ minute for $1 \frac{1}{2}$ minutes.
- After exactly 2 minutes, add all the solid \mathbf{Z} provided and continue stirring the mixture while recording the temperature of solution and complete the table below:

Time (minutes)	$1 / 2$	1	$1^{1 / 2}$	2	$2^{1 / 2}$	3	$3^{1 / 2}$	4	$4^{1 / 2}$	5	$5^{1 / 2}$	6	$6^{1 / 2}$	7
Temperature $\left({ }^{\circ} \mathrm{C}\right)$				χ										

(b) (i) On the graph paper provided, plot a graph of temperature against time
(ii) From your graph, determine the maximum temperature change
(c) Given that the density of the solution is $1 \mathrm{~g} / \mathrm{cm}^{3}$, determine the quantity of heat evolved when $40 \mathrm{~cm}^{3}$ of solution \mathbf{Y} is reacted completely with solid \mathbf{Z} (specific heat capacity of solution $=4.2 \mathrm{jg}^{-1} \mathrm{k}^{-1}$)
(d) (i) Given that solid \mathbf{Z} is Zinc powder, write an ionic equation of the reaction which occurs
(ii) Determine the moles of copper ions used up in the reaction
(iii) Determine the amount of heat that would be evolved if one mole of Copper (II) ions were used up
(iv) Explain why the value obtained in this reaction is lower than the actual value?
3. I. You are provided with solid \mathbf{P}. Carry out the tests below and write the observations and inferences in the spaces provided
(a) Heat about one third of solid \mathbf{P} in a clean dry test tube
(b) Add $10 \mathrm{~cm}^{3}$ of distilled water to the remaining solid \mathbf{P} in a boiling tube and shake. Filter and retain both the residue and the filtrate. Divide the filtrate into four portions
(i) To the first portion add aqueous Sodium hydroxide drop by drop till in excess
(ii) To the second portion add dilute sulphuric acid
(iii) To the third portion, add barium chloride solution
(iv) To the fourth portion, add Lead (II) nitrate solution
(c) (i) To the residue from (b) above in the test-tube, add dilute hydrochloric acid and retain the mixture
(ii) To the mixture is(c)(i) above, add aqueous ammonia drop wise till in excess
II. You are provided with solid \mathbf{Q}. Carry out the test below and write your observations and inferences in the spaces provided
(a) Scoop a little of solid \mathbf{Q} with a clean dry metallic spatula and ignite using a Bunsen flame.
(b) Place the remaining solid \mathbf{Q} in a boiling tube. Add about $10 \mathrm{~cm}^{3}$ of distilled water. Shake the mixture until it dissolves. Divide the solution into 4 portions
(i) To the first portion, test the PH with PH paper.
(ii) To the second portion, add solid sodium Carbonate and shake

MIGORI - NYATIKE DISTRICT

CONFIDENTIAL

INSTRUCTIONS.
Apart from the normal fittings in the laboratory, each candidate will need the following chemicals and apparatus.

1. 500 ml of distilled water supplied in a wash bottle
 2. 50 ml burette

3. $25 m l$
4. a pipette filler
5. 2 conical flasks (250 ml)
6. Source of heat (means of heating)
7. Stop watch/clock
8. A ruler
9. 100 ml measuring cylinder
10. 50 ml measuring cylinder
11. Complete retort stand
12. 12 cm long magnesium ribbon labelled C
13. 100 ml of solution A (sulphuric acid)
14. 80 ml of solution B (Sodium hydroxide soltn.)
15. 100 ml empty beaker
16. Funnel
17. Sand paper
18. $3 g$ of solid E
19. $1 g$ of solid F
20. Means of labeling
21. Six clean test tubes in a test tube rack
22. 3 boiling tubes in a rack
23. Metallic spatula
24. About $0.2 g$ of sodium hydrogen carbonate
25. Glass rod.

Access

1. 2M Ammonia solution supplied with a dropper
2. $2 M$ Sodium hydroxide solution supplied with a dropper
3. 2M Lead (II) Nitrate supplied with a dropper
4. 0.2M Silver Nitrate solution supplied with a dropper
5. Acidified potassium dichromate (VI) supplied with a dropper
6. Acidified Potassium Manganate (VII) supplied with dropper
$\underline{N / B}$
7. Solution A is prepared by accurately measuring $27.5 \mathrm{~cm}^{3}$ of concentrated Sulphuric acid, then adding it to 700 ml of distilled water then topping it to one litre. Density of acid $1.84 \mathrm{~g} / \mathrm{cm}^{3}$
8. Solution B is prepared by accurately measuring 20 g of NaOH pellets and dissolving it in $800 \mathrm{~cm}^{3}$ of distilled water then topping to one litre with distilled water.
9. Solid E and F will be provided by the council. Solid E is highly deliquescent and should be handled cautiously

QUESTION 1.

You are provided with:

- Sulphuric acid solution A
- 0.5 M sodium hydroxide solution B
- Magnessium ribbon labelled C

You are required to:-

- Investigate the rate of reaction between solution A and metal C
- Determine the concentration of sulphuric acid in moles per litre

Procedure I
(i) Using a ruler, make 6 marks at 2 cm length interval on the Magnesium ribbon provided.
(ii) Transfer $50 \mathrm{~cm}^{3}$ of acid solution using a measuring cylinder into a clean dry 100 ml beaker. Place 2 cm length piece of magnesium ribbon into the beaker with the acid and immediately start the stop watch/clock. Shake gently and note the time taken for the piece of
magnesium ribbon to react completely.
(iii) Record in table I below. Place another piece of magnesium ribbon $(2 \mathrm{~cm})$ to the same solution and again note the time taken.
(iv) Repeat the procedure until all six pieces of magnesium ribbon have reacted with the same solution initially placed in the beaker
(v) Complete the table I below:

Note: Keep the solution obtained in this experiment for use in procedure II
(a) Table I

Piece of magnesium added	1	2	3	4	5	6
Length of magnesium added (cm)	2	4	6	8	10	12
Time taken t (second)						
Reciprocal of time $\mathrm{m}^{1 / \mathrm{t}^{(s-1)}}$						

(b) (i) Plot a graph of total length of magnesium ribbon added against reciprocal of time $\left({ }^{1 / t}\right)$ for the reaction to go to completion
(ii) From your graph, determine the time taken when 4.5 cm length of magnesium ribbon reacts completely. (Show parts on the graph)
(iii) Write a chemical equation for the reaction between magnesium and sulphuric acid
(iv) Given that the mass of solid V , which reacted was 0.12 g and that atomic mass of magnesium is 24.0 g , determine the number of mole of sulphuric acid that were used up during the reaction
(v) From your graph, state and explain the relationship between the length of magnesium ribbon and the reciprocal of time $(1 / t)$

Procedure II

Place all the solution obtained in procedure I in a clean 100 ml measuring cylinder. Add distilled water to make $100 \mathrm{~cm}^{3}$ of solution. Transfer all the solution into a beaker and shake well. Label it solution D. Fill the burette with solution B. Pipette $25.0 \mathrm{~cm}^{3}$ of solution D into a conical flask. Add 2-3drops of phenolphthalein indicator and titrate with solution. Record your results in the table II below. Repeat the titration two more times
(f) Table II

Titration	I	II	III
Final burette reading $\left(\mathrm{cm}^{3}\right)$			
Initial burette reading $\left(\mathrm{cm}^{3}\right)$			
Volume of solution B $\left(\mathrm{cm}^{3}\right)$ used			

(c) (i) Determine the average volume of solution B used
(ii) Calculate the number of moles of sodium hydroxide solution B used
(d) Calculate:
(i) The number of moles of sulphuric acid in $25.0 \mathrm{~cm}^{3}$ of solution D
(ii) The number of moles of sulphuric acid in $100 \mathrm{~cm}^{3}$ of solution D
(e) Determine the total number of moles of sulphuric acid in $50 \mathrm{~cm}^{3}$ of solution A
(f) Calculate the concentration of the original sulphuric acid solution A in moles per litre
2. You are provided with solid E. Carry out the following tests and write your observations and inferences in the table below:
(a) Place all the solid E in a boiling tube. Add about $15 \mathrm{~cm}^{3}$ of distilled water and shake vigorously for about 2 minutes
b) (i) divide the solution into five equal portions in five different clean test tubes.
(i) To the first portion, add 2 M ammonia solution drop wise until in excess
ii) To the second portion add 2M Sodium hydroxide solution dropwise until in excess
iii) To the third portion add 4 drops of 2M Lead (II) nitrate solution
iv) To the fourth portion, add 4 drops of 0.2 M silver nitrate solution, then add 2 M ammonia solution drop wise, until in excess
(v) Clean one end of the glass rod provided. Dip the clean end of the glass rod in the fifth portion.
Remove the end and heat it in the non-luminous part of a Bunsen burner flame. Note the colour of the flame and record below:-
3. You are provided with solid F. Carry out the tests below. Write your observations and inferences in the spaces provided
(a) Place about a half of solid F on a metallic spatula and burn it using a Bunsen burner flame
(b) Place the remaining of solid F in a boiling tube. Add about 10 cm 3 of distilled water and shake the mixture well.
(c) (i) Divide the mixture obtained into three portions.
(ii) To the first portion, add a small amount of solid sodium hydrogen carbonate
(iii) To the second portion, add about $1 \mathrm{~cm}^{3}$ of acidified potassium dichromate (VI) and warm
(iv) To the third portion, add two drops of acidified potassium magnate (VII)

NYAMIRA DISTRICT

CONFIDENTIAL

INSTRUCTIONS

Each candidate should be provided with:

- About 1g of malleic acid - solid P
- A clean metallic spatula
- Bunsen burner
- 500 ml distilled water in a wash bottle
- Six test-tubes in a rack
- One test tube holder
- 2 boiling tubes
- About 1 g of AlCl_{3} - solid M
- One blue and one red litmus paper
- One volumetric flask (250ml)
- One pipette $25 \mathrm{~cm}^{3}$
- One pipette filter
- One label
- Solid G-oxalic acid (exactly 3g) in a stoppered container
- 50 ml or 100 ml measuring cylinder
- $100 \mathrm{~cm}^{3}$ beaker
- One thermometer
- One stopwatch/clock
- About 0.2 g NaHCO 3 solid
- 100 ml of solution H
- One burette (50 ml)
- 2 conical flasks

Access to:-

- $0.2 \mathrm{M} \mathrm{Pb}\left(\mathrm{NO}_{3}\right)$ Solution supplied with a dropper
- 0.2M Ba($\left(\mathrm{NO}_{3}\right)_{2}$ Solution supplied with a dropper
- 0.1M KI Solution supplied with a dropper
- 2 M NaOH Solution supplied with a dropper
- $2 \mathrm{M} \mathrm{NH}_{3(a q)}$ Solution supplied with a dropper
- Acidified $\mathrm{K}_{2} \mathrm{CV}_{2} \mathrm{O}_{7}$ Solution supplied with a dropper

Preparation instruction

- Dissolve 6.4 g of KMnO_{4} in $400 \mathrm{~cm}^{3} 2 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}$ and top to 1litre using distilled water

1. You are provided with:

- 0.0238 Moles (equivalent to 3 g) of solid \mathbf{G}
- Solution H, 0.04 M acidified potassium manganate (VII)

You are required to:

I. Determine the enthalpy of solution of solid \mathbf{G}
II. The number of moles of water of crystallization in solid \mathbf{G}

Procedure I:-

Using a measuring cylinder place $50 \mathrm{~cm}^{3}$ of distilled water into a $100 \mathrm{~cm}^{3}$ of beaker. Stir the water gently with a thermometer and take its temperature after every half-minute. Record the reading in table I below. At exactly two minutes, add all solid \mathbf{G} to the water at once. Stir well and take the temperature of the mixture after every half minute up to the fourth minute. Record your results in table I. Keep the solutions for procedure II below:

Table I

(a)

Time (min)	0	$1 / 2$	1	$11 / 2$	2	$21 / 2$	3	$31 / 2$	4
Temperature $\left({ }^{\circ} \mathrm{C}\right)$					\mathbf{X}				

(b) On the grid provided, plot a graph of time (x-axis) against temperature
(c) (i) On the graph, show the change in temperature ΔT
(ii) Calculate :

The molar enthalpy of solution ($\Delta \mathrm{H}$ solution)
(Assume density of solution $=1 \mathrm{~g} / \mathrm{cm}^{3}$ and show the sign of ΔH solution specific heat capacity of solution $=4.2 \mathrm{jg}^{-1} \mathrm{k}^{-1}$)

Procedure II

Transfer the contents of the beaker into a 250 ml volumetric flask. Rinse both the beaker and the thermometer with distilled water and add to the volumetric flask. Add more distilled water to eh mark.
Label this solution \mathbf{G}
Fill the burette with solution \mathbf{H}
Using a pipette and pipette filter, place $25.0 \mathrm{~cm}^{3}$ of solution \mathbf{G} into a conical flask. Warm the mixture to about $60^{\circ} \mathrm{C}$. Titrate the hot solution \mathbf{G} with solution H until a permanent pink colour persists (while shaking). Record your readings in table 2. Repeat the titration two more times and complete table 2
Table 2.

Titre	I	II	III
Final burette reading			
Initial burette reading			
Volume of solution \mathbf{H} used $\left(\mathrm{cm}^{3}\right)$			

(e) Calculate the:

1. Average volume of \mathbf{H} used
II. Number of moles of potassium manganate VII used
III. Number of moles of \mathbf{G} in $25 \mathrm{~cm}^{3}$ solution \mathbf{G} given that 2 moles of potassium manganate (VII) reacted completely with 5moles of \mathbf{G}
IV. Relative formula mass of \mathbf{G}
(f) Formula of \mathbf{G} has the form $\mathrm{G} . \mathrm{XH}_{2}$ Determine the value of \mathbf{X} in the formula given the relative formula mass for \mathbf{G} is 90.0 and atomic mass of Oxygen is16 and that
2. You are provided with solid \mathbf{M} and carry out the tests below write your observations and inferences in the spaces
(i) To a dry boiling tube, place all solid \mathbf{M} and add $12 \mathrm{~cm}^{3}$ of distilled water and use the solution for the tests below:-
(ii) To $2 \mathrm{~cm}^{3}$ of solution, add both litmus papers
(iii) $\mathrm{To} 2 \mathrm{~cm}^{3}$ of solution, add aqueous sodium hydroxide drop wise until excess
(iv) $\mathrm{To} 2 \mathrm{~cm}^{3}$ of solution, add aqueous ammonia drop wise until in excess
(v) To $2 \mathrm{~cm}^{3}$ of the solution, add 2 drops of aqueous potassium iodide
(vi) To $2 \mathrm{~cm}^{3}$ of solution, add 3 drops of aqueous lead (ii)nitrate
(vii) To $2 \mathrm{~cm}^{3}$ of solution, add 3 drops of aqueous Barium nitrate solution
3. B. You are provided with solid \mathbf{P}. Carry out the test below. Write your observations and inferences in the spaces provided:-
(a) Place one third of solid \mathbf{P} on a metallic spatula and burn it using a Bunsen burner
(b) Place the remaining of solid \mathbf{P} in a test-tube . Add about $6 \mathrm{~cm}^{3}$ of distilled water and shake the mixture (retain the mixture for use in test (c)
(c) (i) $\mathrm{To} 2 \mathrm{~cm}^{3}$ of the mixture in (b) above add a spatula end full of NaHCO_{3} solid
(ii) $\mathrm{To} 2 \mathrm{~cm}^{3}$ of the mixture, add $2 \mathrm{~cm}^{3}$ of acidified potassium dichromate (VI) and warm
(iii) To $2 \mathrm{~cm}^{3}$ of the mixture add two drops of acidified potassium manganese (VII) and shake well

SOTIK DISTRICT

CONFIDENTIAL

Requirements:

In addition to the equipment, apparatus and chemical found in the chemistry
laboratory each candidate will require the following:

- About $100 \mathrm{~cm}^{3}$ of solution L
- About $100 \mathrm{~cm}^{3}$ of solution N
- A burette
- A pipette
- 3 conical flasks
- 4.0g of solid K
- Thermometer
- Distilled water
- Test tube holder
- 3 boiling tubes
- Phenolphthalein indicator
- Filter paper
- Filter funnel
- Source of heat
- $1 g$ of solid x
- 10ml measuring cylinder
- 2 MHNO
- Seven test tubes
- Stirring rod
- 2 M NaOH
- $2 \mathrm{MNH}_{4} \mathrm{OH}$
- 2M HCL
- 0.5M lead (II) nitrate

NOTES

- Solution L is prepared by dissolving 5 g of NaOH in a litre of distilled water
-Solution N is prepared by dissolving $9.84 g$ of $\mathrm{C}_{2} \mathrm{H}_{2} \mathrm{O}_{4} .2 \mathrm{H}_{2} \mathrm{O}$ in a litre of distilled water (oxalic acid)
-Solid K is potassium chlorate
-Solid X is a mixture of copper (II) oxide and zinc sulphate in the ratio 1:1

1. You are provided with:-

(i) Solution \mathbf{L} containing 5 g per litre of sodium hydroxide
(ii) Solution \mathbf{N} containing 9.84 g per litre of oxalic crystals of formula $\mathrm{C}_{2} \mathrm{H}_{2} \mathrm{O}_{4} \cdot \mathrm{X} \mathrm{H}_{2} \mathrm{O}$
(iii) You are required to determine the number of moles of water of crystallization X in one mole of oxalic acid $\left(\mathrm{C}_{2} \mathrm{H}_{2} \mathrm{O}_{4} . \mathrm{XH}_{2} \mathrm{O}\right)$
(iv) You are required to determine the number of moles of water of crystallization X; in one mole of oxalic acid $\left(\mathrm{C}_{2} \mathrm{H}_{2} \mathrm{O} 4 . \mathrm{XH}_{2} \mathrm{O}\right)$

Procedure

(i) Fill the burette with solution \mathbf{N}.
(ii) Pipette $25 \mathrm{~cm}^{3}$ of solution \mathbf{L} into $250 \mathrm{~cm}^{3}$ conical flask and add 2 drops of phenolphthalein indicator to it and titrate with solution \mathbf{N}.
(iii) Record your results in the table below
(iv) Repeat the experiment twice to obtain consistent readings and complete the table

Table 1

Titration	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$
Final burette reading $\left(\mathrm{cm}^{3}\right)$			
Initial burette reading $\left(\mathrm{cm}^{3}\right)$			
Volume of solution \mathbf{N} used $\left(\mathrm{cm}^{3}\right)$			

(a) Calculate the average volume of solution \mathbf{N} used
(b) Determine:-
(i) The concentration of sodium hydroxide in one litre of solution \mathbf{L}
($\mathrm{Na}=23, \mathrm{O}=16, \mathrm{H}=1$)
(ii) Write the equation of the reaction taking place
(iii) The number of moles of anhydrous carbohydrates oxalic acid in one litre of the solution \mathbf{N}
(iv) The relative formula mass of anhydrous oxalic acid, solution $\mathbf{N}(\mathrm{C}=12, \mathrm{H}=1, \mathrm{O}=16)$
(v) The number of moles of water of crystallization in one mole of oxalic acid
2. You are provided with solid \mathbf{K}, a boiling tube and a thermometer. You are required to determine the solubilities of solid \mathbf{K}, at various temperatures.
Procedure:-
(a) Carefully transfer all the 4.0 g of solid \mathbf{K} into a clean boiling tube and add $10 \mathrm{~cm}^{3}$ of distilled water from a burette.
(b) Heat the boiling tube and its contents gently with shaking until all the solid dissolves. (Do not spill the solution during heating.) Stop heating when all the solid dissolves. See the diagram below:-

(c) Gently stir the solution using the thermometer and record the temperature at which crystals appear. (The crystals appear as small shining particles)
(d) Using a burette add $2.5 \mathrm{~cm}^{3}$ of water to the solution and heat until all the solid dissolves. Repeat procedure(c)
(e) Repeat the experiment each time adding $2.5 \mathrm{~cm}^{3}$ of distilled water from a burette.

Record the results in the table below:-

Total volume of water $\left(\mathbf{c m}^{\mathbf{3}}\right)$	10.00	12.50	15.00	17.50	20.00	22.50
Mass of solid K (g)	4.00	4.00	4.00	4.00	4.00	4.00
Solubility of K in $\mathbf{g} / \mathbf{1 0 0} \mathbf{g}$ of water	40.00			22.90		17.78
Temperature at which crystals appear $\left({ }^{\circ} \mathbf{C}\right)$						

(i) Complete the table by filling in the row for solubility of \mathbf{K} and temperature at which crystals appear
(ii) On the grid provided, draw the graph of solubility of \mathbf{K} versus temperature
(iii) At which temperature is solubility $24 / 100 \mathrm{~g}$ of water?
(iv) If a solution containing 30 g of \mathbf{K} at $85^{\circ} \mathrm{C}$ is cooled to $60^{\circ} \mathrm{C}$
(a) At which temperature will crystals first appear?
(b) What would be the total mass of the crystals obtained when the solution finally cools to $60^{\circ} \mathrm{C}$
(c) What is the solubility of \mathbf{K} at $75^{\circ} \mathrm{C}$
3. You are provided with solid \mathbf{X} which is a mixture of two solids. Carry out the following tests to identify the cations and anions present in the mixture.
(a) Add about $10 \mathrm{~cm}^{3}$ of water, stir and then filter. Keep both the residue and the filtrate for further reactions.
(b) Place the residue in a boiling tube and add dilute nitric acid and warm. Divide the solution into two portions
(c) To the $1^{\text {st }}$ portion add $\mathrm{NaOH}_{(\mathrm{aq})}$ till in excess
(d) To the $2^{\text {nd }}$ portion add aqueous ammonia till in excess
(e) Divide the filtrate into 5 portions. To the $1^{\text {st }}$ portion add dilute HCl
(f) To the $2^{\text {nd }}$ portion add lead (II) Nitrate solution
(g) To the third portion add Barium Chloride solution
(h) To the $4^{\text {th }}$ portion add sodium hydroxide solution till in excess
(i) To the $5^{\text {th }}$ portion add aqueous ammonia till in excess

UGENYA -UGUNJA DISTRICTS

CONFIDENTIAL

IDENTITIES OF SOLIDS

M- Potassium manganate (VII) crystals, KMnO_{4}
N -Ammonium Ferous sulphate hexahydrate, $(\mathrm{NHa})_{2} . \mathrm{Fe}^{2}\left(\mathrm{SO}_{4}\right)_{2} \mathbf{2}^{6} \mathbf{6} \mathrm{H}_{2} \mathrm{O}$
S-Oxalic acid $\mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{\mathbf{4} \cdot \mathbf{2} \mathrm{H}_{2} \mathrm{O}}$

Q- Hydrated Barium Chloride, $\mathrm{BaCl}_{2} \mathbf{2 H}_{2} \mathrm{O}$
R - Oxalic acid
Note: S and R are the same substances

INSTRUCTIONS

In addition to the apparatus and chemicals found in the chemistry laboratory, each candidate will require the following:

1. $150 \mathrm{~cm}^{3}$ of solution M
2. $100 \mathrm{~cm}^{3}$ of solution N
3. $100 \mathrm{~cm}^{3}$ of solution S
4. One $50 \mathrm{~cm}^{3}$ burette
5. One $25 \mathrm{~cm}^{3}$ pipette and pipette filter
6. One thermometer $\left(-10^{\circ} \mathrm{C}-110^{\circ} \mathrm{C}\right)$
7. One filter funnel
8. Two conical flasks
9. Tripod stand and wire gauze
10. Source of heat
11. 8 clean dry test tubes in a rack
12. 2 boiling tubes
13. 1 metallic spatula
14. 250 ml of distilled water in a wash bottle
15. About 1 g of solid R
16. About $1 g$ of solid Q
17. 1 red and 1 blue litmus paper

Access to:

1) 2 M NaOH supplied with a dropper
2) $0.5 \mathrm{M} \mathrm{Na} \mathrm{SO}_{4}$ supplied with a dropper
3) $0.1 \mathrm{M} \mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}$ supplied with a dropper
4) Methyl orange indicator
5) 0.5 MBa (NO3)2 supplied with a dropper

Notes:

1. Solution M is prepared by dissolving 3.16 g of solid M in $400 \mathrm{~cm}^{3}$ of $2 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}$ and making it up to 1 litre of solution with distilled water.
2. Solution N is prepared by dissolving 23.5 g of solid N in $200 \mathrm{~cm}^{3}$ of $2 M$ $\mathrm{H}_{2} \mathrm{SO}_{4}$ and making it up to 1 litre of solution with distilled water.
3. Solution S is prepared by dissolving $5 g S$ in $600 \mathrm{~cm}^{3}$ of distilled water and making it up to 1 litre of solution with distilled water

6) QUESTION 1

You are provided with:

- Acidified aqueous Potassium manganate (VII) KMnO_{4}, solution M (to be used also in question 3).
- Solution N , containing 23.5 g of ammonium iron (II) sulphate, $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{Fe}\left(\mathrm{SO}_{4}\right)_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}$, per litre.
- Solution S, containing 5.0 g of a dibasic acid, H2X.2H2O per litre

You are required to:-

1. Standardize the potassium manganate (VII), solution M, using the ammonium

- \quad iron (II) sulphate, solution N .
- Use the standardized potassium manganate (VII), solution M to determine the concentration of the dibasic acid $\mathrm{H}_{2} \mathrm{X} \cdot 2 \mathrm{H}_{2} \mathrm{O}$, solutions S and then the formula mass of X .

Procedure I

Fill the burette with solution M.
Pipette 25.0 cm 3 of solution N into a conical flask. Titrate solution N with solution M until a permanent pink colour just appears. Record your results in table I below. Repeat this procedure to complete table I
(a) Table I

	I	II	III
Final burette reading (cm3)			
Initial burette reading (cm3)			
Volume of solution M used (cm3)			

(b) Determine the average volume of solution M used,
(c) Calculate the concentration of the ammonium iron (II) sulphate, solution N , in moles per litre. $\left(\mathrm{RFM}\right.$ of $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{Fe}\left(\mathrm{SO}_{4}\right)_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}=392$)
(d) Calculate the number of moles of iron (II) ions in the $25.0 \mathrm{~cm}^{3}$ of solution N
(e) Using the ionic equation for the reaction between manganate (VII) and iron (II) ions, given below, calculate the concentration of manganate (VII) in solution M in moles per litre. $\mathrm{MnO}_{4(\mathrm{aq})}^{-}+5 \mathrm{Fe}^{2+}{ }_{(\mathrm{aq})}+8 \mathrm{H}_{(\mathrm{aq})}^{+} \longrightarrow \mathrm{Mn}^{2+}{ }_{(\mathrm{aq})}+5 \mathrm{Fe}^{3+}{ }_{(\mathrm{aq})}+4 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})}$

Procedure II

Pipette $25.0 \mathrm{~cm}^{3}$ of solution S into a conical flask. Heat this solution to about $70^{\circ} \mathrm{C}$ and titrate the hot solution S with solution M until a permanent pink colour just appears. Shake thoroughly
during the titration. Record your results in table II. Repeat this procedure to complete the table II
(f) Table II

	I	II	III
Final burette reading (cm3)			
Initial burette reading (cm3)			
Volume of solution M (cm3)			

(g) Record the average volume of solution M used (show how you arrive at the answer)
$\mathrm{V}_{2}=$. \qquad
(h) Calculate the number of moles of the manganate (VII) ions in volume V_{2}
(i) Given that 2 moles of the manganate (VII) ions react with 5 moles of the dibasic acid, $\mathrm{H}_{2} \mathrm{X} \cdot 2 \mathrm{H}_{2} \mathrm{O}$, calculate the number of moles of the dibasic acid, $\mathrm{H}_{2} \mathrm{X} .2 \mathrm{H}_{2} \mathrm{O}$ in $25 \mathrm{~cm}^{3}$ of solution S
(j) Calculate the concentration of the dibasic acid $\mathrm{H}_{2} \mathrm{X} .2 \mathrm{H}_{2} \mathrm{O}$, in moles per litre
(k) Calculate the formula mass of X in the dibasic acid, $\mathrm{H}_{2} \mathrm{X} .2 \mathrm{H}_{2} \mathrm{O} .(\mathrm{H}=1.0, \mathrm{O}=16.0$
2. You are provided with solid Q. Carry out the following tests and write your observations and inferences in the spaces provided
(a) Place about one-half of solid Q in a dry test tube. Heat strongly and test any gas produced using litmus papers
b) Place the remaining solid Q in a boiling tube. Add about $10 \mathrm{~cm}^{3}$ of distilled water and shake well.
i) To about $2 \mathrm{~cm}^{3}$ of the solution in a test tube add sodium hydroxide solution till in excess
ii) To about $2 \mathrm{~cm}^{3}$ of solution Q in a test tube add about $2 \mathrm{~cm}^{3}$ of 0.5 M sodium sulphate solution
iii) To about $2 \mathrm{~cm}^{3}$ of solution Q in a test tube, add about 4 cm 3 of barium nitrate solution

Mocks Topical Analysis eeducationgroup.com
(iv) To about $2 \mathrm{~cm}^{3}$ of solution Q in a test tube, add 3 drops of lead (II) nitrate solution and heat the mixture to boiling
3. You are provided with solid R. Carry out the following tests and write your observations and inferences in the spaces provided
(a) Place a little of solid \mathbf{R} in a clean metallic spatula and ignite with a bunsen flame
(b) Place all the remaining solid R in a boiling tube. Add about $6 \mathrm{~cm}^{3}$ of distilled water and shake well. Use $2 \mathrm{~cm}^{3}$ portions to carry out the test below:
(i) Add $2 \mathrm{~cm}^{3}$ of solution obtained by diluting $1 \mathrm{~cm}^{3}$ of solution M with $5 \mathrm{~cm}^{3}$ of distilled water to $2 \mathrm{~cm}^{3}$ of solution R.
(ii) Add 3 drops of methyl orange to $2 \mathrm{~cm}^{3}$ of solution R

MATUNGU DISTRICT

CONFIDENTIAL

INSTRUCTIONS.
In addition to the apparatus and fittings found in the laboratory each candidate should have:

1. One 25 ml pipette
2. One 3-way pipette filler
3. One 0-50m/s Burrette
4. Two $250 \mathrm{~m} / \mathrm{s}$ conical flask
5. One stop watch/clock
6. One 250ml glass beaker
7. One 100 ml measuring cylinder
8. One 100 ml glass beaker
9. One thermometer $\left(-10\right.$ to $\left.110^{\circ} \mathrm{C}\right)$
10. One label
11. One piece of white paper
12. One measuring cylinder (10 mls)
13. Six dry clean test tube on test-tube tack
14. One boiling tube
15. One clean dry metallic spatula
16. $250 \mathrm{~cm}^{3}$ distilled water in wash bottle
17. One filter paper (dry)
18. One filter funnel
19. One glass rod
20. About 0.5 g sodium hydrogen carbonate supplied in a stoppered bottle
21. 0.5 g of solid F (accurately measured)
22. About $130 \mathrm{~cm}^{3}$ of sodium thiosulphate (0.25 M sodium thiosulphate, solution \mathbf{D})
23. About $30 \mathrm{~cm}^{3}$ of 2.0 M HCl (solution E)
24. About 0.5 g solid T
25. About 0.5 g solid X
26. About $180 \mathrm{~cm}^{3}$ of solution B
27. About $80 \mathrm{~cm}^{3}$ of solution A

Access to:

ग. Etnanot in a stopperea dottue

Mocks Topical Analysis
eeducationgroup.com

NOTE:

1. Solid X-Oxalic acid
2. Solid T-Calcium Chloride
3. Solution $\mathrm{A}-0.5 \mathrm{M} \mathrm{NaOH}$
4. solution $\mathrm{B}-0.5 \mathrm{M} \mathrm{HCl}$
5. Solid $\mathrm{F}-\mathrm{ZnCO}_{3}$ (Zinc carbonate)

Question 1.

You are provided with:

- Solution A, sodium hydroxide
- Solution F, 0.2 g of a carbonate $\left(\mathrm{MCO}_{3}\right)$
- Solution B, 0.5 M Hydrochloric acid
- Phenolphthalein indicator

You are required to:

(a) Standardize solution \mathbf{A} with solution \mathbf{B}

Using a pipette and a pipette filler place $25.0 \mathrm{~cm}^{3}$ of solution A into a 250 ml conical flask
Add 2-3 drops of phenolphthalein indicator
Record your results in table 1 below
Repeat the procedure two more items and complete table 1
Table 1

	I	II	III
Final burette readings $\left(\mathrm{cm}^{3}\right)$			
Initial burette readings $\left(\mathrm{cm}^{3}\right)$			
Volume of solution B used $\left(\mathrm{cm}^{3}\right)$			

(a) Calculate the average volume of solution \mathbf{B} used
(b) (i) Determine the moles of sodium hydroxide used
(ii) Calculate the molarity of Sodium hydroxide

Procedure II

- Place all the 0.2 g of solid F into a $250 \mathrm{~cm}^{3}$ beaker.
- Measure $100 \mathrm{~cm}^{3}$ of the 0.5 M hydrochloric acid solution using $100 \mathrm{~cm}^{3}$ measuring cylinder and add it to the solid in the beaker.
- Shake well until effervescence stops; label this solution C
- Pipette $25.0 \mathrm{~cm}^{3}$ of solution \mathbf{C} into a $250 \mathrm{~cm}^{3}$ conical flask
- Add 2-3 drops of Phenolphthalein indicator
- Titrate solution \mathbf{C} against solution \mathbf{A}
- Repeat the procedure and complete table II below:

Table II

	I	II	III

Calculate the:
(a) Average volume of solution A used
(b) Number of moles of hydrochloric acid that was in the $25 \mathrm{~cm}^{3}$ of solution \mathbf{C} used
(c) (i) Number of moles of the Carbonate in 0.2 g
(ii) Relative formula of the carbonate solid \mathbf{F}

QUESTION 2

You are provided with:

- Solution D, 0.25 M Sodium thiosulphate

You are required to:

Determine the effect of temperature on rate of reaction.

Procedure:

-Place $50 \mathrm{~cm}^{3}$ of solution \mathbf{D} in 100 ml glass beaker provided and record its steady temperature.

- Mark a cross (x) on a piece of white paper and place the beaker containing the thiosulphate on it.
- Measure $5 \mathrm{~cm}^{3}$ of solution \mathbf{E} and add it to the beaker with the thiosulphate and swire carefully not to pour the content.
- Start a stop watch immediately the last drop of acid is added
- Look through the solution and note the time taken for the mark to become invisible
- Repeat the procedure with the thiosulphate heated to $30^{\circ} \mathrm{C}, 40^{\circ} \mathrm{C}, 50^{\circ} \mathrm{C}$ and $60^{\circ} \mathrm{C}$

Record your results in table III below:
Table III

Volume of thiosulphate used (cm^{3})	Volume of solution E used (cm^{3})	Temperature (${ }^{\circ} \mathrm{C}$)	$\begin{array}{\|l} \hline \text { Time } \\ \text { (secs) } \end{array}$	1/t
25	5	Initial temp ${ }^{\circ}$		
25	5	30		
25	5	40		
25	5	50		
25	5	60		

(a) Use your results to plot a graph of $1 / \mathrm{t}$ against temperature
(b) From your graph, determine the time taken if the temperature of the solution is 318 K
(c) Explain how the rate of reaction changes with increase in temperature

QUESTION 3

Procedure 1:

You are provided with solid \mathbf{T}.
Place a spatula full of solid T in a clean boiling tube then add about $10 \mathrm{~cm}^{3}$ of distilled water.
Shake the mixture for about 1 minute then filter. Divide the filtrate into 4 portions.
(a) To the first portion add about $2 \mathrm{~cm}^{3}$ of sodium hydroxide (solution \mathbf{A})
(b) To the second portion add about $2 \mathrm{~cm}^{3}$ of 2.0 M hydrochloric acid
(c) To the third portion, add a few drops of phenolphthalein indicator
(d) To the fourth portion dip a clean glass rod and place the soaked end of the glass rod onto a non-luminous flame

Procedure 2:

You are provided with solid \mathbf{X}. Carry out the tests below and record your observation and inferences in the table below:
Place one spatula end full of solid \mathbf{X} in a boiling tube and add about $10 \mathrm{~cm}^{3}$ of distilled water.
Shake well and use for the tests below:
(a) To the $2 \mathrm{~cm}^{3}$ of solution in a test-tube, add one spatula end full of sodium hydrogen carbonate
(b) To $2 \mathrm{~cm}^{3}$ of solution, add three drops of acidified potassium manganate (VII) solution
(c) Place about $5 \mathrm{~cm}^{3}$ of ethanol in a test tube and add drops of concentrated sulphuric acid then add a spatula end full of solid \mathbf{X}. warm the mixture carefully. Shake well and pour the mixture into $20 \mathrm{~cm}^{3}$ of water in a beaker

CONFIDENTIAL

Requirements:-

1. Solution X_{1}, acidified potassium manganate (VII) solution. It is prepared by dissolving 3.16 g of KMnO_{4} in $400 \mathrm{~cm}^{3}$ of $2 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}$ add distilled water to make it up to litre solution
2. Solution X_{2}, 0.1M Iron (II) Sulphate
-It is prepared by dissolving 20.8G of Iron (II) Sulphate in1litre of distilled water, add
a few drops of concentrated sulphuric (VI) acid, to avoid oxidation.
3. Solution X_{3} contains $3.45 g$ of sodium nitrite in 1 litre of solution
4. Solid M - Potassium nitrate
5. Solid Y - (Oxalic acid)
6. You have been provided with:
(i) Solution X_{1}, acidified Potassium manganate (VII) solution
(ii) Solution $\mathrm{X}_{2}, 0.1 \mathrm{M} \mathrm{FeSO}_{4}$
(iii) Solution X_{3}, Sodium Nitrite

You are required to:

(a) Standardize solution X_{1}, using X_{2}
(b) Use experimental results to write ionic equation for the reaction between manganate (VII) ions and nitrate ions

Procedure I:-

(i) Fill the burette with solution \mathbf{X}_{1}
(ii) Pipette $25 \mathrm{~cm}^{3}$ of solution \mathbf{X}_{2} into 250 ml conical flask
(iii) Titrate solution $\mathbf{X}_{\mathbf{2}}$ with solution \mathbf{X}_{1} until a pink colour just appear
(iv) Record your results in table 1:

TABLE 1

Final burette reading $\left(\mathrm{cm}^{3}\right)$	I	II	III
Initial burette reading $\left(\mathrm{cm}^{3}\right)$			
Volume of X_{1} used cm^{3}			

Calculations:

(a) Calculate the average volume of solution X_{1} used
(b) Calculate the number of moles of Fe^{2+} in $25 \mathrm{~cm}^{3}$ of solution X_{2} used
(c) If the ratio $\mathrm{MnO}_{4}-: \mathrm{Fe}^{2+}$ is $1: 5$, calculate the concentration of MnO_{4} ions in moles per dm^{3}

Procedure II:

(i) Rinse the conical flask and refill the burette with solution X_{1}
(ii) Pipette $25 \mathrm{~cm}^{3}$ of X_{3} into a clean conical flask
(iii) Warm this solution to about $50^{\circ} \mathrm{C}$ (Note: Be accurate with temperature)
(iv) Titrate the solution in (iii) above against solution X_{1} from the burette to a pink colour
(v) Record your results in table II.

Calculations:

(a) Calculate the average volume of X_{1} used
(b) Calculate the number of moles of:
(i) Sodium nitrite in one litre of solution $(\mathrm{Na}=23, \mathrm{~N}=14, \mathrm{O}=16)$
(ii) Nitrite ions in $25 \mathrm{~cm}^{3}$ of solution \mathbf{X}_{3} used
(iii) Moles of solution $\mathbf{X}_{\mathbf{1}}$ used
(c) (i) Work out the approximate ratio $\mathrm{MnO}_{4}-\mathrm{NO}_{2}^{-}$
(ii) Write down the ionic equation for the reaction between acidified manganate (VII) ions and nitrite ions
2. You are provided with solid \mathbf{M}. You are required to:
(i) Carry out test on solid \mathbf{M}
(ii) Record your observations and inferences accordingly.

Procedure:-

1. (i) Dissolve solid \mathbf{M} in $15 \mathrm{~cm}^{3}$ of distilled water. Divide the resulting solution into six portions.

Record your observations
(ii) Add 3-4 drops of Lead nitrate to the first portion
(iii) Add 3-4 drops of Barium nitrate solution to the second portion
(iv) Add 3-4 drops of sodium hydroxide solution to the third portion
(v) Dip a glass rod into the fourth portion. Heat the end of glass rod dipped into the solution in a non-luminous flame
(vi) Add 4 drops of acidified manganate (VII) to the fifth portion and warm the mixture

Q3.

1. Solid \mathbf{Y}-1 spatulaful
2. Solid \mathbf{Z}-1 spatulaful
3. 6 test tubes
4. $\quad 1$ red +1 blue litmus papers
5. Metallic spatula
6. $\quad \mathrm{pH}$ paper
7. (a) You are provided with solid \mathbf{Y}

You are required to:
(i) Carry out the test described below on solid \mathbf{Y}
(ii) Record your observations and inferences
(iii) Test for any gas (es) produced

Procedure-

(i) Place a spatula of solid \mathbf{Y} into a boiling
(ii) Add about $15 \mathrm{~cm}^{3}$ of distilled water and shake well
(iii) Divide the resulting solution into five portions
(iv) Use a universal indicator paper to test portion one of the solution
(v) Add a spatula of sodium carbonate to the second portion
(vi) Add three drops of Potassium manganate (VII) solution to the $3^{\text {rd }}$ portion
(vii) Add three drops of bromine water to the $4^{\text {th }}$ portion. Warm the mixture if necessary
(viii) Place $2 \mathrm{~cm}^{3}$ of ethanol in a test-tube. Add 2 drops of concentrated Sulphuric (VI) acid and then a spatula end full of solid \mathbf{Y}. Shake well and warm the mixture carefully, pour the warm mixture into $25 \mathrm{~cm}^{3}$ of cold water in a beaker and note the smell

MUMIAS DISTRICT

CONFIDENTIAL

INSTUCTIONS.
In addition to the apparatus and fittings found in the laboratory each candidate should have:

1. One 25 ml pipette
2. One 3-way pipette filler
3. One $0-50 \mathrm{~m} / \mathrm{s}$ Burrette
4. Two $250 \mathrm{~m} / \mathrm{s}$ conical flask
5. One 100 ml measuring cylinder
6. One 100 ml glass beaker
7. One thermometer $\left(-10^{\circ} \mathrm{C}\right.$ to $\left.110^{\circ} \mathrm{C}\right)$
8. One stop watch / clock
9. One label
10. One $10 \mathrm{~m} / \mathrm{s}$ measuring cylinder
11. White tile

Mocks Topical Analysis
eeducationgroup.com
12. 250 ml beaker
13. Stand and clamp
14. $10 \mathrm{~cm}^{3}$ of solution A
15. $80 \mathrm{~cm}^{3}$ of solution B
16. $160 \mathrm{~cm}^{3}$ of solution C
17. $200 \mathrm{~cm}^{3}$ distilled water supplied in wash bottle
18. 10 cm^{3} Potassium manganate
19. $250 \mathrm{~cm}^{3} 1.0 \mathrm{M}$ sulphuric acid
20. $75 \mathrm{~cm}^{3}$ of solution X
21. About 0.5 g of solid K
22. About 0.5g of solid F
23. One blue and one red litmus papers
24. One metallic spatula
25. Six dry and clean test-tubes
26. One boiling tube
27. About 0.5 g Sodium hydrogen carbonate

ACCESS TO:

1. Source of heat (Bunsen burner)
2. Phenolphthalein indicator supplied with a dropper.
3. Solution Q (aqueous sodium sulphate) supplied with a dropper
4. Acidified lead II nitrate supplied with a dropper
5. Ethanol
6. Conc. $\mathrm{H}_{2} \mathrm{SO}_{4}$

NOTE:

1. Solution A is 4.0 m hcl
2. Solution B is $0.1 \mathrm{~m} \mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4} 2 \mathrm{H}_{2} \mathrm{O}$
3. Solution C is 0.2 m NaOH
4. Solution X is made by dissolving $5 g$ of sugar (sucrose) in $100 \mathrm{~m} / \mathrm{s}$ distilled water
5. Potassium Manganate (VII) solution D is made by dissolving 3.16 g of the solid in $600 \mathrm{~cm}^{3}$ of distilled water and diluting to 1 litre.
6. Solid K is Zinc chloride
7. Solid F is oxalic acid

Question 1

You are provided with:

- Aqueous Hydrochloric acid solution A
- Solution B containing 6.3 g of dibasic acid, $\mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4} 2 \mathrm{H}_{2} \mathrm{O}$ in $500 \mathrm{~cm}^{3}$ of solution.
- Aqueous sodium hydroxide solution C
- Phenolphthalein indicator

You are required to:
(a) Standardize the sodium hydroxide solution \mathbf{C}
(b) Use the standardized solution \mathbf{C} to determine the concentration of solution \mathbf{A}

Procedure 1

- Fill the burette with solution B
- Using a pipette and pipette filler, place $25.0 \mathrm{~cm}^{3}$ of solution \mathbf{C} into a 250 ml conical flask.
- Add 2-3 drops of Phenolphthalein indicator
- Titrate solution B against solution C
- Repeat the procedure and complete table 1 below:

Table 1

	I	II	III
Final burette readings $\left(\mathrm{cm}^{3}\right)$			
Initial burette readings $\left(\mathrm{cm}^{3}\right)$			
Volume of solution B used $\left(\mathrm{cm}^{3}\right)$			

(a) Calculate the average volume of solution \mathbf{B} used
(b) Calculate the concentration of the dibasic acid ($\mathrm{C}=12, \mathrm{H}=1, \mathrm{O}=16$)
(c) Calculate the molarity of solution \mathbf{C}

Procedure 2

- Using a $100 \mathrm{~cm}^{3}$ measuring cylinder, measure $90 \mathrm{~cm}^{3}$ of distilled water and place it into a $250 \mathrm{~cm}^{3}$ beaker.
- Add $10 \mathrm{~cm}^{3}$ of aqueous hydrochloric acid solution \mathbf{A}
- Using a $10 \mathrm{~cm}^{3}$ measuring cylinder, mix the solution well and label it solution D
- Fill a burette with solution D.
- Pipette $25.0 \mathrm{~cm}^{3}$ of the solution \mathbf{C} into a $250 \mathrm{~cm}^{3}$ conical flask
- Titrate using phenolphthalein indicator

Record your results in table 2
Table 2

	I	II	III
Final burette readings $\left(\mathrm{cm}^{3}\right)$			
Initial burette readings $\left(\mathrm{cm}^{3}\right)$			
Volume of solution \mathbf{D} used $\left(\mathrm{cm}^{3}\right)$			

(a) Calculate the average volume of solution \mathbf{D} used
(b) How many moles of hydrochloric acid were present in $100 \mathrm{~cm}^{3}$ of solution D
(c) Calculate the molarity of the original solution \mathbf{A} used

Question 2

You are provided with:

- 1.0 M sulphuric acid
- Potassium manganate (VII) solution D
- Aqueous glucose, solution X

You are required to:

Determine the rate of reaction between acidified potassium manganate (VII) and aqueous glucose at different temperatures.

Procedure

- Place $2 \mathrm{~cm}^{3}$ of solution \mathbf{D} into a 250 ml beaker. Using a 100 ml measuring cylinder, add $50 \mathrm{~cm}^{3}$ of 1.0 M Sulphuric acid to the beaker containing solution \mathbf{D}.
- Heat the mixture to about $65^{\circ} \mathrm{C}$, add $15 \mathrm{~cm}^{3}$ of solution \mathbf{X} and start a stop watch immediately.
- Stir the mixture using a thermometer and note the time and temperature at which the colour of the mixture changes from purple to colourless.
- Clean the beaker and repeat the procedure at temperatures, $60^{\circ} \mathrm{C}, 55^{\circ} \mathrm{C}, 50^{\circ} \mathrm{C}$ and $45^{\circ} \mathrm{C}$ to complete table 3 below:-

Table 3

Temperature before mixing $\left({ }^{\circ} \mathrm{C}\right)$	60	55	50	45
Temperature when solution becomes colourless $\left({ }^{\circ} \mathrm{C}\right)$				
Time $($ seconds $)$				
$1 /$ time $\left(\mathrm{s}^{-1}\right)$				

(a) Plot a graph of ${ }^{1 / t}(y$-axis) against the temperature at the point when the solution becomes colourless
(b) From your graph, determine the time that the reaction would take if the temperature at which the solution becomes colourless is $42.5^{\circ} \mathrm{C}$
(c) Explain the shape of your graph

Question 3.

You are provided with:

- Solid K

Procedure

Carry out the tests below. Record your observations and inferences in the spaces provided.
(a) Heat about half spatula end full of solid \mathbf{K} in a clean test tube, heat gently then strongly.

Test any gas produced using blue litmus papers.
(b) Dissolve the remaining solid \mathbf{K} in a boiling tube in about $10 \mathrm{~cm}^{3}$ of distilled water and use the solution for the tests below:
(i) To about $2 \mathrm{~cm}^{3}$ of solution \mathbf{K}, add aqueous potassium hydroxide dropwise until in excess
(ii) To about $2 \mathrm{~cm}^{3}$ of solution \mathbf{K}, add about $5 \mathrm{~cm}^{3}$ of solution \mathbf{Q} (aqueous sulphate)
(iii) To about $3 \mathrm{~cm}^{3}$ of the solution \mathbf{K}, add about $6 \mathrm{~cm}^{3}$ of acidified lead II nitrate

You are provided with:

- Solid \mathbf{F}

Procedure
Add about $10 \mathrm{~cm}^{3}$ of distilled water into half spatula end full of $\operatorname{solid} \mathbf{F}$ in a boiling tube and shake thoroughly.
(c)To about $2 \mathrm{~cm}^{3}$ of solution \mathbf{F}, add the whole of sodium hydrogen carbonate
(d) To about $2 \mathrm{~cm}^{3}$ of solution \mathbf{F}, add about 5 drops of acidified potassium manganate (VII) then warm the mixture.
(e) Place about $5 \mathrm{~cm}^{3}$ of ethanol in a test-tube and add drops of concentrated sulphuric acid then add the remaining solid \mathbf{F}. Warm the mixture carefully. Shake well and pour the mixture into $20 \mathrm{~cm}^{3}$ of water in a beaker

KISUMU DISTRICT

CONFIDENTIAL

INSTRUCTIONS.

In addition to ordinary apparatus in the laboratory each candidate will require;

1. $2 g$ Solid A
2. $100 \mathrm{~cm}^{3}$ solution B-Hydrochloric acid
3. $200 \mathrm{~cm}^{3}$ solution $C \quad$-Sodium hydroxide
4. Burette
5. Pipette
6. Two 250 ml conical flask
7. Methyl orange indicator
8. 100 ml measuring cylinder
9. 10ml measuring cylinder
10. Distilled water
11. Means of labelling
12. $30 \mathrm{~cm}^{3}$ solution S
13. $50 \mathrm{~cm}^{3}$ solution S - Hydrochloric acid
14. $50 \mathrm{~cm}^{3}$ solution T-Sodium hydroxide
15. Ten test tubes
16. Rack
17. 100ml
18. Thermometer
19. Source of heat
20. Solid U
21. Spatula
22. Red and blue litmus paper
23. Filter funnel
24. Filter paper

Access to the following:-

- 2M Sodium hydroxide
- 2M potassium iodine
- $2 M$ Nitric acid
- 2M Ammonia hydroxide
- Solid A - Per student measure [0.32g $\left.\mathrm{CaCO}_{3}+1.68 \mathrm{NaCl}\right]$
- Solution B - [0.5M HCl]
- Solution C-[0.4M NaOH]
- Solution S-[1.0M HCl]
- Solution T-[1.0M NaoH]
- Solid U - [One spatula $\mathrm{CuCO} \mathrm{O}_{3}+$ one spatula $\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}$

QUESTION 1.

You are provided with:

- 2 g of an impure calcium carbonate, solid \mathbf{A}
- Hydrochloric
- Hydrochloric acid, solution B
- 16 g per litre solution of sodium hydroxide, solution \mathbf{C}

You are required to determine;

- Concentration of solution B in moles per litre
- Percentage of the carbonate in mixture A

PROCEDURE I:

Pipette $25.0 \mathrm{~cm}^{3}$ of solution \mathbf{C} into a 250 ml flask. Add 2-3 drops of methyl orange indicator.
Titrate solution \mathbf{C} with the hydrochloric acid solution B. Repeat this procedure two more times and record your results in table I below:-

Table I:-

Titration	I	II	III
Final burette reading $\left(\mathrm{cm}^{3}\right)$			
Initial burette reading $\left(\mathrm{cm}^{3}\right)$			
Volume of solution B $\left(\mathrm{cm}^{3}\right)$ used			

Calculations:-

(a) (i) Calculate the average volume of solution \mathbf{B} used
(ii) Calculate the number of moles of sodium hydroxide solution \mathbf{C} pipetted
(iii) Calculate the number of moles of hydrochloric acid solution \mathbf{B} that reacted with sodium hydroxide in (a) (ii) above
(iv) Calculate the molarity of hydrochloric acid solution B

PROCEDURE II:

(a) Place all the 2 g of solid a provided into a conical flask and add $25.0 \mathrm{~cm}^{3}$ of hydrochloric acid solution B to it using a clean pipette. Swirl the contents of the flask vigorously until effervescence stops. Using a 100 ml measuring cylinder, add $175 \mathrm{~cm}^{3}$ of distilled water to make up the solution up to $200 \mathrm{~cm}^{3}$ of solution. Label this solution D. Using a clean pipette,
transfer $25.0 \mathrm{~cm}^{3}$ of solution D into a conical flask and add 2-3 drops of methyl orange indicator. Titrate solution D with sodium hydroxide solution \mathbf{C}. Repeat the procedure two more times and record your in the table II below:-
table II:

Titration	I	II	III
Final burette reading $\left(\mathrm{cm}^{3}\right)$			
Initial burette reading $\left(\mathrm{cm}^{3}\right)$			
Volume of solution $\mathbf{C}\left(\mathrm{cm}^{3}\right)$ used			

(b) (i) Calculate the average volume of solution \mathbf{C} used
(ii) Calculate the number of moles of sodium hydroxide solution \mathbf{C} present in the average volume
(iii) Calculate the number of moles of hydrochloric acid present in the original $200 \mathrm{~cm}^{3}$ of solution D
(iv) Calculate the number of moles of hydrochloric acid solution \mathbf{B} contained in the original $25.0 \mathrm{~cm}^{3}$ of solution B used
(v) Calculate the moles of calcium carbonate that reacted with hydrochloric acid solution \boldsymbol{D}
(vi) Calculate the mass of calcium carbonate in 2 g of solid \mathbf{A}
(vii) Calculate the percentage of calcium carbonate present in the mixture (solid \mathbf{A})
2. You are provided with :-

- Solution of hydrochloric acid, S
- 1.0 M solution of sodium hydroxide, solution \mathbf{T}

You are required to:

(i) Calculate the heat of molarity of hydrochloric acid, solution \mathbf{S}
(ii) Determine the heat of reaction for mole of hydrochloric acid with sodium hydroxide.

PROCEDURE

I. Place six test tubes on a test tube rack. Using a 10 ml measuring cylinder, measure and pour $5 \mathrm{~cm}^{3}$ of solution \mathbf{T} into each of the test tubes
II. Measure $20.0 \mathrm{~cm}^{3}$ of solution \mathbf{S} and pour into a 100 ml beaker. Measure the temperature of this solution and record in table III below.
III. Pour the first portion of the $5 \mathrm{~cm}^{3}$ of solution \mathbf{T} into the beaker containing the $20.0 \mathrm{~cm}^{3}$ of solution \mathbf{S}. Stir the mixture carefully using a thermometer and record the highest temperature reached in table III.
IV. Pour the second portion immediately into the mixture in the beaker, stir carefully and record the highest temperature in table III continue this procedure with the remaining portions of solution \mathbf{T} to complete table III.

Table III:

(a)

Titration	0	5	10	15	20	25	30
Volume of solution T added $\left(\mathrm{cm}^{3}\right)$							
Volume of solutions $\mathbf{S}+\mathbf{T}\left(\mathrm{cm}^{3}\right)$							
Temperature of mixture $\left({ }^{\circ} \mathrm{C}\right)$							

(c) From the graph, determine:-
(i) The volume of solution \mathbf{T} required to react completely with solution \mathbf{S}
(ii) The highest temperature change, $\Delta \mathbf{T}$
(d) Calculate the heat change for the reaction ;
(Heat change $=M \times 4.2 \mathrm{Jg}^{-1}{ }^{\circ} \mathrm{C}^{-1} \mathrm{x} \Delta \mathrm{t}$, assume the density of the solution to be $1 \mathrm{~g} / \mathrm{cm}^{3}$)
(e) Calculate the number of moles of the sodium hydroxide solution T used in the experiment
(f) Calculate the number of moles of the hydrochloric acid, solution \mathbf{S} used in the experiment
(g) Determine the heat of reaction per mole of hydrochloric acid, solution \mathbf{S}
3. You are provided with solid \mathbf{U}, carry out the test below. Record your observations and inferences in the table. Identify any gas(es) evolved.
(a) Heat a spatula end full of mixture \mathbf{U} in a test tube.
(b) (Dissolve a part of mixture \mathbf{U} in abort $10 \mathrm{~cm}^{3}$ of distilled water
(c) Filter the mixture and retain both filtrate and the residue. Divide the filtrate into two portions.
(i) To the first portion, add sodium hydroxide drop wise until in excess
ii) To the second portion, add Potassium iodide solution
(d) Divide the residue into two parts:-
(i) Put one part in a test tube and add dilute nitric acid until the residue just dissolves
(ii) Divide the resulting solution into two parts. To part one, add dilute sodium hydroxide solution drop wise until in excess
(iii) To part two, add aqueous ammonia drop wise until in excess

RACHUONYO DISTRICT

CONFIDENTIAL

INSTRUCTIONS .
In addition to common fittings, apparatus and chemicals found in the school laboratory.
Each candidate requires:-

1. 50.0 ml burette
2. 250 ml pipette
3. Pipette filler
4. Two 25.0 ml conical flasks
5. A clean metallic spatula
6. One boiling tube
7. A white tile/plain paper (white)
8. Eight clean dry test-tubes on a rack
9. 1.5 g of carbonate A - accurately weighed and placed in a stoppered test-tube
10. $75 \mathrm{~cm}^{3}$ of $0.1 M$ sodium hydroxide labeled C
11. $75 \mathrm{~cm}^{3}$ of $1 M$ hydrochloric acid labeled solution B
12. 10ml measuring cylinder
13. One filter paper
14. A filter funnel
15. A glass rod
16. $45 \mathrm{~cm}^{3}$ of 0.42 M glucose, labeled X
17. $130 \mathrm{~cm}^{3}$ of $2.0 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}$ labelled Z
18. 10 ml of 0.04 M KMnO 4 labelled Y
19. Stop watch/stop clock
20. Thermometer $\left(-10^{\circ} \mathrm{C}-110^{\circ} \mathrm{C}\right)$
21. 100 ml measuring cylinder
22. Solid K (about 2g)
23. Distilled water in a wash bottle
24. A 250ml volumetric flask (one)
25. Means of labeling (one)

Access to the following:-

1. Bunsen burner

2. Phenolphthalein indicator solution supplied with a dropper
3. Tripod stand and a wire gauze
4. 2.0 M NaOH supplied with a dropper
5. 2.0 M HCl
6. 2.0 M HNO 3 supplied with a dropper
7. $0.5 \mathrm{M} \mathrm{BaCl} 2_{2}$ supplied with a dropper
8. Calcium hydroxide solution in a stoppered container
9. 2.0M ammonia solution supplied with a dropper
10. 0.05M potassium iodide solution supplied with a dropper

Preparation of chemicals

(i) Solid A-Calcium Carbonate
(ii) Solid K - Mixture of Lead (II) carbonate and sodium sulphate in the ratio 1:1

1. You are provided with:

- 1.5 g of metal Carbonate \mathbf{A}
- $75 \mathrm{~cm}^{3}$ of 1 M hydrochloric acid labelled \mathbf{B}
- $75 \mathrm{~cm}^{3}$ of 0.1 M sodium hydroxide labelled \mathbf{C}

You are required to determine the molar mass of the carbonate

Procedure I

Transfer carefully all solid \mathbf{A} into a clean 250 ml volumetric flask. Add $50 \mathrm{~cm}^{3}$ of the acid labelled B into the flask containing the carbonate. Wait until the reaction is complete
(No more effervescence takes place)

Question 1.

(a) Find the moles of hydrochloric acid present in $50 \mathrm{~cm}^{3}$ of solution B

Procedure II
When the reaction is complete, add $100 \mathrm{~cm}^{3}$ of distilled water to the contents of the flask and shake.

Add more distilled water to top the solution to the mark. Label it as solution D. Pipette $25 \mathrm{~cm}^{3}$ of solution \mathbf{D} into a $250 \mathrm{~cm}^{3}$ of conical flask and titrate with solution \mathbf{C} using 1 to 2drops of phenolphthalein indicator. Record your results in table 1 below. Repeat this procedure to obtain accurate values:

	I	II	III
Final burette reading $\left(\mathrm{cm}^{3}\right)$			
Initial burette reading $\left(\mathrm{cm}^{3}\right)$			
Volume of solution \mathbf{C} used $\left(\mathrm{cm}^{3}\right)$			

(b) Determine the average volume of solution \mathbf{C} used
(c) (i) Calculate the volume of sodium hydroxide that would react with $250 \mathrm{~cm}^{3}$ of the diluted acid
(ii) Calculate the moles of sodium hydroxide solution \mathbf{C} in the volume obtained in $\mathbf{c}(\mathbf{i})$

Above
(d) Write down equation for the reaction between hydrochloric acid and sodium hydroxide
(e) How many moles of hydrochloric acid are left after the reaction with the metal carbonate \mathbf{A}
(f) Calculate the moles of hydrochloric acid that reacted with 1.5 g of the metal Carbonate \mathbf{A}
(g) (i) Write down the ionic equation between carbonate and hydrochloric acid
(ii) Calculate moles of carbonate \mathbf{A}
(iii) Calculate the molar mss of the carbonate \mathbf{A}
2. You are provided with:-

- 2.0 M sulphuric (VI) acid solution, solution Z
- $\quad 0.42 \mathrm{M}$ glucose, solution \mathbf{X}

Mocks Topical Analysis eeducationgroup.com

- 0.04 M potassium manganate (VII) solution \mathbf{Y}

You are required to determine the rate of reaction between aqueous glucose solution and acidified potassium manganate (VII) at different temperatures.

Procedure

Place $1 \mathrm{~cm}^{3}$ of solution \mathbf{Y} into a conical flask. Using a $100 \mathrm{~cm}^{3}$ measuring cylinder add $25 \mathrm{~cm}^{3}$ of solution Z to the conical flask containing solution \mathbf{Y}. Warm the mixture to about $70^{\circ} \mathrm{C}$. Stop warming and allow the mixture to cool. When the temperature is exactly $65^{\circ} \mathrm{C}$ add $7.5 \mathrm{~cm}^{3}$ of solution \mathbf{X} and start the stop watch immediately. Stir the mixture with a thermometer and measure the time taken for the colour of the mixture to change from purple to colourless. Record the time in table 2 below also record the temperature at which the mixture turns colourless. Clean the conical flask and repeat the procedure at temperature of $60^{\circ} \mathrm{C}, 55^{\circ} \mathrm{C}$ $50^{\circ} \mathrm{C}$
and $45^{\circ} \mathrm{C}$ instead of $65^{\circ} \mathrm{C}$.
(a) Calculate $1 /$ time and complete the table

Table 2

(6mks)

Temperature before mixing $\left({ }^{\circ} \mathrm{C}\right)$	65	60	55	50	45
Temperature when solution becomes colourless $\left({ }^{\circ} \mathrm{C}\right)$					
Time in seconds					
$1 /$ time $\left(\mathrm{s}^{-1}\right)$					

(b) Plot a graph of $1 /$ time $(y$-axis) against the temperature at the point when the solution becomes Colourless
(c) From your graph, determine the time that the reaction would take if the temperature at which the solution becomes colourless is $52.5^{\circ} \mathrm{C}$
(d) From your graph, determine the rate of reaction if the temperature at which the solution becomes colourless is $47^{\circ} \mathrm{C}$
(e) Explain the shape of your graph
3. You are provided with mixture \mathbf{K}. You are required to perform tests on the mixture in order to determine its composition. Record your observations and inferences in their spaces provided:-
(a) Place a spatula of \mathbf{K} on a white tile and observe its appearance:-
(b) Place the remaining portion of \mathbf{K} in a boiling tube and add $10 \mathrm{~cm}^{3}$ of distilled water. Shake vigorously, filter and retain both the residue and filtrate
(i) Divide the filtrate into 3 portions. To the first portion sodium hydroxide drop-wise until
excess
(ii) Dip one end of a metallic spatula in 2 M HCl and heat it in a Bunsen burner flame for a few seconds and allow it to cool. Scoop a little of the solution from the second portion with the heated end of the spatula and place it as the hottest part of the non-luminous flame.
(iii) To the third portion add 3-4 drops of dilute $\mathrm{HNO}_{3(\mathrm{aq)}}$ followed by 3-4 drops of $\mathrm{BaCl}_{2(\mathrm{aq})}$
(c) Scrap the residue from the filter paper and place a half of it in a clean dry test tube.

Add about $3 \mathrm{~cm}^{3}$ of $2 \mathrm{M} \mathrm{HNO}_{3}$. Test for any gas produced by use of calcium hydroxide solution on a glass rod. Preserve the solution for use in procedure (d) below:-
(d) Add about $3 \mathrm{~cm}^{3}$ of distilled water to the solution obtained in (c) above and shake to mix. Divide the solution into 3 portions
(i) To the first portion, add sodium hydroxide drop-wise until in excess
(ii) To the second portion, add ammonia solution drop-wise until in excess
(iii) To the third portion, add 2-3drops of potassium iodide solution

KAKAMEGA NORTH DISTRICT

CONFIDENTIAL

 INSTUVTIONS.
You are provided with:

- $25 \mathrm{~cm}^{3}$ of 0.2 M Copper(II) sulphate solution
- 0.5 g of metal \mathbf{A}
- 0.5 g of metal B
- One thermometer of -10 to $110^{\circ} \mathrm{C}$ range
- Two $100 \mathrm{~cm}^{3}$ plastic beakers

You are required to determine the molar enthalpy change for metal A and B and arrange them in order of reactivity

Procedure

1. a) Using the thermometer provided, take the initial temperature of copper (II) sulphate solution and record your results in table A below
b) Add all the 0.5 g of metal A into copper (II) sulphate solution; stir the mixture for about 5 minutes. Using a thermometer and record the final temperature (highest temperature) in table A below:

TABLE A;

Initial temperature of $\mathrm{CUSO}_{4(\mathrm{aqq}}(\mathrm{C})$	
Final temperature of $\mathrm{CUSO}_{4(\mathrm{aq})}(\mathrm{C})$	
Temperature change T $\left({ }^{\circ} \mathrm{C}\right)$	

Question 2;

2. a) Using a thermometer take initial temperature of another 25 cm 3 fresh sample of copper(II) sulphate solution in the plastic beaker and record your results in table B below;

TABLE B;

Initial temperature of CUSO $_{4(\mathrm{aq})}(\mathrm{C})$	
Final temperature of $\mathrm{CUSO}_{4(\mathrm{aq})}(\mathrm{C})$	
Temperature change T (c)	

a) i) State and explain whether the reactions above between metals A and B with copper (II) sulphate are endothermic or exothermic
ii) Calculate the moles of copper ions present in $25 \mathrm{~cm}^{3}$ of 0.2 M copper (II) sulphate solution
b) i) Calculate the enthalpy change that occurs when $25 \mathrm{~cm}^{3}$ of copper (II) solution reacts with metal A. (Specific heat - capacity of the solution $=4.2 \mathrm{Jg}^{-1} \mathrm{~K}^{-1}$, Density of the solution $=1 \mathrm{~g} / \mathrm{cm}^{3}$
ii) Determine the molar enthalpy change for the reaction of copper (II) sulphate solution with metal A
c) i) Explain the significance of using powdered metals \mathbf{A} and \mathbf{B} in this experiment
ii) Record the colour of the powdered metals \mathbf{A} and \mathbf{B}
d) State and explain major observations made when metal \mathbf{A} reacts with copper (II) sulphate solution
e) i) Determine the molar enthalpy change for the reaction of metal B with $25 \mathrm{~cm}^{3}$ of 0.2 M copper
(II) sulphate solution ($\mathrm{C}=4.2^{\mathrm{J}} \mathrm{g}^{-1} \mathrm{~K}^{-1}$, Density of solution $=1 \mathrm{~g} / \mathrm{cm}^{3}$, RAM of metal $\mathrm{B}=65$)
ii) Arrange metals \mathbf{A} and \mathbf{B} in order of reactivity beginning with the more reactive one. Give a reason for your answer

Question 2

You are provided with;

- Solution C, 0.1 M hydrochloric acid
- Solution D, $\mathrm{MOH}_{(\mathrm{aq})}$ solution of unknown concentration
- Phenolphthalene indicator

You are required to standardize solution \mathbf{D} using solution \mathbf{C} and to determine the value of M in the formula $\mathrm{MOH}_{(\mathrm{aq})}$

Procedure

1. a) Pipette $25 \mathrm{~cm}^{3}$ of solution \mathbf{D} into the conical flask. Using a dropper, add 2 drops

Mocks Topical Analysis eeducationgroup.com
of phenolphthalene indicator to solution \mathbf{D}
b) Fill the burette with solution C and correct to the "O" mark
c) Titrate solution \mathbf{C} against solution \mathbf{D}
2. Repeat procedure $\mathbf{1 (a) , (b)}$ and (c) twice and record your results in a table of results below;

Table of results

Experiment	I	II	III
Final volume of solution $\mathbf{C}\left(\mathrm{cm}^{3}\right)$			
Initial volume of solution $\mathbf{C}\left(\mathrm{cm}^{3}\right)$			
Volume of solution \mathbf{C} used $\left(\mathrm{cm}^{3}\right)$			

a) Volume of pipette used \qquad cm^{3}
b) Calculate the average volume of solution C used in this experiment
c) Calculate the number of moles of solution \mathbf{C} used in this experiment
d) Given that solution \mathbf{C} is hydrochloric acid while solution \mathbf{D} is MOH (the base),
i) Write a chemical equation to show the reaction of solution \mathbf{C} with \mathbf{D}
ii) Write the ionic equation for the reaction of solution C with D in d (i) above
iii) From the reaction equation written in $\mathrm{d}(\mathrm{i})$ above, determine the moles of solution \mathbf{D} that reacted with solution \mathbf{C}
e) i) Determine the molarity of solution \mathbf{D} (i.e. $\left.\mathrm{MOH}_{(\mathrm{aq})}\right)$ used in this experiment
ii) Given that 6016 g of solid $\mathrm{MOH}_{(\mathrm{s})}$ were dissolved in distilled water and made to 1 litre, calculate the relative molecular mass of $\mathrm{MOH}_{(\mathrm{s})}$
iii) From your answer in \mathbf{e} (ii) above, determine the value of M in the formula MOH

Question 3.
You are provided with solid \mathbf{E}. Carry out the following tests on solid \mathbf{E} so as to try and find out the ions present in solid \mathbf{E}

Complete the table below to show your observation and inference (conclusions)

Experiment	Observation	Inference
a) Observe solid E and record your findings		
b) Dissolve solid \mathbf{E} in about $3 / 4$ of distilled water in a boiling tube and divide the solution into 5 portions in 5 test tubes		
i) To portion 1 add $\mathrm{NaOH}_{(a q)}$ drop wise to excess		
ii) To portion 2 add $\mathrm{NH}_{3(\text { aq) }}$ drop wise to excess		
iii) To portion 3 add a few drops of $\mathrm{Ba}\left(\mathrm{NO}_{3}\right)_{2}$ followed by few drops of dilute $\mathrm{HNO}_{3}($ (aq $)$		
iv) To portion 4 add lead (II) Nitrate drop wise followed by dil. $\mathrm{HNO}_{3(\text { aq })}$		
v) To portion 5 dip a looped nichrome wire to it and put the wire in the Bunsen flame		

BUTERE DISTRICT

CONFIDENTIAL

INSTRUCTIONS

Each student should be provided with:

1. $100 \mathrm{~cm}^{3}$ of solution M_{2}
2. $80 \mathrm{~cm}^{3}$ of solution M_{1}
3. $50 \mathrm{~cm}^{3}$ of solution M_{3}
4. Pipette (25 ml)
5. Burette ($\mathbf{5 0} \mathrm{mls}$)
6. Methyl Orange indicator with a dropper
7. Two conical flasks
8. Filter funnel
9. Measuring cylinder (10 mls)
10. Measuring cylinder (50 mls)
11. Thermometer (-10 to 110° c)
12. 100 mls plastic beaker
13. 3 test tubes in a test tube rack
14. 1 Boiling tube
15. Solid W. (One spatula full)

Access to:

1. $2 \mathrm{M} \mathrm{NaOH}($ aq $)$ with a dropper
2. 2 M NH 3 (aq) with a dropper
3. $1 \mathrm{M} \mathrm{BaCl} 2_{2}$ with a dropper
4. $2 \mathrm{M} \mathrm{HNO}_{3}$ with a dropper
5. Distilled water in a wash bottle

Note:

1. Solution M_{1} is prepared by mixing $53 g$ of Sodium Carbonate and 42g of Sodium Chloride solid and dissolved to make one litre solution.
2. M_{2} is $1 M$ Hydrochloric acid.
3. M_{3} is $1 M$ Sodium Hydroxide.
4. Solid W is Aluminium Nitrate
5. You are provided with the following solutions:-

- M_{1} containing 95 g of a mixture of sodium carbonate and sodium chloride per litre of solution.
- M_{2} which is 1 M HCL.

You are to determine the percentage of sodium chloride in the mixture.

Proceed as follows:

Pipette $25 \mathrm{~cm}^{3}$ of M_{1} and titrate with M_{2} from burette using 3-4 drops of methyl orange indicator. Stop titrating when a permanent pink colour appears. Repeat the experiment and complete the table below.
TABLE 1

	I	II	III
Final burette reading $\left(\mathrm{cm}^{3}\right)$			
Initial burette reading $\left(\mathrm{cm}^{3}\right)$			
Volume of M_{2} used $\left(\mathrm{cm}^{3}\right)$			

a) Determine the average volume of M_{2} used. Show your workings.
b) Determine the number of moles of M_{2} used.
c) Write down an ionic equation for the substances that react.
d) Determine the number of moles of the base used.
e) Calculate the concentration of sodium carbonate.
f) Determine the mass of sodium carbonate in 1 litre of the solution.

$$
(\mathrm{Na}=23, \mathrm{C}=12, \mathrm{O}=16)
$$

g) Determine the percentage of sodium chloride in the mixture.
2. You are provided with the following solutions:-
-1 M HCl solution M_{2}
-1 M NaOH solution M_{3}
Mocks Topical Analysis

You are expected to determine the molar heat of neutralization of hydrochloric acid.
Proceed as follows:
Measure $23 \mathrm{~cm}^{3}$ of M_{2} and put in a 100 ml beaker. Measure its temperature and record in the table below under first column. By use of a measuring cylinder measure $5 \mathrm{~cm}^{3}$ of M_{3} and to M_{2} in the beaker. Stir with the thermometer and record the final steady temperature. Continue adding $5 \mathrm{~cm}^{3}$ at a time and recording the temperature till $35 \mathrm{~cm}^{3}$ has been added, complete the table below.
a) TABLE II

Volume of M_{2} added $\left(\mathrm{cm}^{3}\right)$	0	5	10	15	20	25	30	35
Temperature $\left({ }^{\mathrm{c}} \mathrm{c}\right)$								

b) Plot a graph of temperature (vertical axis) against volume of NaOH added.
c) From your graph determine:-
(i) Volume of 1 M NaOH needed to neutralize $23 \mathrm{~cm}^{3}$ of 1 M HCl
(ii) Rise in temperature $\Delta \mathrm{T}$.
d) Calculate the amount of heat evolved in the above reaction. Take specific heat capacity of solution to be $4.2 \mathrm{~J} / \mathrm{g} / \mathrm{k}$, density of solution. $1 \mathrm{~g} / \mathrm{cm}^{3}$.
e) Calculate the number of moles of HCl used.
f) Hence determine the Molar heat of neutralization of hydrochloric acid.
3. You are given solid W. Carry out the tests below and answer accordingly.
a) Take a spatula endful of W and put in a boiling tube. Add about $8 \mathrm{~cm}^{3}$ of water and shake. Keep the mixture for the tests below.
b) To about $2 \mathrm{~cm}^{3}$ of solution of W add sodium hydroxide (2 M NaOH) drop wise till in excess.
c) To about $2 \mathrm{~cm}^{3}$ of solution W, add Ammonia solution ($2 \mathrm{M} \mathrm{NH}_{2 \mathrm{aq}}$) drop wise till in excess.
d) To about $2 \mathrm{~cm}^{3}$ of solution W , add about 5 drops of Nitric acid $\left(\mathrm{HNO}_{3}\right.$ (aq) $)$ followed by 2 drops of Barium chloride.

CONFIDENTIAL

REQUIREMENTS

In addition to the equipment, apparatus and chemical found in the chemistry laboratory, each candidate will require the following:

- Solution P: about 100 cm 3
- Solution Q: about 50 cm^{3}
- Solution R: about $100 \mathrm{~cm}^{3}$
- Distilled water
- 100ml measuring cylinder
- One filter funnel
- One $25 \mathrm{~cm}^{3}$ pipette
- A clamp and stand
- Aphenolphalein indicator
- 3 conical flasks
- White tile
- Solution F: about 30 cm^{3} of 1.0 M sodium hydroxide solution
- A 10ml measuring cylinder
- A 100ml plastic beaker
- Means of labeLling
- A 110 $^{\circ}$ C thermometer
- Solid D, 0.5g Zinc Sulphate crystals
- Metallic spatula
- 1 boiling tube
- 5 clean dry test tubes

Mocks Topical Analysis

- Test tube holder
- Bench solutions supplied with droppers
- Dilute nitric acid solution, 2
- 2M sodium hydroxide solution
- 2M aqueous ammonia solution
- 0.5M Barium nitrate solution
- 0.5M Lead (ii) Nitrate solution

NOTES

(a) (i) Solution P is prepared by dissolving $17.2 \mathrm{~cm}^{3}$ of concentrated hydrochloric acid in about $250 \mathrm{~cm}^{3}$ of distilled water and adding water to make 1litre of solution
(ii) Solution Q is prepared by dissolving $64 g$ of sodium hydroxide pellets in about $250 \mathrm{~cm}^{3}$ of distilled water and making it to 1litre of solution
(iii) Solution R is prepared by dissolving $13.75 \mathrm{~cm}^{3}$ of concentrated sulphuric acid in about 250 cm of distilled water and making it to 1litre of solution
(b) Solid D is 0.5 g of Zinc Sulphate crystals

You are provided with:

- Solution P, 0.2 M hydrochloric acid
- Solution Q, sodium hydroxide solution
- Solution \mathbf{R}, containing $49 \mathrm{~g} /$ Litre of a dibasic acid, $\mathrm{H}_{2} \mathrm{~A}$

You are required to:
Dilute solution \mathbf{Q} with distilled water
Standardize the diluted solution \mathbf{Q} with solution \mathbf{P}
Determine the relative formula mass of \mathbf{A}

Procedure 1:

Pipette $25 \mathrm{~cm}^{3}$ of \mathbf{Q} into a clean dry 250 ml volumetric flask. Measure $175 \mathrm{~cm}^{3}$ of distilled water using a $100 \mathrm{~cm}^{3}$ measuring cylinder and add it to solution \mathbf{Q} in the flask. Shake well. Label this as solution \mathbf{S} and keep it for further tests in procedure I and II. Pipette $25 \mathrm{~cm}^{3}$ of solution \mathbf{S} into a clean dry conical flask. Add 2 to 3drops of Phenolphthalein indicator and titrate with solution \mathbf{P}. record your results in the table I below. Repeat the procedure to obtain accurate results.

Table I

Titration number	I	2	3
Final burette reading $\left(\mathrm{cm}^{3}\right)$			
Initial burette reading $\left(\mathrm{cm}^{3}\right)$			
Volume of solution P used $\left(\mathrm{cm}^{3}\right)$			

(a) Determine the average volume of solution R used
(b) (i) Find the moles of solution \mathbf{P} used to react with $25 \mathrm{~cm}^{3}$ of the diluted solution \mathbf{S}.
(ii) Find the moles of solution \mathbf{S} in $25 \mathrm{~cm}^{3}$ of the diluted solution.
(iii) Determine the number of moles of sodium hydroxide contained in the $100 \mathrm{~cm}^{3}$ of solution S
(c) Using your results in b (ii) above determine the concentration in moles per litre of the original sodium hydroxide solution \mathbf{Q}

Procedure II

Pipette $25 \mathrm{~cm}^{3}$ of the standardized solution \mathbf{S} into a clean, dry conical flask. Empty your burette completely of solution \mathbf{P} and rinse it with some water. Now, fill your burette with solution \mathbf{R} and titrate with solution \mathbf{S} in the conical flask containing 2 to 3 drops of Phenolphthalein indicator.
Record your results in table II below. Repeat the procedure to obtain accurate results.

Table II

Titration number	I	2	3
Final burette reading $\left(\mathrm{cm}^{3}\right)$			
Initial burette reading $\left(\mathrm{cm}^{3}\right)$			
Volume of solution R used $\left(\mathrm{cm}^{3}\right)$			

(d) Determine the average volume of solution \mathbf{R} used
(e) Determine the number of moles of Sodium hydroxide in $25 \mathrm{~cm}^{3}$ of solution \mathbf{S} and hence the moles of solution \mathbf{R} used
(f) Find the number of moles of \mathbf{R} contained in one litre of solution
(g) Given that $\mathrm{H}=1.0$:
(i) Find the relative formula mass of the dibasic acid $\mathrm{H}_{2} \mathrm{~A}$
(ii) Determine the relative formula mass of \mathbf{A} in the formula $\mathrm{H}_{2} \mathrm{~A}$
2. You are provided with:
1.0M Sodium hydroxide solution \mathbf{F}
$\mathbf{0 . 6 M}$ solution of acid labelled \mathbf{G}
You are required to determine the molar heat of neutralization of Sodium hydroxide with acid G

Procedure:

(a) Place six test tubes on a test rack. Using a $10 \mathrm{~cm}^{3}$ measuring cylinder measure $5 \mathrm{~cm}^{3}$ portions of solution \mathbf{G} and place them in each of the tubes.
Measure $25.0 \mathrm{~cm}^{3}$ of solution \mathbf{F} using a measuring cylinder and place it into a $100 \mathrm{~cm}^{3}$ beaker. Measure the temperature of this solution F to the nearest $0.5^{\circ} \mathrm{C}$ and record in table III. Pour the first portion of the $5 \mathrm{~cm}^{3}$ of solution G from the test tube into the beaker containing $25.0 \mathrm{~cm}^{3}$ of solution \mathbf{F}. Stir the mixture carefully and record the highest temperature of the mixture in table III.
Pour the second portion of solution \mathbf{G} immediately into the mixture in the beaker. Stir carefully and record the highest temperature of this mixture in table III. Continue this procedure using the remaining portions of solution \mathbf{G} to complete table III.

Table III

Volume of G added $\left(\mathrm{cm}^{3}\right)$	0	5	10	15	20	25	30
Volume of $\mathrm{F}\left(\mathrm{cm}^{3}\right)$	25	25	25	25	25	25	25
Temperature $\left({ }^{\circ} \mathrm{C}\right)$							

(b) On the grid provided, plot a graph of temperature (vertical axis) versus volume of solution \mathbf{G} added
(c) From the graph, determine:
(i) The volume of solution \mathbf{G} required to react with the $25 \mathrm{~cm}^{3}$ of sodium hydroxide solution \mathbf{F}
(ii) The highest temperature change
(d) Calculate the heat change for the reaction
(Heat change $=$ Mass x temperature change $\mathrm{x} 4.2 \mathrm{jg}^{-10} \mathrm{C}$. Assume density of each solution to be $1 \mathrm{gcm}^{-3}$)
(e) Calculate the volume of sodium hydroxide solution \mathbf{F}, used
(f) Calculate the molar heat of neutralization of sodium hydroxide solution \mathbf{F}

3 You are provided with substance \mathbf{D}, which contains two cations and one anion.
Carry out the test below on the substance. Enter your observations in the table below.
Write your observations and inferences in the spaces Provided
(a) Place a spatula end full of \mathbf{D} in a boiling tube. Add about $5 \mathrm{~cm}^{3}$ of distilled water and shake.

Divide the resultant mixture into 4 portions
i) To the first portion, add Nitric acid followed by Barium nitrate solution.
ii) To the second portion, add Nitric acid, followed by lead (II) Nitrate solution
iii) To the third portion, add a few drops of sodium Hydroxide solution until in excess
iv) To the fourth portion, add aqueous ammonia drop wise till in excess solution

TRANS MARA DISTRICT

CONFIDENTIAL

INSTRUCTIONS
Each candidate should have :
$\checkmark 80 \mathrm{~cm}^{3}$ of solution T
$\checkmark 100 \mathrm{~cm}^{3}$ of solution S
\checkmark Exactly $1.5 g$ of solid V
$\checkmark 250 \mathrm{~cm}^{3}$ beaker (glass)
$\checkmark 1$ label
$\checkmark 1$ pipette
$\checkmark 1$ burette
$\checkmark 100 \mathrm{~cm}^{3}$ measuring cylinder
$\checkmark 1.2 \mathrm{~g}$
$\checkmark 120 \mathrm{~cm}^{3}$ plastic beaker
\checkmark A stop clock /watch
\checkmark About 1.0 g of solid J
$\checkmark 1$ boiling tube
$\checkmark 1$ metallic spatula
$\checkmark 1$ glass rod
$\checkmark 5$ test tubes
$\checkmark 1$ filter paper

Access to:

\checkmark Phenolphthalein
$\checkmark 2 m$ lead (II) nitrate
$\checkmark \quad 0.05 \mathrm{M}$ sodium thiosulphate
\checkmark Distilled water
$\checkmark 20 \%$ volume hydrogen peroxide
\checkmark Source of heat (Bunsen burner)
Notes:

1. $20 \% 20$ volume peroxide is prepared by diluting $20 \mathrm{~cm}^{3}$ of 20 v hydrogen peroxide to make $100 \mathrm{~cm}^{3}$
2. solution T is 1.0 hydrochloric acid and is made by dissolution $86 \mathrm{~cm}^{3}$ of $\mathbf{3 5 - 3 7 \%}$ hydrochloric acid diluted to 1litre of solution
3. solution S is 0.5 m sodium hydroxide
4. solid V is exactly 1.5 g of sodium carbonate (anhydrous)
5. solid J is potassium iodide
6. solid M is $1.2 g$ magnesium powder
7. solution K is 0.02 m copper (II) sulphate
8. You are provided with the following :

- 1.0M Hydrochloric acid; solution T.
- 0.5 M sodium hydroxide; solution S
- Anhydrous sodium carbonate of unknown mass: solid \mathbf{V}.

You are required to determine the mass of sodium. Carbonate that was used in the experiment.

Procedure

Measure $60 \mathrm{~cm}^{3}$ portion of 1 m hydrochloric acid using a measuring cylinder and transfer it to $100 \mathrm{~cm}^{3}$ beaker. Add all sodium carbonate (solid \mathbf{V}) to the acid in the beaker and stir gently. Leave the mixture for 3 minutes until there is no effervescence transfer the mixture into a clean 100 ml measuring cylinder and add distilled water to make $100 \mathrm{~cm}^{3}$ of the solution. Transfer all the solution into $250 \mathrm{~cm}^{3}$ beaker and shake well, label this solution \mathbf{W}.
Fill the burette with solution \mathbf{S}.
Pipette $25.0 \mathrm{~cm}^{3}$ of solution \mathbf{W} and transfer to a conical flask. Add 2-3 drops of phenolphthalein indicator and titrate with solution \mathbf{S}. Records your results in table I below.
Repeat the titration to get two more concordant values.
Table I

Experiment	I	II	III
Final burette reading $\left(\mathrm{cm}^{3}\right)$			
initial burette reading $\left(\mathrm{cm}^{3}\right)$			
Volume of solutions \mathbf{S} used			

Transfer the mixture into a clean 100 ml - measuring cylinder and add distilled water to make $100 \mathrm{~cm}^{3}$ of the solution.
(a) Determine the average volume of solution \mathbf{S} used.
(b). Calculate the number of moles of sodium hydroxide (solution \mathbf{S}) used.
(c). Find the number of moles of hydrochloric acid in $25 \mathrm{~cm}^{3}$ of solution \mathbf{W}.
(d). Determine the number of moles of hydrochloric acid in $100 \mathrm{~cm}^{3}$
(e). Calculate the number of moles of hydrochloric acid in the original $60 \mathrm{~cm}^{3}$ of solution.
(f). Calculate the number of moles of hydrochloric acid that reacted with sodium carbonate.
(g). Determine the mass of sodium carbonate that reacted with the acid. $(\mathrm{Na}=23, \mathrm{C}=12,0=16)$.
2. You are provided with the following.
(i). 1.2 g Magnesium powder, solid \mathbf{M}
(ii). 0.02 M copper (ii) sulphate, solution \mathbf{K}

You are required to determine the molar enthalpy of displacement for the reaction between
magnesium powder and copper (II) sulphate solution.

Procedure

Measure out $100 \mathrm{~cm}^{3}$ of solution \mathbf{K} into a plastic beaker.
Measure the temperature of this solution at every minute for four minutes. Add the entire amount of solid M to the contents of the plastic beaker at the fourth minute. Stir with the thermometer. Record the temperature after every half-a- minute in table II below.

Table II

Time (min)	0	$1 / 2$	1	$1^{1 / 2}$	2	$2^{1 / 6}$	3	$3^{1 / 2}$	4	$4^{1 / 2}$	5	$5^{1 / 2}$	6	$6^{1 / 2}$
Temp. $\left({ }^{\circ} \mathrm{C}\right)$														

(a). Draw the graph of temperature $\left({ }^{\circ} \mathrm{C}\right)$ against time, t (in minutes)) Use your graph to get the temperature rise.
(b). Calculate the heat lost by the solution
(Specific heat capacity of solution $=4 . .2 \mathrm{Jg}^{-1} \mathrm{~K}^{-\mathrm{I}}$, density of solution $=1 \mathrm{~g} / \mathrm{cm}^{3}$)
(c). Write an ionic equation for the reaction.
(d). Calculate the number of moles of :
(i). Copper (ii) ions in the original solution.
(ii). Magnesium added to the copper (ii) sulphate solution
(iii). Copper (II) ions displaced by magnesium powder.
$(\mathrm{Mg}=24, \mathrm{Cu}=63.5, \mathrm{~S}=32, \mathrm{O}=16)$
(e). Calculate the molar heat of displacement of copper (II) ions by magnesium powder.
(f). Comment on the value of the molar heat if ion powder had been used instead magnesium powder. Explain.
(a). (i) You are provided with solid \mathbf{J}.
(ii). To the filtrate above, dip a clean metallic spatula and burn a drop of the filtrate on it with a non-luminous flame.
(iii). Divide the filtrate into two equal populations.
I. To the $1^{\text {st }}$ portion add 2 m lead (ii) nitrate.
II. To the second portion add $3-5$ drops of $20 \% 20$ - Volume hydrogen peroxide
(iv). To the resulting mixture in (ii) above, add about $1 \mathrm{~cm}^{3}$ of sodium thiosulphate solution \mathbf{Q}. From the tests carried out above identify.
(i). Cation
(ii). Anion

TRANSNZOIA WEST DISTRICT

CONFIDENTIAL

INSTRUCTIONS

ACCESS TO

- 1 M NaOH
- 1 MNH 4 OH
- 1M HCL
- $0.01 \mathrm{~m} \mathrm{~PB}\left(\mathrm{NO}_{3}\right)_{2}$
- Source of heat
- PH chart ($\mathrm{PH}=1$ to 14)
- 10 ml of solution \mathbf{K}
- Sodium hydrogen carbonate

Question 1.

1. Solution $J 100 \mathrm{~cm}^{3}$
2. Burette
3. Solution $K 100 \mathrm{~cm}^{3}$
4. Pipette
5. 2 conical flasks
6. Filter funnel
7. Retort stand

PREPARATION OF SOLUTIONS

1. Solution \mathbf{J} - Dissolve 17 g of ammonium iron (ii) sulphate in $50 \mathrm{~cm}^{3}$ of $2 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}$ dilute to $1 \mathrm{dm}^{3}$
2. Solution K-KMnO ${ }_{4}$ - Dissolve 1.6 g of potassium manganate vii in $20 \mathrm{~cm}^{3}$ of $2 \mathrm{MH}_{2} \mathrm{SO}_{4}$ dilute to $1 \mathrm{dm}^{3}$
3. Solution \mathbf{R} - Dissolve 40 g of sodium thiosulphate in $1 \mathrm{dm}^{3}$ of solution
4. Solution \mathbf{S} - Dissolve $172 \mathrm{~cm}^{3}$ of concentrated hydrochloric acid in $1 \mathrm{dm}^{3}$ of solution
5. Solid \mathbf{Y} is aluminium sulphate
6. Solid \mathbf{Z} is oxalic acid.
7. You are provided with:

- Solution M_{1} aqueous solution of a monobasic acid, HB containing 1.62425, of the acid dissolve in $250 \mathrm{~cm}^{3}$ of the solution
- 0.208 M sodium hydroxide solution.

You are required to determine
a) The molarity of the acid
b) The RFM of the acid and the RAM of \mathbf{B} in $\mathrm{HB}(\mathrm{H}=1, \mathrm{C}=12, \mathrm{O}=16)$

Procedure

Pipette $25 \mathrm{~cm}^{3}$ of solution M1 into a clean dry conical flask. Add 2 drops of phenolphthalein indicators. Fill the burette with solution \mathbf{Q} and titrate against solution M_{1}
Repeat the procedure two more times and complete the table below:

	I	II	III
Final burette reading $\left(\mathrm{cm}^{3}\right)$			
Initial burette $\left(\mathrm{cm}^{3}\right)$			
Volume of solution \mathbf{Q} used $\left(\mathrm{cm}^{3}\right)$			

a) Determine the average volume of solution \mathbf{Q} used
b) Write an equation for the reaction between solution M_{1} and \mathbf{Q}
c) Calculate:
i) The number of moles of \mathbf{Q} used
ii) The number of moles of $\mathbf{M}_{\mathbf{1}}$ used
iii) The molarity of solution \mathbf{M}_{1}
d) Determine;
i) The RFM of acid
ii)The RAM of element B
2. You are provided with:

- 2 M hydrochloric acid, solution M_{2}
- Magnesium ribbon.

You are required to determine;

i) The rate of the reaction between Hydrochloric acid and magnesium
ii) The mass of 2 cm of magnesium ribbon

Procedure II

Using a clean measuring cylinder, measure $60 \mathrm{~cm}^{3}$ of 2 M hydrochloric acid, solution M_{2} and place it into a clean conical flask. Cut a 2 cm piece of magnesium ribbon provided and place into the conical flask containing 2 M hydrochloric acid and immediately start the slop- watch. Measure and record the time taken for the magnesium ribbon to completely react with the hydrochloric acid in table II below. Repeat the procedure using 50, 40, 30 and 20 cm 3 portions of 2 M hydrochloric acid adding distilled water and complete the table below:
a) Table II

Experience	1	2	3	4	5
Volume of 2M HCl	60	50	40	30	20
Volume of distilled water added	0	10	20	30	40
Time taken for the ribbon to disappear(sec)					
$1 /$ time $\left(\mathrm{sec}^{-1}\right)$					

b) Plot a graph of $1 / 2$ against volume of 2 M hydrochloric acid used
c) From your graph determine the time taken for the ribbon to disappear when $36 \mathrm{~cm}^{3}$ of 2 M
hydrochloric acid were used
d) In terms of rate of reaction, explain the shape of your graph
3. You are provided with solids. You are required to carry out the tests shown below and write your observations and inference in the spaces provided. Identify any gases given out.
a) Place a small amount of solid \mathbf{S} in a dry test tube and heat strongly
b) Place a spatula end- full of \mathbf{S} in a boiling tube. Add about $5 \mathrm{~cm}^{3}$ of distilled water and shake.

Divide the resultant mixture into 4 portions
i) to the first portion, add nitric acid followed by Barium nitrate solution
ii) To the second portion, add nitric acid followed by lead (II) nitrate solution. Warm the mixture
iii) To the forth portion, add aqueous ammonia drop wise until excess
3. b) You are provided with solid F. Carry out the texts below. Write your observations and inferences in the space provided.
Dissolve a spatula full of solid \mathbf{F} in about $4 \mathrm{~cm}^{3}$ of distilled water and divide it into three parts.
i) To $2 \mathrm{~cm}^{3}$ of solution, add 5 drops of bromine water
ii) To the second portion add a spatula full of sodium hydrogen carbonate

SOTIK DISTRICT

CONFIDENTIAL

1. You are provides with;

- Solution M (HCl)
- Solution $\mathbf{N}(0.1 \mathrm{M} \mathrm{NaOH})$
- Solution \mathbf{P} prepared by dissolving $14.3 \mathrm{~g} / \mathrm{dm}^{3}$ of $\mathrm{Na}_{2} \mathrm{CO}_{3}$. x $\mathrm{H}_{2} \mathrm{O}$.
- Phenolphthalein inidicator
- Methyl orange indicator

You are required to:

(a) Standardize HCl solution \mathbf{M}
(b) Determine the value of \mathbf{X} in $\mathrm{Na}_{2} \mathrm{CO}_{3}, \mathrm{XH}_{2} \mathrm{O}$

Procedure I

Fill the burette with HCl solution \mathbf{M}. pipette $25 \mathrm{~cm}^{3}$ of NaOH solution \mathbf{N} into a conical flask.
Add 2 drops of phenolphthalein indicator and titrate until you obtain a permanent colour change. Record your results in table I below. Repeat the titration two more times and complete the table.

Table 1

Titration	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$
Final burette reading $\left(\mathrm{cm}^{3}\right)$			
Initial burette reading $\left(\mathrm{cm}^{3}\right)$			
Vol. of solution \mathbf{M} used $\left(\mathrm{cm}^{3}\right)$			

(i) What is the average volume of solution \mathbf{M} used
(ii) Calculate the number of solution \mathbf{N} used
(iii) Write the equation for the reaction that took place
(iv) Calculate the number of moles of solution \mathbf{M} in the titre volume
(v) Find the concentration of solution \mathbf{M} in moles per litre
(vi) Calculate the concentration of solution \mathbf{M} in grams per litre

Procedure II

Fill the burette with HCL solution M. pipette $25 \mathrm{~cm}^{3}$ of solution \mathbf{P} into a conical flask.
Add 2 drops of methyl orange indicator and titrate against solution \mathbf{M}. repeat the titration
two more times and complete the table.
Table II

Titration	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$
Final burette reading			
Initial burette reading			
Vol. of solution \mathbf{M} used $\left(\mathrm{cm}^{3}\right)$			

(a) What is the average volume of solution \mathbf{M} used?
(b) Calculate the moles of HCl in the titre volume of solution \mathbf{M}
(c) Write the equation for the reaction that took place
(d) Calculate the moles of solution \mathbf{P} used
(e) Find the concentration of $\mathrm{Na}_{2} \mathrm{CO}_{3} . \mathrm{XCH}_{2} \mathrm{O}$ in solution \mathbf{P} in moles per litre
(f) State the concentration of $\mathrm{Na}_{2} \mathrm{CO}_{3} \cdot \mathrm{XH}_{2} \mathrm{O}$ in solution \mathbf{P} in grammes per litre
(g) Find the R.F.M of $\mathrm{Na}_{2} \mathrm{CO}_{3} \cdot \mathrm{XH}_{2} \mathrm{O}$
(h) The value of \mathbf{X} in $\mathrm{Na}_{2} \mathrm{CO}_{3} . \mathrm{XH}_{2} \mathrm{O}$
2. You are provided with;

- 1.0 M potassium iodide
- 1.0M lead (II) nitrate

You are required to use the two to determine the height of precipitate and the volume of $\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}$ solution used.

Procedure

- Take six test-tubes of equal volume and label them $\mathbf{1}$ to $\mathbf{4}$
- Run $5 \mathrm{~cm}^{3}$ of 1.0 M Potassium iodide solution from a burette into each one of them.
- Add $1.0 \mathrm{~cm}^{3}$ of 1.0 M Lead (II) nitrate solution to the test-tube labeled 1 and stir the mixture well with a glass rod.
- Add about 5 drops of ethanol to the mixture, stir and place it in test-tube rack.
- Add $1.5 \mathrm{~cm}^{3}, 2.0 \mathrm{~cm}^{3}, 2.5 \mathrm{~cm}^{3}, 3.0 \mathrm{~cm}^{3}$ and $3.5 \mathrm{~cm}^{3}$ of the 1.0 M lead (II) nitrate to the testtubes labeled $2,3,4,5$ and 6 respectively.
- Add about 5 drops of ethanol to each test-tube, stir and allow to settle
- Measure the height of the precipitate in each tube in (mm) and record the measurements in the table below:

Test tube number	1	2	3	4	5	6
Volume of 1M lead (II) nitrate (cm	1.0	1.5	2.0	2.5	3.0	3.5
Height of precipitate (mm)						

(a) Plot a graph of the heights of the precipitate against the volume of lead (II) nitrate solution added
(b) Calculate the;
(i) Number of moles of KI in $5 \mathrm{~cm}^{3}$ of 1.0 MKI solution
(ii) Number of moles of $\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}$ solution which reacted completely with $5.0 \mathrm{~cm}^{3}$ of 1.0 M KI
(c) How many moles of KI would react with one mole of lead (II) nitrate?
(d) Write a balanced chemical equations or the reaction between lead (II) nitrate and potassium iodide
(e) Give the ionic equation for the reactions
(f) What was the purpose of adding ethanol to the mixture?

Answers section I \& II

1. Introduction to chemistry

1. a) F is place in the middle of the flame while G is placed at the upper region of the flame
b) Non- luminous flame
2.

$$
\left\{\begin{array}{c}
A, D, C, B, \quad \text { and } C \text { all correct } \\
\left.\begin{array}{c}
A, D, C, D \\
A, D, C
\end{array}\right\} \begin{array}{c}
\text { correct answers are exclusive } \\
1 / 2 m k \\
\text { otherwise penalize }
\end{array}
\end{array}\right.
$$

3. a) The laboratory gas burns in excess oxygen

OR burns completely or produces CO_{2} and $\mathrm{H}_{2} \mathrm{O}$ only

- No unburnt carbon remains

OR No soot is formed// Produced.
b)

4. a) a substance which when taken alters the body chemistry
b) $\quad \begin{array}{r}- \text { alcohol } \\ - \text { Tobacco }\end{array}$
5. (a) A-Downward delivery /upward displacement of air

B-Over water $\checkmark 1 / 2$
(b) A-Denser than air
6. (i) P-Haxane
(ii) W-Water
7. Name-Mortar. ${ }^{1 / 2}$

Use - Holding solid substances being crushed. ${ }^{1 / 2}$
Name - Crucible $\sqrt{\sqrt{1 / 2}}$
Use - Holding solid elements being heated strongly. ${ }^{1 / 2}$
8. $\quad \quad \quad$ - has a very small hole which releases the gas in small quantities in form of a jet. $U-I t$ is heavy for stability
9. (a) It is very hot. (1 mk) ل 1
(b) The upper $\sqrt{ } 1$ part. Because all the gases undergo complete $\sqrt{ } 1$ combustion. $\sqrt{ } 1(2 \mathrm{mk}) \succ 3$
10. The crystal dissolved $\sqrt{ } 1 / 2$. Blue colour spreads in water $\sqrt{ } 1 / 2$. The crystal broke up into smaller particles of copper (ii) sulphate and diffused in all direction
11. (a) W has more energy levels than $S . \sqrt{ } 1$
(b) C has got (12) protons pulling the 10 electrons while A has 11 protons

2 pulling 10 electrons. $\sqrt{ } 1$

2. Simple classification of substances

1. a) X-melting point $\sqrt{ } 1 / 2$

Mocks Topical Analysis
Z - Boiling point $\sqrt{ } 1 / 2$
b) Its melting point is lowered and becomes less sharp due to the introduction of an impurity $\sqrt{ } 1$
2. Luminous flame produces soot while non-luminous flame does not $\sqrt{ } 1$

Luminous flame is yellow in colour while non- luminous flame is blue in colour OR accept any correct answer
b) The luminous flame is moderately hot and is clearly visible hence no danger is posed
3. a) X

Gives the greatest number of spots hence the greatest number of pure substances $\sqrt{ } 1$
b) The ink is made of more than one pure substance hence will also undergo chromatography
4. (a) sublimation
(b) Bleaching action
(c) Polymerization
5. Adds excess dilute hydrochloric acid/ sulphuric (vi) acid

Filter to obtain copper metal
Wash with distilled water
6. To separate samples of CUO and charcoal in test tubes, dilute mineral acid is added with shaking CUO black dissolves to form blue solution $\sqrt{ } 1 / 2$
Charcoal does not dissolve in dilute mineral acids
7. a) Is the process for the separation of a mixture of solutes by their different rates of movement over a porous medium caused by moving solvent
b) - Separation of dyes

- To analyse and identify mixtures of substances which are difficult to separate by other means
- Used to analyze dyes in food colouring (Any two each one mark)

8 a) Element R-Sulphur
b) Mix solid P oxide with water put blue and litmus paper, Blue litmus paper remains blue, red litmus paper changes to blue.
Put blue and red litmus papers in water
Blue changes to red, red remain red.
9. 5 and 4 BOTH MUST BE CORRECT
10. EITHER

- In separate test tubes, boil about $5 \mathrm{~cm}^{3}$ of each solution.
- Sodium hydrogencarbonate solution remains colourless forms no precipitate
- Calcium hydrogencarbonate solution changes from colourless to white precipitate OR

$$
\begin{aligned}
& 2 \mathrm{NaHCO}_{3 a q} \longrightarrow \mathrm{Na}_{2} \mathrm{CO}_{3}+\mathrm{CO}_{2(\mathrm{~g})} n+\mathrm{H}_{2} \mathrm{O}_{(\mathrm{e})} \\
& \mathrm{Ca}\left(\mathrm{HCO}_{3}\right)_{2(a q)} \longrightarrow \mathrm{CaCO}_{3(s)}+\mathrm{CO}_{2(\mathrm{~g})}+\mathrm{H}_{2} \mathrm{O}_{(e)} \\
& \text { HEAT must be mentioned or implied. }
\end{aligned}
$$

11. a)

12. (i) Range of boiling points / no sharp boiling paints
(ii) Carry out fractional distillation 1
13. (i) Evaporation
(ii) Uses a lot of fǐel
(iii) Any soluble salt and water
14. Melting points is the specific $\sqrt{1} 1 / 2$ constant temperature $\sqrt{ } 1 / 2$ for a particular substance when a solid $\sqrt{1} 1 / 2$ change to a liquid $\sqrt{1} / 2$
15. (a) To cool/condense vapour. $\sqrt{ } 1$
(b) Water. $\sqrt{ } 1$
(c) Blue solid $\sqrt{ } 1$ changes to white solid. $\sqrt{ } 1$

16. (a) Solvent front $\sqrt{ }$
(b) C
$\sqrt{ }$
17. a) Chemical $\sqrt{1} 1 / 2$
b) Physical $\sqrt{1} 1 / 2$
c) Physical $\sqrt{1} / 2$
d) Chemical $\sqrt{1} 1 / 2$
18. -Smoky/sooty $\sqrt{ }$

- Not hot enough $\sqrt{ }$

20. a) Chemical $\sqrt{1} 1 / 2$
b) Physical $\sqrt{1} 1 / 2$
c) Physical $\sqrt{1} 1 / 2$
d) Chemical $\sqrt{1 / 2}$
21. -Smoky/sooty $\sqrt{ }$

- Not hot enough $\sqrt{ }$

22. - Boiling point

- Melting point
- Density
- Refractive index

23. i) Pass the mixture of gases through concentrated sulphuric (vi) acid $\sqrt{1 / 2}$. Ammonia and ethane will dissolve $\sqrt{1} 1 / 2$

- Hydrogen $\sqrt{1} / 2$ being insoluble $\sqrt{1} 1 / 2$ is then obtained

24. a) i)
ii) A and C
b) Since NH4CL sublimes but CaCL2 does not, sublimation process would do. Heat the mixture, NH4CL sublimates into vapour and condences on the upper cooler parts of the test tube. CaCL2 remains at the bottom of the heating tube
c) i) Fractional distilation
ii) Separating funnel method 8

Since the two liquids are immiscible pour the mixture into the separating funnel and allow to settle. The denser liquid will settle down and the less dense one will form the second layer on top. Open the tap and run out the liquid in the bottom layer leaving the second layer in the funnel
25. (i) Condenser
(ii) To indicate when a liquid is boiling, a thermometer reads a constant temperature
(iii) A
(iv), Ethanol

Reason:- It has a lower boiling of $78^{\circ} \mathrm{C}$ compared to water with a boiling point of $100^{\circ} \mathrm{C}$
or - The liquid with the lower boiling point boils first and its vapours are condensed and the condenser to be collected as the first dixtillate
(v) Fractional distillation
(vi) - To separate components of crude oil

- To isolate O_{2} and N_{2} from air
- To manufacture spirits
(vii)- They are immiscible liquids
- They have different but close boiling points

26. (a) Wire gauze
(b) Sodium chloride solution (or any named slat solution)
(c) Evaporation
27. a) i) - Colourless liquid is seen on the cooler parts of the test tube. $\sqrt{ } \mathrm{mk}$.

- Blue crystals change to a white powder. $\quad \checkmark 1 \mathrm{mk}$
ii) Water $\checkmark 1$ which was originally water crystallization.
$\mathrm{CuSO}_{4}, 5 \mathrm{H}_{2} \mathrm{O}(\mathrm{s}) \longrightarrow \mathrm{CuSO}_{4}(\mathrm{~s})+5 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \checkmark 1$
b) $\mathrm{NaOH}(s)$ absorbs water from the air and forms a solution. It is a deliquescent substance. $\sqrt{ } 1$ Anhydrous CuSO_{4} absorbs water from air to form hydrated Copper (II) sulphate which is blue but no solution is formed $\sqrt{ } 1$ it is hygroscopic

28. a)i)Ethanol, acetone (any organic solvent)
ii) Its most soluble in the solvent and less sticky
iii) - Cut out the yellow pigment

- put in organic solvent to dissolve the pigment
- filter and evaporate the filtrate to get the pigment
iv) Above the red pigment and below the edge.
b)-Heat the mixture aluminum chloride sublime and collect be cooler part of the tube and sodium chloride left at bottom of the tube
- Scratch the condense alcl l_{3} place in a beaker
(c) Add cold water to the mixture, and stir to dissolve R. Filter to get solid S and V on residue . Evaporate the future to get R. put S and in no water and stir to dissolve and filter to get S as residue evaporate future to get V

29. Add cold water to the mixture, and stir to dissolve R. Filter to get solid S and V on residue . Evaporate the future to get R. put S and in no water and stir to dissolve and filter to get S as residue evaporate future to get V
30. Heat the mixture Ammonium chloride sublimes and is collected on the cooler parts. Add water to the remaining mixture, stir and filter. Lead (ii) Oxide remains as residue. Evaporate the filtrate to dryness to obtain sodium chloride
31. a) -Fractionating column must have beads

- Wrong cold water circulation in the condenser
b) $\quad T$

32. a) Sublimation. $\sqrt{ } 1$
b) Bleaching $\sqrt{ } 1$
c) Polymerisation $\sqrt{ } 1$
33.

(a) See Diagram above
-Solvent front should be slightly above the furthest pigment
(b) C

- It contains only one pigment

34 .- Add either to the mixture. Stir and filter

- Add alcohol to the residue, stir and filter
- Evaporate to filtrate to obtaik C

35. - Black crystals changes directly into purple vapour $\sqrt{ } 1$

- The iodine crystals (sublimes) changed directly into a purple vapour without passing liquid state and changed back to black iodine crystals on the upper cooler parts of boiling tube $\sqrt{ }$ (Correct colour must be stated 2 mks

3. Acids, bases and combustion

1. a) B
b) PH of potassium hydroxide is higher than that of aqueous ammonia. KOH ions are dissociated more than that of aqueous $\mathbf{N H}_{3}$
2. (a) (i) X
(ii) $W_{\checkmark} 1$
(b) $W_{\checkmark} 1$

3
a) Methyl Orange Phenolphthalein
Red/Pink $\sqrt{11 / 2}$
Colourless/Pink $\sqrt{1} 1 / 2$
b) The PH of 0.1 M KOH is higher than of 0.1 M aqueous ammonia $\checkmark 1$ $K O H$ is strongly dissociated in solution. $\sqrt{ } 1$
4. a) K
b)i) G
ii) I
5. Copper (II) oxide is insoluble in water hence there are no $\mathbf{O H}$ - ions in the mixture
6. a) S is acidic and would make the situation worse $\sqrt{1} 1 / 2$
b) Discovery of drugs processing and testing is the work of chemists. Chemists are professionals who have studied chemistry $\sqrt{ } 1 / 2$
7. Its due to formation of insoluble Lead(II) carbonate hence preventing any further reaction.
8. CaO is used in correcting soil acidity. $\sqrt{ } /$
9. (a) Pink
(b) $7.0 \quad \checkmark 1$
10. (a) alkali is soluble base. $\sqrt{ } 1$
(b) Because it is lighter than air. $\sqrt{ } 1$
11. (a)

Solution	Blue litmus paper	Indicator \boldsymbol{W}
	BLUE	
	\ldots..RED.........................	

(b) Phenolphthalein
12. a)-give inconsistent results $\sqrt{1} / 2$
-expire shortlo $\sqrt{1} 1 /$
b) I.

\longleftarrow Solvent forms Baseline (origin)
II. Maximum sports-award 1 ½ mks

Fail any one- award
III $W^{1 / 2}$ and $\boldsymbol{V}^{1 / 2}$
13. Sting of a bee is acidic ${ }^{\sqrt{ }}$ and is neutralized by sodium hydrogen carbonate ${ }^{\sqrt{1 / 2}}$ into a salt, carbon IV) oxide and water. This gives pain relief. $\sqrt{1 / 2}^{1 / 2}$
14. (a) There was production of effervescence. The lemon juice contain an acid that reacts with the carbonate to produce carbon (IV) oxide.
(b) No production of bubbles. Copper is below hydrogen in the reactivity
15. (a) Yellow

Colourless $1 / 2$
16. (i) K and M
(ii) K and M_{\checkmark}

Air and combustion

1.

2.
a) $3 \mathrm{Mg}_{\mathrm{g}} \quad+\mathrm{N}_{2 g} \quad \mathrm{Mg}_{3} \mathrm{~N}_{2 g}$
b) Argon

- It is inert

3. a) Rust is hydrated iron (III) Oxide
b) - Electroplating

- Painting
- Oiling
- Galvanization
c) -Salts

4. a) Moles of copper ${ }^{8 / 64}=0.125$ moles of $\mathrm{Mg}^{3 / 24}=0.125 M g$ reacts with both O 2 and N 2 gases in the air while copper reacts with)2 only
There is greater change in the reaction with copper and smaller change in reaction with Mg
b) $\mathrm{CUO}_{(g)}+\mathrm{H}_{2} \mathrm{SO}_{4(q)}$ \qquad $\mathrm{CUSO}_{4(a q)}+\mathrm{H}_{2} \mathrm{O}_{(l)}$
Balanced
Chemical symbols correct
State symbols correct
5. a) Dust particles
b) They readily solidify hence may block the pipes
c) Argon
6. -Water rose up the test-tube to occupy the space of active air $\sqrt{\sqrt{2}}$ which has been used in resting. $\sqrt{1 / 2}$

- Iron wool turned reddish - brown $\sqrt{1 / 2}$ due formation of red-oxide of iron $\sqrt{1 / 2}$ which is rust.

7. a)i)rusting occurred $\sqrt{ } 1 / 2$
ii) No rusting $\sqrt{1 / 2}$
b) In (i) iron is more reactive than copper hence undergoes corrosion $\sqrt{ } 1$
in (ii) zinc is more reactive than iron hence undergoes corrosion in place of iron $\sqrt{ } 1$
8. a) To remove any magnesium oxide coating from the surface of magnesium// To remove any oxide film on it
b) White solid which is magnesium oxide
c) Increase in mass was due to oxygen which combined with magnesium
d) $\mathbf{2 M g}(s)+\mathrm{O}_{2(g)}$ \qquad $2 \mathrm{MgO}(\mathrm{s})$
Penalize $1 / 2$ for wrong or missing state symbols
e) The filtrate is magnesium hydroxide which is an alkaline Red litmus paper changed blue, but blue litmus paper remained blue
9. (a) So that they may stick to the gas Jar to prevent them from falling into water when the gas jar is inverted
(b) Iron filings turned to reddish brown because they reacted with oxygen in presence of moisture to form rust.

- The level of water inside the gas jar rise so as to occupy the volume initially occupied by part of air used up for rusting
(c) - Air is made up of two parts; - the active part that is necessary for rusting and the inactive part that is not used for rusting
(d)

- Neat diagram-
- correct method of collection
(e) - For cutting and welding metals
- Rocket fuel
- Mountain climbing
- Sea diving
- Used in explosions
(any two)

10. a) To remove any magnesium oxide coating from the surface of magnesium// To remove any oxide film on it
b) White solid which is magnesium oxide
c) Increase in mass was due to oxygen which combined with magnesium
d) $2 \mathrm{Mg}(\mathrm{s})+\mathrm{O} 2(g)$ \qquad $2 \mathrm{MgO}_{(s)}$
Penalize $1 / 2$ for wrong or missing state symbols
e) The filtrate is magnesium hydroxide which is an alkaline

Red litmus paper changed blue, but blue litmus paper remained blue
11. (i) Oxygen
(ii) Sodium hydroxide is a strong base
(iii) Slightly soluble in water
12. (i) White fumes form in the gas jar which disappear after sometime.

- The level of water rises in the gas jar.
(ii) $\mathrm{P}_{(s)}+\mathrm{O}_{2(\mathrm{~g})} \longrightarrow \mathrm{P}_{2} \mathrm{O5}_{(s)}$
$\mathrm{P}_{2} \mathrm{O}_{(\mathrm{s})}+3 \mathrm{H}_{2} \mathrm{O}_{(l)} \longrightarrow 2 \mathrm{H}_{4} \mathrm{PO}_{4(a q)}$
(iii) Magnesium react with oxygen and nitrogen hence greater of fraction of air is used.
(iv) (a) Blue litmus changed to red as remained red. The solution was acid due to phosphoric
(b) Red litmus changed to blue as blue remained blue due to formation of basic magnesium hydroxide ammonia solution.
(v) - Pass air over conc. $\mathrm{KOH} / \mathrm{NaOH}$ to absorb CO_{2}
- Pass the remaining gases over hot copper solid which reacts with oxygen.
- Collect the remaining gas over water. The gas is mainly nitrogen.

13. a) i) $3 \mathrm{Mg}(\mathrm{s})+\mathrm{N}_{2}(\mathrm{~g}) \longrightarrow \mathrm{Mg}_{3} \mathrm{~N}_{2}(\mathrm{~s}) \sqrt{1}$
ii) Gas with $\sqrt{ } 1$ choking irritating smell.
$\mathrm{Mg}_{3} \mathrm{~N}_{2}$ reacts with water to form ammonia $\sqrt{ } 1$ gas.
iii) It remains blue. $\sqrt{11 / 2}$ Ammonia gas is alkaline. $\sqrt{11 / 2}$
14.

(i) Phosphorous
(ii) - Do not react with water when being inserted into the tube

Mocks Topical Analysis eeducationgroup.com

- reacts with oxygen when exposed to air.
(b)

$4 \mathrm{P}(\mathrm{s})+3 \mathrm{O}_{2(g)} \longrightarrow$	$2 \mathrm{P}_{2} \mathrm{O}_{3(s)}$
or $4 \mathrm{P}(\mathrm{s})+\mathrm{SO}_{2(g)} \longrightarrow$	$2 \mathrm{P}_{2} \mathrm{O}_{5(s)}$

(c) (i) $\frac{Y-X}{y} \times 100$
(ii) - Wrong reading of volume

- Phosphorous can go off before complete combustion
(d) (i) - Red litmus paper no effect
- Blue litmus paper turns red due to formation of phosphoric acid/phosphorous (V) Oxide whish is an acidic oxide
(ii) - Oxygen
(iii) - Burning of candle
- Use of pyrogallol
- Rusting of iron fillings

15. i) $\mathrm{P}_{4(g)}+5 \mathrm{O}_{2(g)} \quad 2 \mathrm{P}_{2} \mathrm{O}_{5(s)}$
$/ / \mathrm{P}_{4(\mathrm{~s})}+3 \mathrm{OO}_{2(\mathrm{~g})} \quad$ Anyone $\sqrt{1}$ mark
ii) Phosphorous (v) or (iii) oxide formed is an acidic Oxide which dissolves in water to form a strong acidic solution of phosphoric acid whose PH is 2
16. (a) - Iron nails turns brown.

- Water rises up the delivery tube/water level drops in the trough (any $1 / 2$ mkir $^{\text {r }}$ 1/2

Explanation: Oxygen has been used up in rusting of iron nails hence water rises up to take the place af oxygen
(b) $4 \mathrm{Fe}_{(s)}+3 \mathrm{O}_{2(g)}+2 \mathrm{H}_{2} \mathrm{O}_{() \rightarrow} \quad 2 \mathrm{Fe}_{2} \mathrm{O}_{3.2} 2 \mathrm{H}_{2} \mathrm{O}_{(s)} 1$
(accept a balanced chemical equation)
17. a) $\mathrm{FeCO}_{3(s)} \longrightarrow \mathrm{FeO}_{(s)}+\mathrm{CO}_{2(g)}$

b) $\mathrm{Fe}_{3} \mathrm{O}_{4(s)}+8 \mathrm{H}^{+}{ }_{(a q)} \longrightarrow \quad 4 \mathrm{H}_{2} \mathrm{O}_{(l)}+2 \mathrm{Fe}^{3+}{ }_{(a q)}+\mathrm{Fe}^{2+}{ }_{(a q)}$
18. a) $\mathrm{N}_{2} \mathrm{O} \sqrt{ } 1$ (Nitrogen (I) oxide) - Denitrogen Oxide.
b) $\mathrm{K}_{2} \mathrm{O} \checkmark 1$ (Potassium oxide)
c) $\mathrm{Al}_{2} \mathrm{O}_{3}$ (Aluminium oxide)
19. a) water $\sqrt{ } 1$
b) $\quad 2 \mathrm{Na}_{2} \mathrm{O}_{2(\mathrm{~S})}+2 \mathrm{H}_{2 \boldsymbol{\theta}(\mathrm{~L})} \quad 4 \mathrm{NaOH}(a q)+o_{2(g)} \sqrt{ } 1 \mathrm{mk}$

Penalize $1 / 2$ - wrong missing state symbols

5. Water and hydrogen

1. (a) Aluminium is above hydrogen in the reactivity series of elements
(b) (i) The reaction is too exothermic that alot of heat is produced causing ignition of hydrogen in presence of oxygen
(ii) $\mathrm{K}_{(s)}+\mathrm{H}_{2} \mathrm{O}_{(\mathrm{g})} \longrightarrow \mathrm{KOH}_{(a q)}+\mathrm{H}_{2(\mathrm{~g})}$ $\mathrm{H}_{2(\mathrm{~g})}+\mathrm{O}_{2(\mathrm{~g})} \longrightarrow \mathrm{H}_{2} \mathrm{O}_{(\mathrm{g})}$
2.

3. a) Calcium chloride Drying agent
b) $\mathbf{2 H} \mathbf{H}_{2(g)}+\mathrm{O}_{2(\mathrm{~g})}$ \qquad $2 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{g})}$
4. (i) Steam
(ii) $\mathrm{Mg}_{(s)}+\mathrm{H}_{2} \mathrm{O}_{(g)} \mathrm{Mg}_{(s)}+\mathrm{H}_{2(g)}{ }^{\curlyvee} 1$
(iii) Gas P is passed through the combustion tube before heating is commenced
5. a) $\mathbf{2 \mathrm { H } _ { 2 (\mathrm { g }) }}+\mathrm{O}_{2(\mathrm{~g})} \longrightarrow 2 \mathrm{H}_{2} \mathrm{O}_{(l)}{ }^{\sqrt{ } l}$
b) - Turns anhydrous white paper ${ }^{\sqrt{1 / 2}}$ copper (II) sulphate into blue. $\sqrt{1 / 2}^{1 / 2}$

- Turns anhydrous blue $\sqrt{1 / 2}$ cobalt (II) chloride into pink. $\sqrt{1 / 2}^{1 / 2}$

6.

a)

b) reverse steam $\sqrt{ } 1$
7. (a) N
(b) $4 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{g})}+3 \mathrm{Fe}_{(\mathrm{s})} \longrightarrow \mathrm{Fe} \longrightarrow \mathrm{O}_{(\mathrm{s})}+4 \mathrm{H}_{2(\mathrm{~g})}$
(Not balanced Omb)
8.
(a)
B.E $\checkmark 1 / 2$
(b)
(c)

SSS $\checkmark 1 / 2$
9.
(a) $\mathrm{Zn}(\mathrm{s})+2 \mathrm{HCl}(\mathrm{aq}) \longrightarrow \mathrm{ZnCl}_{2}(a q)+\mathrm{H}_{2}(\mathrm{~g}) \quad \checkmark \mathbf{1}$
(b) Concentrated sulphuric (IV) acid or anhydrous calcium chloride. $\sqrt{ } 1$
(c) Copper cannot displace hydrogen from its solution. $\sqrt{ } 1$
(d) (i) $2 \mathrm{H}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \longrightarrow 2 \mathrm{H}_{2} \mathrm{O}$ (l) $\sqrt{ } 1$
(ii) Before: Pass hydrogen / through the tube before lighting $\checkmark 1$ to drive off air.

End: There should be a continuous flow of hydrogen after / putting off the flame to avoid an explosion. $\sqrt{ } 1$
(e) - Filling balloons $\sqrt{ } 1$

- Manufacture of margarine.
- Manufacture of ammonia.
- Conversion of coal to synthetic petrol.
(f) $\mathrm{Zn}(\mathrm{s})+\mathrm{H}_{2} \mathrm{O}(\mathrm{g}) \longrightarrow \mathrm{ZnO}(\mathrm{s})+\mathrm{H}_{2}(\mathrm{~g}) \checkmark 1$
(g) $S, \sqrt{1}_{1 / 2} P, \checkmark^{1 / 2} Q, \checkmark^{1 / 2} R, \sqrt{1}^{1 / 2}$
(h) It adds to unsaturated oils and hardens them. $\sqrt{ } 1$

10. a) i) Heating of copper (ii) Oxide to be shown on the diagram
ii) To drive out air because mixture of air and hydrogen is explosive when lit
iii) $\mathrm{CuO} \mathrm{O}_{(\mathrm{g})}+\mathrm{H}_{(\mathrm{g})}$ \qquad $\mathrm{Cu}_{(\mathrm{g})}+\mathrm{H}_{2} \mathrm{O}_{(\mathrm{g})}$
(penalize $1 / 2$ mark for wrong S.S)
iv) To prevent re-oxidation of hot copper by the atmospheric oxygen
v) Reducing agent
vi) Black copper (ii) Oxide turns to brown showing that copper (ii) Oxide has been reduced to copper
vii) Zinc is more reactive than hydrogen and therefore cannot be reduced by hydrogen
11. (a) Hydrogen gas
(b) - Calcium react with water forming calcium hydrox̂ide solution

- Calcium hydroxide solution dissociates to produce calcium ion (Ca²+ions) and hydroxide (OH^{-}) ions responsible for basic properties.

6. Structure of the atom and the periodic table

1. $\mathrm{Na}_{2} \mathrm{CO}_{3}+2 \mathrm{HNO}_{3}$ \qquad $2 \mathrm{NaNO}_{3(L)}+\mathrm{CO}_{(q)}+\mathrm{H}_{2} \mathrm{O}_{(C)}$
Mole ration 1:2
a) Moles of HNO_{3} in $20 \mathrm{~cm}^{3}=20 / 1000 \times 0.25$

$$
=0.005 \text { moles }
$$

b) Moles of $\mathrm{Na}_{2} \mathrm{CO}_{3}$ in $25 \mathrm{~cm}^{3}=1 / 2$ of 0.005 moles

$$
=0.0025
$$

c) If $25 \mathrm{~cm}^{3}=0.0025$ moles
in $250 \mathrm{~cm}^{3}=$?
$\frac{250 \times 0.0025}{25}$
$=0.025$ moles
RFM of $\mathrm{Na}_{2} \mathrm{CO}_{3}=106$
I mole of $\mathrm{Na}_{2} \mathrm{CO}_{3}=106 \mathrm{~g}$
0.025 moles $=$?
$\frac{0.025 \times 106}{1}$
$=2.65 \mathrm{~g}$ of $\mathrm{Na}_{2} \mathrm{CO}_{3}$
2. (a) $A=2.8 .1$

$$
B=2.1
$$

(b) B

Strong attraction of the outermost energy level electron to the nucleus make it difficult to remove This is due to smaller atomic radius compared to A
Or - Outermost electrons are closer to the nucleus hence higher force of attraction
3. \quad. $\cdot A \cdot M=(\underline{62.93 \times 69.09)}+(64.93 \times 3091)$

100
$=\frac{4347.834+2006.99}{100}$
$=63.5482$
≈ 63.5
4. (a) $R \cdot A \cdot M=\frac{(33 \times 2)+(30 \times 1)}{3} \checkmark 1$

$$
\frac{3}{\frac{99}{3}}=33^{\vee 1}
$$

(b) Number of electrons of $C=57-31=26$

Number of electrons of B is the same as for $C=$ No. of Protons

$$
B=26 \text { protons }
$$

5. $\quad \frac{69.09}{100} \times 62.93+\begin{gathered}B=26 \text { protons } \\ \frac{30.91}{100} \times 64.93 \\ \checkmark\end{gathered} 1^{1 / 2}$
$43.4783+20.0698 \checkmark 1$
$=63.548 \simeq 63.55 \checkmark 1$
6. $\frac{63 x+65(100-x)}{100}=63.55$
$63 x+6500-65 x=6355$
$2 x=6355-6500$
$2 x=-145$
$X=72.5$
\% abundance of ${ }^{63} M=72.5 \%$
${ }^{65} M=27.5 \%$
7. a) Valency of G is $\mathbf{3}$
b) G is a group 3 element
8. a) i) 11 protons
ii) 16 protons
b) Formula of compound $=\mathbf{T 2 Z}$

Mass number of T=11+12=23
Mass number of $2=16+16=32$
Formula Mass of T2Z $=(23 \times 2)+32=78$
c) - When molten

- When in aqueous solution

9. Silicon (iv) Oxide has giant atomic structure with strong covalent bond holding the atom together. These require a lot of energy to break, hence it has high melting point. Carbon (IV) Oxide has simple molecular structure with weakVan Der Waals forces holding the molecules together which require little energy to break, hence sublimes at low temperature and is a gas at room temperature and pressure
$\begin{array}{lllll}10 . & O_{2} & 2.8 & O & 2.6\end{array}$
The oxide ions has 2 extra electrons that causes greater electron repulsion than in oxygen atom
10. To separate samples of CUO and charcoal in test tubes, dilute mineral acid is added with shakingCuO black dissolves to form blue solution $\sqrt{ } 1 / 2$
Charcoal does not dissolve in dilute mineral acids
11. $\frac{(90 \times 8)+10 Q}{100}=28.3$
($1 / 2 m k$)
$100 \times \frac{2520+100}{100}=28.3 \times 100$
```
\(2520+10 Q=2830 \quad(1 / 2 m k)\)
    \(10 Q=2830-2520\)
    \(10 Q=310\)
    \(Q=31\)
```

Electron arrangement of $X=284 \quad(1 / 2 m k)$
Atomic No. $=14 \quad(1 / 2 m k)$
No. neutrons $=31-14=17(1 / 2 \mathrm{mk})$
13. L_{3} has delocalised electrons while the others has less
14. (a) Is a constant temperature at which a solid changed to a liquid/ A point at which a solid changes to a liquid which a solid changes to a liquid without change in temperature.
15. (a) $\boldsymbol{P}^{1 / 2}$ and $S^{\sqrt{1 / 2}} \quad \sqrt{ }$

They have the same atomic numbers. \downarrow Both must be there to score 3
16. a) $B \sqrt{1} 1 / 2$ - its ion has a stronger nuclear charge than that of $A \sqrt{ } 1$
b) $D \sqrt{ } 1 / 2$ - has the weakest nuclear charge as compared to the other non-metals $\sqrt{ } 1$
17. (a) $C A \sqrt{ } 1$
(b) (i) $E \quad \sqrt{ }$
(ii) $B \sqrt{ } 1$
(c) Period 3, $\sqrt{1 ⁄ 2}$ Group 2, $\sqrt{1 / 2}$
(d) (i) The atomic radius of F is greater than that of $C \checkmark 1$ because F has more energy levels.
(ii) The atomic radius D is smaller than that of $C \checkmark 1$ because of increased positive charge in the nucleus which attracts the electrons more. $\sqrt{ } 1$
(e) (i) Electrovalent bond $\checkmark 1 / 2$
(ii) Covalent bond $\sqrt{1 / 2}$
(f) (i) $4 \mathrm{C}+\mathrm{O}_{2} \longrightarrow 2 \mathrm{C}_{2} \mathrm{O} \sqrt{ }$
$\boldsymbol{G}+\mathrm{O}_{2} \longrightarrow \mathrm{GO}_{2} \sqrt{ } \mathbf{1}$
(ii) $\mathrm{C}_{2} \mathrm{O}$ is basic while $\sqrt{ } 1$ GO_{2} is acidic. $\sqrt{ } 1$
18. (a) B-ammonia gas $\sqrt{ } 1$
C - nitrogen (II) oxide (NO) $\checkmark 1$
E-water $\sqrt{ } 1$
F - unreacted gases $\sqrt{ } 1$
(b) The mixture of ammonia and air is passed through heated/ catalyst where ammonia (II) is oxidized to nitrogen (II) oxide. $\sqrt{ } 1$
(c) Gases are cooled and air passed through heated/ catalyst where ammonia is further oxidized to nitrogen(IV) oxide. $\sqrt{ } 1$
(d) Fractional distillation, $\sqrt{11 / 2}$

Water with a lower boiling point $\sqrt{1} 12$ than nitric (V) acid, distills left leaving the concentrates acid.
19.
(a) (i) C
(ii) $D_{\text {or }} E$ \checkmark (iii) F

Mocks Topical Analysis eeducationgroup.com
(iv) D or E
$\checkmark(v) A$
(vi) D
(b) Atomic radius of Y is smaller than that of X. The effective nuclear charger in Y is greater than in X hence outer electrons strongly pulled to the centre reducing the radius.
(b) ()$^{1} \sqrt{1 / 2}$
(ii) Period- $3^{\sqrt{1} / G r o u p-I V}$
(c) (i) Oh the grid (period 2 Group 7)
(ii) Halogen
(iii) - Used in hospitals with patients with breathing difficulties - Used by mountain climbers and deep sea divers
(iv) Basic
20. $\quad A$ (i) P-ionic configuration - 2

- Formula of oxide - PO

Q-Atomic number-20
R-Atomic number - 19
T - Ionic configuration - 2.8.8
Formula of oxide - TO2
(ii) \boldsymbol{R} - Has the largest atom with one outer electron hence easily loses it.
(iii) \boldsymbol{S} - is the smallest atom of a non-metal with a deficit of only one electron hence easily gains.
(iv)

(v) T is insoluble - It has a molecular structure/non-metal
(B)(i) It is coated with an un reactive layer of aluminium oxide which prevents it form reacting.
(ii) Valency - The number of electrons an atom gains or loses during a reaction.

Oxidation number - The resultant charge of an atom has after gaining or loosing electrons.
21. a) $+3+P=(-2 \times 3)=0$
$+3+P-6=0$

$$
P=+3 \sqrt{ }
$$

b) Mg- its oxidation state increases from Zero to $+2 \sqrt{ } 1$ mark
22. a) Group 1 -Because $\sqrt{11} / 2$ it has 1 electron in its outermost energy level.

Group 7 -It requires $\sqrt{112} 1$ electron to fill its outermost energy level.
b) Alkaline earth metals $\sqrt{ } 1$
c) $P V_{2} \sqrt{ } 1$
d) Q has higher $\sqrt{112}$ m.p than J. Q has a giant metallic structure and strong metallic bonds. $\sqrt{11 / 2}$

While J has molecular structure and Vander
Waals forces which are easy to break. $\sqrt{11 / 2}$
e) R. $\sqrt{1}$
$f) \mathrm{T}(\mathrm{s})+\mathrm{O}_{2}(\mathrm{~g}) \longrightarrow \mathrm{TO}_{2}(\mathrm{~g}) \sqrt{ } 1$
g)

Q^{2+}

S^{2-}
h) - Filling electric light bulb $\sqrt{ } 1$ accept any other correct one.
23. (a) (i) X Rj: If actual symbols are given.
(ii) Q. Rj. Actual symbols.

Explanation: It looses the outermost energy level most readily.
(iii) Halogens
(iv) I). Moving across a period there is increased nuclear charge.
II). Going down a group the energy levels increase in number.
(v) V-Explanation It has a complete outermost energy level/ Has a stable octet.
24. a)
a)
(vi) $Z_{2} R \quad$ Rej. Interchange of letters, $R Z_{2}$.
i) IS \quad 1 - It readily gain one electron on ionization $\sqrt{ } 1$ II Q - It readily give out one electron on ionization $\sqrt{ } /$
ii) Alkali metals $\sqrt{ } 1$
iii) $W S_{3} \sqrt{ } 1$
iv) Bond - covalent $\sqrt{ } 1 / 2$

Structure - Giant atomic structure $\sqrt{1} 1 / 2$
v) It is stable. Cant remove nor add electrons on its outermost energy level
vi) T has a smaller radius than Q because it has fewer energy levels than Q
25. The melting point increases from \boldsymbol{A} to C this is due to increase in number delocalized electron hence increase in the strength of metallic bond.
D forms a giant structure with strong covalent bonds. Hence high melting.
It exhibits allstrophy ie may exist as two different form in the same state.
C2 $\left(\mathrm{SO}_{4}\right)_{3}$
Noble gases or inert
Used in filament bubls
Used to produce an inert atmosphere in high temperature inetallurgical processes e.g welding.
C is amphoteric oxide
F acidic it is non-metal oxide.
Ethene

Acidified potassium Manganate VI abromine water it from a colourless solution
$\mathrm{CH}_{2} \mathrm{CH}_{2}+\mathrm{H}_{2} \longrightarrow \mathrm{CH}_{3} \mathrm{CH}_{3}$
Nickel catalyst
26. a) $2: 8$
b) $\mathrm{W}_{2} \mathrm{O}_{3}$
27. i) Delocalized electrons
ii) Mobile ions
iii) Mobile ions
28. - Sodium has a larger raius than aluminium

- Aluminium has more protons than sodium hence a more effective nuclear charge than sodium

29. a) 2.5
b) $Q \quad$ Group $1 \quad \sqrt{1 / 2}$, Period $4 \sqrt{1 / 2}^{1 / 2}$
R Group $2 \sqrt{112}$, Period $3 \sqrt{1 / 2}$
30. Ethanol contains molecules $\sqrt{ } 1$ which are not $\sqrt{ } 1$ responsible for electrical conductivity. (2 mks)
31. $\quad a$ (i) Q
(ii) R
32. (a) K and N because they have the same number of electrons on their outermost energy level
(b) $\mathrm{L}_{2} \mathrm{O}_{7}$
(c) L_{1} because it has 7 electrons on the outermost energy level or reacts by gaining electrons or the ionic radius is larger than the atomic radius $\quad(1 / 2 \mathrm{mk})$
33. a) Formula; $\boldsymbol{J}_{5} \boldsymbol{G}_{2} \sqrt{ } 1$
b) E form ironic structures due to ionic bonding in its oxide. While G form molecular structure due to covalent bonding in it oxide

Chemical families

1. a) - Non- metallic group

- Ionic radius larger than atomic radius
b) X - has smallest atomic radius hence more electronegative

2. To prevent filament from burning out. Provides an atmosphere in which burning cannot occur i.e. inert atmosphere
3. a) Halogens
(b) $X \& Y$
(c) Z is the largest atom with the highest number of energy levels occupied by electrons. The longer an atom is the higher the forces of attraction that hold the molecules of the element together
(d) $3 Z_{(g)}+2 \mathrm{Fe}_{(s)} \longrightarrow \mathrm{Fe}_{3(s)}$
(e) The blue litmus paper turned red that bleached. This is because it dissolves in water to form \mid an acid and bleaching solution of HO^{-1}
4. (i) Down the group an extra energy level is added
(ii) In group x elements form ions by ionizing the outer energy levels
(iii) A cross the period an extra proton is added which increased he nuclear attraction force
(iv) $\boldsymbol{B F} \boldsymbol{F}_{2}$
(v) - Ionic /electrovalent

- Involves loosing \& gaining of electrons
(vi) G, F, E
-E has smallest atomic radius hence protons can attract an electron easier than in G

5. $\quad R$ - has the smallest atomic $\sqrt{11 / 2}$ size hence its outermost electrons are more strongly held to the nucleus resulting in high $\sqrt{1} 12$ value of ionization energy
6. - Add dilute nitric acid to lead (u) carbonate

$$
\mathrm{PbCO}_{3}(\mathrm{~s})+2 \mathrm{HNO}_{3}(a q) \longrightarrow \mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}(a q)+\mathrm{CO}_{2}(g)+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \sqrt{ } /
$$

- React the resulting solution with solution of sodium sulphate i.e
$\mathrm{Na}_{2} \mathrm{SO}_{4}(\mathrm{aq})+\mathrm{PB}\left(\mathrm{NO}_{3}\right)_{2}(a q) \longrightarrow \mathrm{PbSO}_{4}(\mathrm{~s})+2 \mathrm{NaNO}_{3}(a q)^{\mathrm{H} / 2}$
- Filter to obtain lead (u) sulphate as residue. ${ }^{1 / 2}$
- Dry the salt of lead (u) sulphate in between the filter papers or in sunshine. ${ }^{1 / k}$]

7. a) Is one of the atoms of the same element having a different mass number from the rest, but same atomic number with others of the same element
b) $\frac{92.2 \times 28}{100 \sqrt{1 / 2}}+\frac{4.7 \times 29}{100 \sqrt{1 / 2}}+\frac{3.1 \times 30}{100 \sqrt{1 / 2}}=28.11 \sqrt{ } 1 / 2$
8. a) Alkaline earth metals $\sqrt{ } 1$
b) P has the smallest atomic radius due to electrons of P are closest to the nucleus $\sqrt{ } 1$
c) $\boldsymbol{Q}_{(S)}+2 \mathrm{H}_{2 \mathrm{O}(\mathrm{L})} \boldsymbol{Q}(\mathrm{OH})_{2(a q)}+\mathrm{H}_{2(\mathrm{~g})}$

Structure and bonding

1. Ethanol contains molecules $\sqrt{ } 1$ which are not $\sqrt{ } 1$ responsible for electrical conductivity
2. a) \boldsymbol{A} covalent bond is formed by equal contribution of the shared electrons by the atom. $\sqrt{ } 1$ Co-ordinate bond is where the shared electrons are contributed by one of the atoms. $\sqrt{ } 1$
b)

3. a) Have delocalized valency electrons $\sqrt{ } 1$
b) Aluminium is a better conductor/Aluminium has three delocalized electrons while magnesium has 2. $\sqrt{ } 1$ It is resistant to corrosion.
4. In addition to vander waals forces, strong hydrogen \checkmark bonds exist in ethanol. These bonds require \checkmark more energy to break.
5. a) Is a covalent bond in which the shared pair of electrons comes from the same atom
6. Magnesium has more delocalized electrons than sodium
7. (a) Phsophorous chloride $\left(\mathrm{PCl}_{3}\right)$

(b) Hydroxonium ion $\left(\mathrm{H}_{3} \mathrm{O}^{+}\right)$

8. Aluminium - it has more delocalized (3) electrons than copper (2e-)
9. Hydrogen chloride has got only Van der waal while water has H-bonds in addition to Van der waal forces which are stronger
10. It contains white hoe carbon particles ($1 / 2 m \mathrm{mk}$) that allow to give out light $(1 / 2 m k)$. When those particles cool down ($1 / 2 m \mathrm{mk}$) they turn black and settle down as soot. $(1 / 2 m \mathrm{mk})$
11. Aluminium chloride hdrolyses $\sqrt{\sqrt{1}}$ in solution producing hydroxonium ions $\sqrt{\sqrt{1 / 2}}$ which turn blue litmus paper red. $\sqrt{1 / 2}$
12. Silicon (IV) oxide forms giant ${ }^{\sqrt{ }}$ atomic structure of strong covalent ${ }^{\sqrt{1 / 2}}$ bonds having high melting point. Carbon (IV) oxide is simple molecular substance of weak intermolecular $\sqrt{1 / 2}$ attraction forces ${ }^{\sqrt{ } 1} 9$ the Van der Walls' forces) that have low melting point.
13. i) $A: 2,4 \sqrt{1 / 2}$

B: $2,7 \sqrt{ } 1 / 2$
14. (a) Because aluminium $\sqrt{ } 1$ has more delocalized $\sqrt{ } 1$ electrons than magnesium.
(a) It does not corrode. $\sqrt{ } 1$
15. Magnesium oxide has a giant ionic $\sqrt{1} 1 / 2$ structure while silicon (iv) Oxide has a giant atomic structure. Mg O in molten state $\sqrt{1} 1 / 2$ contains delocalized ions $\sqrt{1} 1 / 2$ which conduct electricity while $S_{1} O_{2}$ has no ions present $\sqrt{ }$
16. a) i)
ii) At 25C, sodium chloride is in solid form. Ions cannot move. Between 801 and 1413C sodium chloride is in liquid state, ions are mobile
b) Both ammonia and water are polar molecules and hydrogen bonds are formed
c) N \qquad H // co-ordinate bond / Dative bond
d) i) Allotrope
ii) Add methylbenzene to soot in a beaker. Shake and filter. Warm the filtrate to concentrate it. Allow the concentrate to cool for crystals to form. Filter to obtain crystals of fullerene
iii) $720 / 12=60$
17. (a) (i) NACl has mobile ions in molten state and in aqueous solution
(ii) Graphite has delocalized electrons in the structure which carry electric current
18. (i) I) C Reason:- Good conductor of electricity in both molten and solid state..
II) D_Its melting point is below room temp. and boiling point above room temp.
(ii) It exist in allotropic form.
(iii) A conducts electricity by use of mobile ions while C conducts by use of delocalized electrons.

Both must be correct for the 1 mk .
19. I (a) $2 \mathrm{Na}(\mathrm{s})+2 \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH}_{(l)} \longrightarrow 2 \mathrm{CH}_{3} \mathrm{CHONa}_{(a q)}+\mathrm{H}_{2(g)}$
(b) Mole ratio btn Na: $\mathrm{H}=2: 1$

Mole of Holes $H_{2}=\frac{1200 \mathrm{~cm}^{3}}{2400 \mathrm{~cm}^{3}}$
$=0.05 \mathrm{moles}$
Moles of $\mathrm{Na}=0.05 \times 2$

$$
=0.1 \mathrm{moles}
$$

Mass of $\mathrm{Na}=0.1 \times 23$
$=2.3 \mathrm{~g}$ of sodium
(c) Mole ration $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}: \mathrm{H}_{2}$

$$
\begin{array}{r}
\text { Moles of } \begin{aligned}
\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH} & =0.05 \times 2 \\
& =0.1 \text { moles } \\
\text { mass of } \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH} \text { reacted } & =0.1 \times 46 \\
& =4.6 \mathrm{~g}
\end{aligned}
\end{array}
$$

Mass evaporated $=50-4.6$

$$
=45.4 \mathrm{~g} \text { of } \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}
$$

(d) - Has molecular structure - with hydrogen bonds being molecules

While - $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{ONa}$ - has giant ionic structure with ionic bonds
(a) Water
(b) In ethanol - sinks in water and stream of bubbles observed/seen

While in water - floats on water and darts on water

- Hissing sound is heard (any two)

20. (a) ionic or electrovalent
F is metal and H is non metal.
b) (i) J atomic radius decrease a long a period from left to right nuclear change attraction increase positive nuclear change increase due to increase in the number of protons.
(ii) F has a smaller atomic radius than N level down the grown.
c) W is group 5 period 3
d) Transition metals.
e) J has 3 valence electrons which and delocalizal whole Q has only 2 electron : hence J has high electrical conductivity due to high number of decalized electron.
f) The reactions have both metallic and non metal properties
g) H is more reactive than M non metal reactivity increase up the group due to decrease in electro negativity down the group.
21. (a) (i) Ionic bond
Y losses that is gained by Z
(ii) Atomic radius of A is larger than that of B has higher nuclear charge than A

Electrons in B are drawn closer to the nucleus($1 / 2 \mathrm{mk}$)
(iii) Z is more reactive than B
Z has a smaller atomic radius so will readily attract extra electron
(b) (i) Energy needed to remove an electron from an atom in gaseous state
(ii) R has a largest atomic radius; ($1 / 2 m k$)

Therefore the electron is easily lost
(iii) Reacts vigorously with water producing gas bubbles that give the hissing sound and propels the metal
The metal floats on water as it is light
(iv) $2 Q_{(s)}+\mathrm{H}_{2} \mathrm{O}_{(l)} \longrightarrow \mathbf{Q Q O H}_{(a q)}+\mathrm{H}_{2(g)}$
22. a) i)

Atomic number	Oxide formula	State at RT
$N-12$	$P_{2} O_{3}$	Q - solid
$R-15$	$R_{2} O_{5}$	S - Gas

ii) The atomic radius decreases across the period from M to V. Due to increasing nuclear charge// increasing number of protons which pulls the outermost electrons closer to the nucleus
iii) Element V is chemically stable// stable electronic configuration does not gain or loss// share electrons with oxygen to form an oxide
b)

Oxide	Structure	Bond type
No	Giant ionic	Ionic/ electro valent
TO2	Simple covalent/ molecular	Covalent

(1/2 mark each - total 2 marks)
c) i) P is a metal with valency electrons free to move but T is a non- metal//molecular has no free valency electrons// molecules are electrically neutral
ii) Amphoteric oxide
23. (i) Period 2 its electronic arrangement is 2,3, or it has two energy levels.

- Accept shells or orbitals in place of energy levels
(ii) I-Across a period nuclear charge increases from, left to right exerting greater pull/attraction on available electrons
II-A4 gains an electron and the incoming electron is repelled by other electrons or electron cloud increases
(iii) A_{2}
(iv) $\left(\begin{array}{ll}\mathbf{A}_{1} & \cdot \\ & \mathrm{x}\end{array}\right)^{+}\left(\begin{array}{lll}\mathrm{xxx} & \mathrm{x} \\ \mathrm{x} & \mathbf{A}_{4} & \cdot\end{array}\right)^{-}$

24. a) $P_{2} Q \sqrt{ }$ reject $Q P_{2}$

25.
26.

27.
$\left.\begin{array}{llc}\text { (a) Zinc oxide } \sqrt{ } 1 \mathrm{ZnO} \\ \text { (b) } \mathrm{ZnO}_{(s)}+\mathrm{H}_{2} \mathrm{SO}_{4(a q)} \sqrt{ } 1 & \mathbf{Z n S O}_{4(a q)}+\mathrm{H}_{2} \mathrm{O} & (1 \mathrm{mk})\end{array}\right\} \quad 3$
Mocks Topical nruuysis eeducationgroup.com
(c)

$$
\left(\mathrm{Zn}(\mathrm{OH})_{4}\right) / 1
$$

28. (a)

29. Diamond has giant atomic structure in each carbon atom $\sqrt{1} 1 / 2$ is bonded to four other $\sqrt{1} 1 / 2$ carbon atoms arranged in regular tetrahedron shape in all direction forming rigid (strong) $\sqrt{1 / 2}$ mass of atoms due to uniformity of covalent bonds between the atoms $\sqrt{ } 1 / 2 \quad(2 m k)$
30. 3 Covalent ${ }^{\sqrt{1}}$ bonds and one dative ${ }^{\sqrt{1}}$ bond
31. $-\boldsymbol{C B}_{2}$

- Ionic bond

32. (a) Covalent bond is bond between non-metal atoms where shared electrons are donated equally by all the atoms involved.
Dative bond is a bond in which shared electrons are donated by one atom.
(b) The presence of triple bond in nitrogen requires very high temperatures to break
33. (i)

$\checkmark 1$ award 1 mk if one Hydrogen two electrons donated by nitrogen

- 0 mk if all hydrogen atoms shares electron with nitrogen

- award full mark if Silicon and Hydrogen shares electrons

34. (a) Chlorine (I) Oxide ${ }_{\checkmark} 1 / 2$
(b) - $\mathrm{Na}_{2} \mathrm{O}$ has stronger ionic bond between ions in it, while SO_{2} has a weak Van der walls bond between its molecule

- $\therefore \mathrm{Na}_{2} \mathrm{O}$ requires more heat energy to weaken or break the ionic bonds than SO_{2} requires breaking ${ }^{1 / 2}$ Van der walls bonds

35. ALCL $_{3}$ has simple molecular structures with weak Vander waals between the molecules $M_{g} C L_{2}$ has giant ionic structures with strong ionic bonds
Due to insoluble coating of aluminum oxide which prevents any reaction $\sqrt{ } 1$
36. Salts
37. a) Conc. $\mathrm{H}_{2} \mathrm{SO}_{4} / \mathrm{H}_{2} \mathrm{SO} 4$
b) Heat the solution to concentrate it. Allow for crystals to form $\checkmark 1 / 2$ Filter $\sqrt{1 / 2}$
c) Anhydrous Copper(II) sulphate/CUSO $4_{4}(\mathrm{~s})$
38. a) To MgO , add excess $\mathrm{HNO}_{3,} \sqrt{1 / 2} \mathrm{HCl}$ or $\mathrm{H}_{2} \mathrm{SO}_{4}$. Add NaOH or KOH or $\mathrm{NH}_{4} \mathrm{OH}$ to the mixture, $\sqrt{1} / 2$ Filter $\sqrt{1 / 2}$ and dry $\sqrt{112}$ the residue.
b) - Anti-acid (Treatment of acid indigestion)

- Making tooth past $\sqrt{ } 1$

3. Add excess lead (II) Oxide to dilute nitric (v) acid and filter to get lead (II) nitrate solution. Add sodium carbonate solution to lead (II) nitrate to precipitate lead (II) carbonate and wash with distilled water.
4. a) Sodium nitrate/ sodium nitrite
b) Black charcoal glows red

Grey ash formed
c) carbon (II) oxide
5. .a)

Particle	Mass number	Number of protons	Number of neutrons	Number of electrons
E	37	17	(i) 20	18
F	32	(ii) 16	16	16
G	(iii) 39	19	20	18
H	40	20	(iv)	18

b) E, G and H
6. a) They became a white powder
b) Efflorescency
7. Add water to sodium oxide to form sodium hydroxide solution. Bubble excess carbon (IV) oxide in sodium hydroxide solution to form sodium hydrogen carbonate. Heat sodium hydrogen carbonate solution to evaporate water.
8. $\quad \mathrm{NH}_{4} \mathrm{Cl}$ decomposes on heating to produce NH_{3} and $\mathrm{HCl}(\mathrm{g}) . \mathrm{NH}_{3(\mathrm{~g})}$ is lighter than $\mathrm{HCl}_{(\mathrm{g})}$ hence diffuses faster and turns red-litmus to blue HCl is denser hence diffuses at a slower rate: changes blue litmus to red
9.

10. a) i) Hydroscopy// hygroscopic
ii) Deliquescence// Deliquescent
iii) Efflorescence// Efflorescent
b) i) $\mathrm{Zn}(\mathrm{OH})_{4}{ }^{2-}$
ii) $\mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{4}{ }^{2+}$
11. (a) (i) $2 \mathrm{KNO}_{3(s)} \rightarrow 2 \mathrm{KNO}_{2(s)}+\mathrm{O} 2(g)-1 / 2 m k$ for wrong states
(ii) $\mathbf{2 A g N o} 3_{(s)} \longrightarrow 2 \mathrm{Ag}_{(\mathrm{s})}+2 \mathrm{NO}_{2(\mathrm{~g})}+\mathrm{O}_{2(\mathrm{~g})}$
12. (a) (i) Carbon (iv) Oxide

Dilute hydrochloric acid
(ii) $\mathrm{Mg}\left(\mathrm{HCO}_{3}\right)_{2(a q)} \longrightarrow \mathrm{MgCO}_{3(s)}+\mathrm{H}_{2} \mathrm{O}_{(l)}+\mathrm{CO}_{2(g)}$
(iii) Add sodium carbonate/any soluble carbonate (named) solution;

Filter
Dry the residue between two filter papers
13. a) magnesium Oxide
b) $\mathbf{2 M g}_{(s)}+\mathrm{O}_{(g)} \ldots 2 \mathrm{MgO}_{(s)}$
c) i) Sodium sulphate
ii) MgCO_{3}
d) $\mathrm{MgO}_{(s)}+\mathrm{H}_{2} \mathrm{SO}_{4(a q)}$ $\mathrm{M}_{g} \mathrm{SO}_{4(a q)}+\mathrm{H}_{2} \mathrm{O}_{(\mathrm{L})}$
e) $\mathbf{M g}^{2+}(a q)+$ CO $^{2-}{ }^{3(a q)}$ f) $\mathrm{Mg}_{2} \mathrm{CO}_{3(\mathrm{~g})}$ \qquad $M_{g} O_{(g)}+$ CO $_{2(g)}$
g) Na^{+}ions and $\mathrm{SO}_{4}{ }^{2-}$ ions
h) Precipitation/ double decomposition
i) Crystals turn to a white powder. The salt is efflorescent hence it looses its water of crystallization forming a powder
14. a) i) Hydroscopy// hygroscopic
ii) Deliquescence// Deliquescent
iii) Efflorescence// Efflorescent
b) i) $\mathrm{Zn}(\mathrm{OH})_{4^{2-}}$
ii) $\mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{4}{ }^{2+}$
15.

- Dissolve lead (ii) nitrate crystal in a given amount of distilled water in a beaker
- To dilute sulphuric $\sqrt{11 / 2}$ (vi) acid in a beaker add magnesium $\sqrt{1} 1 / 2$ oxide powder
- React the two solutions obtained
- Filter the mixture
- Dry the residue between filter papers to obtain a dry sample of lead (ii) sulphate

16.

(a) Zinc oxide $\sqrt{ } 1 \mathrm{ZnO} \quad(1 \mathrm{mk})$
(b) $\mathrm{ZnO}_{(s)}+\mathrm{H}_{2} \mathrm{SO}_{4(a q)} \sqrt{ } 1 \quad \longrightarrow \quad \mathrm{ZnSO}_{4(a q)}+\mathrm{H}_{2} \mathrm{O} \quad(1 \mathrm{mk})$
(c) $(\mathrm{Zn}(\mathrm{OH}))^{2-} / 1$
17. (i) Efflorescence
(ii) $\mathrm{Na}_{2} \mathrm{Co}_{3} \mathbf{1 0 H}_{2} \mathrm{O}$ (If letters are joined - no mark)
18. (i) Pb^{2+}
(ii) White precipitate formed soluble in excess
19. Calcium oxide hygroscopic atmospheric water vapour ad becomes wet

Some laboratory gases are acidic
While calcium oxide is basic
Therefore calcium oxide reacts with the gas//calcium oxide would absorb the gas
20. A piece of marble chips was strongly heated in air for about 30 minutes. Some drops of water
were added drop by drop to the product when it was still warm.
Answers
i) It decomposes to give Calcium oxide/Lime and Carbon (IV) oxide
$\mathrm{CaCO}_{3(\mathrm{~s})} \longrightarrow \mathrm{CaO}_{(\mathrm{s})}+\mathrm{CO}_{2(\mathrm{~g})}$
ii) Alot of heat is evolved which makes the piece of lime swell hence the name quick lime and Calcium hydroxide(slaked lime) is formed. $\checkmark^{1 / 2}$
21. a) i) Gas $\boldsymbol{C} \mathrm{O}_{2(g)} \quad \sqrt{ } 1 / 2 \quad$ Gas $\boldsymbol{B} \mathrm{NO}_{2} \sqrt{1} 1 / 2$

$$
\mathrm{CaO}(\mathrm{~s})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \longrightarrow \quad \mathrm{Ca}(\mathrm{OH})_{2}(a q) \checkmark 1
$$

ii) Zn^{2+} and $\mathrm{NO}_{3}{ }^{+} \sqrt{1 / 2}$
b) $\quad \mathrm{ZnO}_{(g)}+2 \mathrm{HNO}_{3(a q)} \quad \mathrm{Zn}\left(\mathrm{NO}_{3}\right)_{2(a q)}+\mathrm{H}_{2} \mathrm{O}_{(l)}$ Balanced State symbols Chemical symbols
22. (a) Glowing splint is relighted/rekindles
(b) Pale yellow solid
23. a) Deliquescence $\sqrt{ } 1$
b) Deposition $\sqrt{ } 1$
24. a)- To MgO add excess $\mathrm{HNO}_{3} \sqrt{ } 1 / 2\left(\mathrm{Or} \mathrm{HCL}\right.$ or $\left.\mathrm{H}_{2} \mathrm{SO}_{4}\right)$

- Add NaOH or KOH or NH4 OH to the mixture $\sqrt{ } 1 / 2$
- Filter and dry the residue $\sqrt{ } 1$
b) Uses as
- Anti - acid or tooth paste $\sqrt{ }$

25) - Dil NaOH may not absorb all the carbon (IV) oxide gas produced

- Candle may go off before all the oxygen is used due to build up carbon (IV) oxide

26 a) Acid salts $\mathrm{NaH}_{2} \mathrm{PO}_{4(S)} \sqrt{ } 1$
Basic salts - $\mathrm{Mg}_{\mathrm{g}}(\mathrm{OH}) \mathrm{CL}_{(\mathrm{s})} \sqrt{ } \sqrt{1}$
Normal salts - Ca $\left(\mathrm{NO}_{3}\right)_{2(S)} \sqrt{1}$
Double salt - $\mathrm{Fe}\left(\mathrm{NH}_{4}\right)_{2}\left(\mathrm{SO}_{4}\right)_{2} 6 \mathrm{H}_{2} \mathrm{O} \sqrt{ } 1$
b) i) Hydrolysis - Reaction of water with a compound to form at least two products $\sqrt{ } 1$
ii) Moist litmus paper turns red due to the HCL gas produced $\sqrt{ } 1$

Or accept equation for the explanation
$\mathrm{FeCL}_{3(S)}+3 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{L})} \longrightarrow \mathrm{Fe}(\mathrm{OH})_{3(S)}+3 \mathrm{HCl}_{(\mathrm{g})}$

Effect of an electric current on substances

1. (a) $\mathrm{Pb}^{2+}{ }_{(\text {I }} 2 e^{-n} \mathrm{~Pb}_{(s)}$
(b) - There is liberation of brown vapour

- The brown vapour is due to the formation of bromine molecule

2. E-Giant ionic structure

F-Giant metallic structura
3. (a) - Electrolytes are melts or acqueous solutions which allow electric current to pass
through them and are decomposed by it while non-electrolyte are melts or acqueous solution which do not conduct electric current

- Electrolytes contain mobrite ions while non-electrolyte contains molecules.
(c) (i) I bulb did not light when sugar solution was put into the beaker

II bulb light when slat solution was put into the beaker
(ii) Non- electrolyte I Electrolyte II
(b) (i) heating
(ii) Cathode
$\mathrm{Pb}^{24}+2 \mathrm{e}^{-} \longrightarrow \mathrm{Pb}_{(s)} \quad$ grey deposit metal is observed
(iii) Anode
$2 \mathrm{Br}_{(a q)} \longrightarrow \mathrm{Br}_{2(\mathrm{~g})}+2 \mathrm{e}^{-}$
A brown yellow gas is evolved
4. a) i) Decomposes to Pb^{2+} and ions which are later reduced to Pb and are oxidized to Br ii) $B r_{2(g)}$ produced is poisonous
5. I (a) Crystallization - The solidifying of a salt form a saturated solution on cooling.
(b) Addition of sodium chloride to soap-glycerol mixture in order to precipitate the soap. II- to the nitric acid in a beaker, add barium carbonate solid as you stir until effervescence stops.

- Filter to obtain the filtrate
- Add dilute nitric acid to the filtrate and filter to obtain the residue
- Dry the residue under the sun or between filter papers.

III (a) (i) K $^{+}$
(ii) NO_{3}
(b) $2 \mathrm{KNO}_{3(\mathrm{~s})} \xrightarrow{\text { heat }} 2 \mathrm{KNO}_{2(\mathrm{~s})}+\mathrm{O}_{2(\mathrm{~g})}$
(IV) $\mathrm{Cu}^{2}\left(\mathrm{NH}_{3}\right)_{4}$
(V) In water HCL ionizes into mobile into mobile ions which conduct because water is polar while methyl is non-polar hence HCl does not ionize hence does not conduct electricity
6. (i) Faraday first low of electrolysis.

The mass of a substance dissolved on liberated in electrolysis is proportional to the quantity of electricity which passes through the electrolyte.
(ii) (anode) - Brown/fumes of a gas were evolved (cathode) - grey beads.

7 a) (i) Place elilute nitric acid $\left(\mathrm{HNO}_{3}\right)$ in a beaker and warm.

- Add lead II oxide until no more dissolves
- Filter the un reacted lead II oxide
- Heat to evapourae \& leave to crystallize.
(ii) $\mathrm{Pbo}_{s}+2 \mathrm{HNO}_{3 a q} \longrightarrow p b\left(\mathrm{No}_{3}\right)_{2}{ }_{a q}+\mathrm{H}_{2} \mathrm{O}_{n}$
b)(i) Crystals crack and split because of the gas accumulating inside
- Brown gas of Nitrogen IV oxide.
- Solid resolute, lead II oxide which is orange when hot is yellow when cold.
(ii) $2 \mathbf{p b}\left(\mathrm{NO}_{3}\right)_{2 s} 2 \mathrm{Pbo}_{s}+\boldsymbol{o}_{2(g)}+4 \mathrm{NO}_{2(g)}$
c) (iii) white precipitate which is incolible is excess ammonia
(iv) $\mathrm{pb}^{24}{ }_{a q}+20 \mathrm{H}_{a q} \longrightarrow \mathrm{pb}(\mathrm{oH})_{2(s)}$

8. (a)

(b) To let the gas produce out, so that it does not explode due to pressure.
(e) At the anode a pale yellow gas is observed

Mocks Topical Analysis eeducationgroup.com

Cathode - grey solid is formed.
(d) Anode $2 \mathrm{~F}^{-}(c) \longrightarrow \mathrm{F}_{2(\mathrm{~g})}, \mathrm{e} 2 e^{-}$

Cathode $\mathrm{pb}^{24}{ }^{\mathrm{I}}+2 \mathrm{e}^{-} \longrightarrow \mathrm{pb}_{(\mathrm{s})}$
(e) the gas produce is poisonous.

II a) C
b) Because it does not conduct electricity in solid state and not soluble.
c) B because it does not conducts electricity in solid state but in molten or aqueous solution it conducts.
d) Metallic bond.
9. a) A is Anode $\sqrt{ } /$
B is cathode. $\sqrt{ } \sqrt{ }$
b) Bromine gas. $\sqrt{ } /$
c) $2 \mathrm{Br}^{-1}(\mathrm{l})-2 e^{-} \longrightarrow \mathrm{Br}_{2}(\mathrm{~g}) \sqrt{ } /$
10. B and D or F_{2} and $N e$
11. a) i) olcum
ii) Water
b) i) $\mathrm{SO}_{3(\mathrm{~g})}+\mathrm{H}_{2} \mathrm{~S}_{4(L)}$ \qquad $\mathrm{H}_{2} \mathrm{~S}_{2} \mathrm{O}_{7(L)}$
ii) $\mathrm{H}_{2} \mathrm{~S}_{2} \mathrm{O}_{7(L)}+\mathrm{H}_{2} \mathrm{O}_{(L)} \quad 2 \mathrm{H}_{2} \mathrm{SO}_{4(}$
12. a) Source of heat. $\sqrt{ } 1$
b) The solid PbBr_{2} melts to form $\mathrm{Pb}^{2+} \sqrt{1} 1 / 2$ and $2 \mathrm{Br} \sqrt{1} 1 / 2$ that conduct electric current in the circuit hence the bulb lights/Pb ${ }^{2+}$ and 2 Br carry the current. $\sqrt{ } 1$

6. Carbon and its compounds

1. a) - making of pencil

- As a lubricant
b) Graphite has delocalized in its structure hence it conducts electricity. Carbon uses all the four valency electrons to form covalent bonds hence do not have delocalized elect conduct electricity

2. a) Carbon (IV) oxide $\left(\mathrm{CO}_{2}\right) ~ \sqrt{ } 1$
b) $\mathbf{2 N a H C O}(\mathrm{s}) \longrightarrow \mathrm{Na}_{2} \mathrm{CO}_{3}(\mathrm{~s})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l})+\mathrm{CO}_{2}(\mathrm{~g}) \checkmark 1$
c) - Paper manufacture $\sqrt{ } 1$

- Manufacture of glass.
- Softening of hard water.

3. Magnesium has a higher affinity for combined oxygen that carbon./Mg is more reactive than carbon thus displaces it from its oxide.

4 a) Carbon (iv) Oxide
b) Blue flame. Carbon (iv) oxide burns in air with a blue flame $\quad 1$
5. a) A brown solid is formed
b) $\mathrm{CuO}_{(g)}+\mathrm{C}_{(\mathrm{g})}$ \qquad $\mathrm{Cu}_{(g)}+\mathrm{CO}_{(g)}$
c) As a fuel in water gas
6. (a) Covalent bond is bond between non-metal atoms where shared electrons are donated equally
by all the atoms involved.
Dative bond is a bond in which shared electrons are donated by one atom.
(b) The presence of Yrible bond in nitrogen requires very high temperatures to break
7. (a) Reduction by using carbon
b) J, carbon and \boldsymbol{H}
decreasing order of reactivity 7. Study the structures \mathbf{A} and \mathbf{B} :

B
Diamond
8. (i) Have giant atomic structure
(ii) To make drill bits or used in Jewellery (any one)
9. (a) Allotropy is the existence of an element $\sqrt{ } 1$ in more than one form without change of state.
(b) Graphite contains delocalized $\sqrt{ } 1$ electrons between the layers while diamond has no

3 free $\sqrt{ } 1$ electrons. Its atoms are strongly bonded.
10. (a) $\mathrm{C}_{(s)}+\mathrm{CO}_{2(g)} \longrightarrow 2 \mathrm{CO}_{(\mathrm{g})} \sqrt{1} \quad(1 \mathrm{mk})$
(b) Burn charcoal in sufficient $\sqrt{ } 1$ oxygen Carbon (II) oxide (being a reducing agent) is easily oxidized to carbon (IV) oxide. $\sqrt{ } 1(1 \mathrm{mk})\}$
11. (a) $\underline{\text { Black }}^{\sqrt{ } 1 / 2}$ solid changes to reddish brown ${ }^{\sqrt{1 / 2}}$
(b) $\mathrm{CuO}_{(\mathrm{s})}+\mathrm{CO}_{(g)} \longrightarrow \mathrm{Cu}_{(\mathrm{s})}+\mathrm{CO}_{2(g)} \sqrt{ }$

12. (a) Difference forms of a substance at the same physical state;
(b) In graphite each carbon is bonded to 3 others and there are Vander waals forces between hexogous;

- In diamond each carbon atom is covalently bonded to four others making a rigid mass;

13. a) - Copper (ii) oxide changes $\sqrt{1} 1 / 2$ from black to brown/ reddish brown/ red brown $\sqrt{1} 1 / 2$

- \boldsymbol{A} white ppt forms in the boiling tube $\sqrt{1} / 2$
b) $\mathrm{CO}_{2(\mathrm{~g})}+\mathrm{Ca}(\mathrm{OH})_{2(a q)}$ \qquad $\mathrm{CaCO}_{3(\mathrm{~g})}+\mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})} \quad \sqrt{ } 1$
c) Unreacted carbon (ii) Oxide is poisonous/toxic/ pollutant it is converted to the less harmful gas CO_{2}
Mocks Topical Analysis eeducationgroup.com

14. a) A the substance is a gaining kinetic energy making it to vibrate vigorous up B, at point B to C the kinetic energy a gained is used to beak down the particle in solid state at this point the substance start melting and the temperature is constant.
d) It is not water because the melting of water is $100^{\circ} \mathrm{c}$ not $115^{\circ} \mathrm{c}$.
e) The melting point will be lower because of the impurity Nacl.
f) The temperature is constant.
15. (a) (i) Carbon (II) Oxide or $\mathbf{C O}$ - (reject Carbon monoxide)
(ii) Combines with haemoglobin to form caborhaemoglobin which prevents carrying of oxygen
(b) (i) $\mathrm{CO}(g)+\mathrm{C}_{(s)} \longrightarrow 2 \mathrm{CO}_{(g)}$
(ii) $\mathrm{ZnO}_{(s)}+\mathrm{CO}_{(g)} \longrightarrow \mathrm{Zn}_{(\mathrm{s})}+\mathrm{CO}_{2(g)}$
(c) Orange/yellow Lead (II) Oxides turns grey
(d) $\mathrm{CaCO}_{3(s)}+2 \mathrm{HCl}_{(4)}$
$\mathrm{CaCl}_{2(a q)}+\mathrm{CO}_{2(g)}+\mathrm{H}_{2} \mathrm{O}_{()}$
(e) Methanoic acid and concentrated sulphuric acid
(f)

16. (a) (i) - Ammonia gas $\sqrt{ } 1$

- Calcium carbonate. $\sqrt{ } 1$
- Brine $\sqrt{ } 1$ or Concentrated sodium chloride.
- Coke
(Any three materials)
(ii) - Carbon (IV) oxide. $\sqrt{ } 1$
- Ammonia gas. $\sqrt{ } 1$
- Water
(Any two)
(iii) Chamber $3 \checkmark 1$

Chamber $2 \checkmark 1$
(iv) U-Ammonia chloride $\checkmark 1$
V - Sodium hydrogen carbonate. $\sqrt{ } 1$
(b) (i) $\mathrm{HN}_{3}(g)+\mathrm{H}_{2} \mathrm{O}(l)+\mathrm{CO}_{2}(g)+\mathrm{NaCl}(a q) \longrightarrow \mathrm{NH}_{4} \mathrm{Cl}(\mathrm{aq})+\mathrm{NaHCO}_{3}(\mathrm{~s})$

OR
$\mathrm{NH}_{3}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l})+\mathrm{CO}_{2}(\mathrm{~g}) \longrightarrow \mathrm{NH}_{4} \mathrm{HCO}_{3}(\mathrm{aq})$
$\mathrm{NH}_{4} \mathrm{HCO}_{3}(\mathrm{aq})+\mathrm{NaCl}(\mathrm{aq}) \longrightarrow \mathrm{NH}_{4} \mathrm{Cl}(\mathrm{aq})+\mathrm{NaHCO}_{3}(\mathrm{~s})$
(ii) $\mathrm{NaHCO}_{3} \longrightarrow \mathrm{Na}_{2} \mathrm{CO}_{3}(\mathrm{~s})+\mathrm{CO}_{2}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}_{(l)}$
(iii) $\mathrm{Ca}(\mathrm{OH})_{2}(\mathrm{~s})+2 \mathrm{NH}_{4} \mathrm{Cl}(\mathrm{aq}) \longrightarrow \mathrm{CaCl}_{2}+2 \mathrm{NH}_{3}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$
c) - Manufacture of glass.

- Softening of hard water.
- Manufacture of papers.
- Manufacture of soap.
- Refining of metals.

17. (a) (i) - The gas is collected over water

- The gas is not passed through a drying agent
(ii) PbCl_{2} is formed which is insoluble hence prevents contact between the carbonate and the acid
(iii) $\mathrm{CO}_{2(g)}+\mathrm{C}(\mathrm{s}) \xrightarrow{\text { Heat }} 2 \mathrm{CO}(\mathrm{g})$
$\mathrm{CO}_{2(\mathrm{~g})}+2 \mathrm{NaOH}_{(a q)} \longrightarrow \quad \mathrm{Na}_{2} \mathrm{CO}_{3(a q)}+\mathrm{H}_{2} \mathrm{O}_{(l)}$
(iv) - Solid CO_{2} used as a refrigerant
- Used in making aerated drinks
- Solid CO_{2} is used in cloud-seeding
- CO_{2} used as an ingredient/air material in solvary process
(v) - Denser than air - Does not support combustion (burning)
(b) Reducing Property
(c)- $\mathrm{Al}_{2}\left(\mathrm{CO}_{3}\right)_{3}$ hydrolyses in water/moisture forming H^{+}ions which reacts with the carbonate and dissolves
(d) $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{CO}_{3(s)} \xrightarrow{\text { Heat }} \mathrm{NH}_{3(g)}+\mathrm{CO}_{2(g)}+\mathrm{H}_{2} \mathrm{O}_{(\mathrm{g})}$

18. Brown fumes of a gas are produced as the charcoal dissolves in the acid. The charcoal reduces nitric (V) acid to nitrogen (IV) oxide gas that is brown while the charcoal is oxidized to carbon (IV) oxide.
19. (a) Due to formation of calcium hydrogen carbonate which is a soluble salt
(b) $2 \mathrm{CaCO}_{3(s)}+2 \mathrm{CO}_{2(g)}+2 \mathrm{H}_{2} \mathrm{O} \longrightarrow 23 \mathrm{Ca}\left(\mathrm{HCO}_{3}\right)_{2(a q)}$
(- Award 1mk if equation is correctly balanced

- Penalize $1 / 2 m$ m if equation if not balanced)

20. a) \boldsymbol{A} - Concentrated sulphuric acid (vi) acid $\sqrt{ } 1$
b)
c) $\mathrm{HCOONa}_{(\mathrm{s})}+\mathrm{H}_{2} \mathrm{SO}_{4} \longrightarrow \mathrm{HCOOH}_{(L)}+\mathrm{NaHSO}_{4(S)}$

Hence; $\mathrm{HCOOH}_{(l)} \longrightarrow \mathrm{CO}_{(g)}+\mathrm{H}_{2} \mathrm{O}_{(\mathrm{L})}$
Accept conc $\mathrm{H}_{2} \mathrm{SO}_{4}$ (reject where concentrated is not mentioned)
Workability $\sqrt{ } 1$
Correct method of collection $\sqrt{ } 1$
Of the gas $\sqrt{ } 1$
The two equations should be mentioned 2 mks

Gas laws

1. $X: t_{1}=28.3 \mathrm{sec} \quad R M M=$?
$Q_{2}: t_{2}=20.0 \mathrm{sec} \quad R M M=32$
$T \propto \sqrt{M M}$
$\frac{T_{1}}{T_{2}}=\sqrt{\frac{X}{32}}$

$$
\begin{aligned}
\left(\frac{\mathrm{T}_{1}}{\mathrm{~T}_{2}}\right)^{2} & =\frac{X^{\checkmark}}{32} \\
{\left[\frac{28.3}{T_{2}}\right)^{2} } & =\frac{X^{3}}{32} \\
X & =\frac{28.3^{2} \times 32}{400}
\end{aligned}
$$

Mocks Topical Analysis $\quad \checkmark$ eeducationgroup.com

$$
X=64
$$

2. (a) The rate of diffusion of a gas is inversely proportional to the square root of its density under the same conditions of temperature and pressure
(b) Rate of gas $V=1 / 5 \times \underline{100 \mathrm{~cm}}$

10sec
$=2 \mathrm{~cm} / \mathrm{sec} \quad \checkmark 1 / 2$
Rate of $W=\frac{10 \mathrm{~cm}}{10 \mathrm{sec}}$

$$
=1 \mathrm{~cm} / \mathrm{sec} \quad \checkmark 1 / 2
$$

$$
\frac{R V}{R W}=\sqrt{\frac{M W}{M V}} \quad=\frac{2}{1}=\sqrt{\frac{\mathrm{MW}}{16}}
$$

$$
\underline{2}^{2}=\underbrace{\frac{M W}{M W}=64}_{\substack{1 \\ \frac{4}{1}}} \sqrt{16} ; \underbrace{}_{\frac{4}{16}} \times 16
$$

3. (a) The volume of a fixed mass of a gas is directly proportional to its absolute temperature at constant Pressure
(b) Apply combined gas law; $\underline{P_{I} V_{l}}=\underline{P_{2} V_{2}}$
$T_{1} T_{2}$
$V_{1}=3.5 \times 10^{-2} \mathrm{~m}^{3} \quad V_{2}=2.8 \times 10^{-2} \mathrm{~m}^{3}$
$\left.P_{1}=1.0 \times 10^{5} \mathrm{~Pa} \quad P_{2}=1.0 \times 105 \mathrm{~Pa}\right\}^{\checkmark 1 / 2}$
$T_{1}=291 \mathrm{~K} \quad T_{2}=$? $\left.\quad\right\}$
$\boldsymbol{T}_{2}=\frac{\boldsymbol{P}_{2} V_{2} \boldsymbol{T}_{1}}{\boldsymbol{P}_{1} V_{1}}$
$T_{2}=\frac{1.0 \times 10^{5} \mathrm{~Pa} \times 2.8 \times 100^{-2} \mathrm{~m}^{3} \times 291 \mathrm{~K}}{1.0 \times 10^{5} \mathrm{~Pa} \times 3.5 \times 10^{-2} \mathrm{~m}^{3}}$
$T_{2}=232.8 \mathrm{k}$
4. $\quad \frac{\mathrm{TsO}_{2}}{\mathrm{TO}_{2}}=\frac{\text { R.M.N.SO }}{2}{ }_{\text {R.M.MO }}^{2}$ (1/2

$$
\begin{aligned}
& \mathrm{SO}_{2}=32+(16 \times 2)=64 \sqrt{1 / 2} \\
& \mathrm{O}_{2}=(16 \times 2)=32 \sqrt{1 / 2} \\
& \frac{T s O_{2}}{50}=\sqrt{\frac{64}{32} \sqrt{1 / 2}}=70.75 \quad \sqrt{1 / 2}
\end{aligned}
$$

5. a) The rate of diffusion of a fixed mass of a gas is inversely proportional to the square root of it density at constant temperature and pressure
b) $\mathrm{RHCl}=\frac{30 \mathrm{~cm}^{3}}{20 \mathrm{se}}=1.5 \mathrm{~cm}^{3} \quad$ see
$\underline{\text { RHCL }} \quad=\sqrt{\mathrm{MSO}_{2}}$
$\mathrm{RSO}_{2} \quad=\sqrt{ } \mathrm{MHCL}$
$(1.5)^{2} \sqrt{64}$
$\mathrm{RSO}_{2}=\sqrt{ } 36.5$

$$
\left(\mathrm{RSO}_{2}\right)^{2} \quad=\frac{2.25 \times 36.5}{64}
$$

6. a) Boyles' law For a fixed mass of a gas, volume is inversely promotional to pressure at constant temperature
b)

$$
\begin{aligned}
& \frac{250 \times 273-23}{273+127} \sqrt{ } 1 / 2 \\
& =156.5 \mathrm{~cm}^{3}
\end{aligned}
$$

7. a) RFM of $\mathrm{CaCO}_{3}=40+12+48$

$$
=100 \mathrm{~kg} . \mathrm{V} / 2
$$

```
\(\therefore 100 \mathrm{~kg}\) of \(\mathrm{CaCO}_{3} \equiv 22.4 \mathrm{dm}^{3}\) of \(\mathrm{CO}_{2}(\mathrm{~g})\)
    1000 kg " " \(\longrightarrow\) ?
    \(=\underline{22.4 \times 10000} \sqrt{1}=224 \boldsymbol{d m}^{3} \sqrt{1 / 2}\)
        \(1 \boldsymbol{\theta} \boldsymbol{\theta}\)
```

8. $T_{1}=23+273=296 \quad T_{2}=-25+273=248$
$V_{1}=200 \mathrm{~cm}^{3} \quad V_{2}=$?
$P_{I}=740 \mathrm{mmHg} \quad P_{2}=780 \mathrm{mmHg}$
$\frac{\boldsymbol{P}_{1} V_{1}}{T_{1}}=\frac{\boldsymbol{P}_{2} V_{2}}{\boldsymbol{T}_{2}}$
740x200 $\sqrt{1}=\underline{780 x}$? $\sqrt{1}$
296248
$\therefore x=\frac{740 \times 200 \times 248}{296 \times 780}$
$=158.974 \mathrm{~cm}^{3} \sqrt{1}$ (penalize $1 / 2$ mark for units)
9. $\quad \frac{R k}{R s}=\frac{\sqrt{M S}}{M k}$
$\therefore \frac{12}{7.2}=\frac{1 x}{16} \sqrt{1 / 2}$
$X=\frac{12^{2}}{7.2^{2}} \times 16 \sqrt{ } 1 / 2$
$=44.464 \sqrt{ }$
10. (a) When gases combine they do so in volume which bear a simple ratio to one another and to the product if gaseous under standard temperature andpressure
11. a) Rate of diffusion is whereby proportional to molecular mass of a gas. $\sqrt{ } 1$ b) $\underline{\mathrm{TCO}_{2}}=\sqrt{\mathrm{MCO}_{2}}$

$$
\begin{aligned}
& T C O \\
\Rightarrow & \frac{200}{T}=\sqrt{\sqrt{M C O}} \sqrt{2 / 2} \\
\Rightarrow & \left(\frac{200 \pi}{T}\right)^{2}=\frac{11}{7} \\
\Rightarrow & \frac{T}{200}=\frac{\sqrt{\frac{44}{28}} 11}{\sqrt{11}} \\
\Rightarrow & T=200.0 .79772^{\sqrt{ } / 2}=159.5 \text { Seconds. } \sqrt{1 / 2}
\end{aligned}
$$

12. a) $Y \sqrt{ } /$
b) Z and $W^{\sqrt{ }}$ have same atomic number but different mass number. $\sqrt{ } /$
13. (a) Gas P

$$
\text { (b) } \frac{R Q}{R P}=\sqrt{\frac{R M M P}{R M M Q}}
$$

$$
\frac{18}{54}=\sqrt{\frac{x}{17}}
$$

$$
\frac{1^{2}}{3^{2}}=\left(\sqrt{\frac{17}{\frac{x}{17}}}\right)^{2}
$$

$$
\frac{1}{9}=\frac{x}{17}
$$

$$
9 x=17
$$

$$
x=17 / 9
$$

$$
x=1.88
$$

$$
Q=I t
$$

$$
=5 \times 386=1930 C
$$

(b) $\boldsymbol{P b}^{2+}{ }_{(l)}+2 e \boldsymbol{P b}_{(s)} \quad(1 / 2 m k)$

If $2 \times 96500 \mathrm{C}=207 \quad(1 / 2 m k)$
$1930 C=\frac{1930 \times 207}{2 \times 96500} \quad(1 / 2 m k)$
$\begin{array}{ll}=\underline{399510} & (1 / 2 m k) \\ =2.07000 \mathrm{~g} & (1 / 2 \mathrm{mk})\end{array}$
14. i) Delocalized electrons
ii) Mobile ions
iii) Mobile ions
15. $\quad \underline{\mathrm{TNH}_{3}} \quad \underline{\mathrm{MNH}_{3}}$

TB	MB $\sqrt{ } 1 / 2$
$\underline{\mathrm{TNH}_{3}}$	$=\underline{17}$
TB	34
TNH_{3}	$=\underline{17}$ 可 $1 / 2$
110	34

$$
T N H 3=110 X \frac{17}{34} \quad \sqrt{1 / 2} \quad=77.78 \text { seconds } \sqrt{ } 1 / 2
$$

16. $\quad \frac{P_{1} V_{1}}{T 1}=\frac{P_{2} V_{2}}{T_{2}}$
$\frac{1 x 5}{246}=\frac{2 x V_{2}}{400}$

$$
\begin{aligned}
V 2= & \frac{400 \times 1 \times 5}{2 \times 246} \\
& =4.065 \mathrm{dm}^{3}
\end{aligned}
$$

17. a) $V_{1}=200 \mathrm{~cm}^{3} \quad V_{2}=$?
$T_{1}=296 \mathrm{~K} \quad T_{2}=284 \mathrm{~K}$
$P_{1}=740 \mathrm{mmHg} \quad P_{2}=780 \mathrm{~mm} \mathrm{Hg}$
$\frac{P_{1} V_{I}}{T_{1}}=P_{2} V_{2}$
$\begin{aligned} V_{2}=\frac{P_{1} V_{1} T_{2}}{T_{1} P_{2}} \quad & =\frac{740 \mathrm{~mm} \mathrm{Hg} \times 200 \mathrm{~cm}^{3} \times 248 \mathrm{~K}}{296 \mathrm{~K} \times 780 \mathrm{~mm} \mathrm{Hg}} \\ & =158.97 \mathrm{~cm}^{3}\end{aligned}$
b) $60 l \checkmark 1$
18. a) Grahams law states

Under the same conditions of pressure and temperature, the rate of diffusion of a gas is inversely proportional to the square root of its density
b) $\frac{\text { Time } \mathrm{CO}_{2}}{\text { Time }}=\frac{\sqrt{ } \mathrm{MO}_{r} \mathrm{CO}_{2}}{\mathrm{M}_{2}}$

Time $\mathrm{NO}_{2} \quad \mathrm{Mr}_{\mathrm{r}} \mathrm{NO}_{2}$
Where $100 \mathrm{~cm}^{3}$ of CO_{2} takes 30 seconds
$\therefore 150 \mathrm{~cm} 3$ of CO_{2} takes ${ }^{30} / 100 \times 150$
$=45$ seconds $\sqrt{ }$
$\underline{45^{2}}=0.975$
TNO_{2}
$\frac{45}{\mathrm{TNO}_{2}}=\frac{\sqrt{44}}{46} \quad-\quad T N O_{2}=\frac{45}{0.978}$
$T \mathrm{NO}_{2}=46 \mathrm{sec}$
OR
$\frac{R C O_{2}}{R N O_{2}}=\frac{\sqrt{ } M_{r} \mathrm{NO}_{2}}{M_{r} C O_{2}}$
$\mathrm{RNO}_{2} \quad \mathrm{Mr}_{r} \mathrm{CO}_{2}$
But $\mathrm{RCO}_{2}=\frac{100 \mathrm{~cm}^{3}}{30 \mathrm{~s}}=3.33 \mathrm{~cm}^{3} \mathrm{per} \mathrm{sec}$
$\frac{3.33}{\mathrm{RNO}_{2}}=\frac{\sqrt{46}}{44}$
$=1.0225$
$R \mathrm{NO}_{2}=\underline{3.33}$
1.0225
$=3.26 \mathrm{~cm}^{3}$ per second
Time for $\mathrm{No}=\underline{150 \mathrm{~cm}^{3}}$
$3.26 \mathrm{~cm} \mathrm{sec}^{-1}=46 \mathrm{secs}$

1. When a magnesium ribbon is heated in air it combines with oxygen forming magnesium oxide. When potassium manganate (VII) is heated it decomposes giving off oxygen which escapes in air
2. $\quad \mathrm{RFM}$ of $\mathrm{NaOH}=40$

Moles of $\mathrm{NaOH}=\underline{8}=0.2 \mathrm{M} \checkmark$

Moles of NaOH in 25 cm 3
$\underline{25 \times 0.2}=0.005$
1000
Mole ratio 1:2
Moles of acid $=\frac{0.005}{2}$

$$
=0.0025
$$

$$
\frac{1 \times 0.245}{0.0025}=98
$$

3. No. Of moles of HNO_{3} acid
$50 \times 2=0.1$ moles 1000
Mole ratio 1:1 \checkmark
The KOH will have 0.1moles; $\frac{0.1 X 100}{50}=0.2 \mathrm{moles}$
Then D grams is 0.2×56

$$
=11.2 \mathrm{~g}
$$

4. Number of moles of $Q=\frac{960 \mathrm{~cm}^{3} \times 1 \mathrm{~mole}}{24000 \mathrm{~cm}^{3}}$

$$
=0.04 m o l e s
$$

Equation:
$\mathrm{Na}_{2} \mathrm{SO}_{3(\mathrm{~s})}+2 \mathrm{HCL}_{(a q)} \longrightarrow 2 \mathrm{NaCl}_{(a q)}+\mathrm{SO}_{2(\mathrm{~g})}+\mathrm{H}_{2} \mathrm{O}_{(l)}$
Mole ratio $\mathrm{Na}_{2} \mathrm{SO}_{3}: \mathrm{SO}_{2}$ is 1:1
\therefore No. of moles of $\mathrm{Na}_{2} \mathrm{SO}_{3}=0.04 \mathrm{moles}$
Mass of $\mathrm{Na}_{2} \mathrm{SO}_{3}=126 \mathrm{gmol}^{-1} \mathrm{x} 0.04$

$$
=5.04 \mathrm{~g}
$$

5. From the equation

- ($3 x 24$) litres of chlorine react with iron to produce [(56 x 2$)+(35.5$ X3)] g of Fecl 3 .

325 g of Fecl_{3} is produced by $72{\text { litres of } \mathrm{cl}_{2}}^{2}$
Then 0.5 g of fecl3 is produced by:

$$
\begin{aligned}
\frac{0.5 \times 72}{325} & =0.11078 \text { litres } \\
& =110.78 \mathrm{~cm}^{3}
\end{aligned}
$$

7. If $24000 \mathrm{~cm}^{3}=1$ mole

$$
\begin{aligned}
& 150 \mathrm{~cm}^{3}=? \\
& \frac{150 \times 1}{24000}=0.00625 \mathrm{moles} \text { of } \mathrm{CO}_{2}
\end{aligned}
$$

Since the ratio of $\mathrm{Na}_{2} \mathrm{CO}_{3} ; \mathrm{O}_{2}$ produced is 1:1 the mass of $\mathrm{Na}_{2} \mathrm{CO}_{3}=0.00625 \times 106=0.6625 \mathrm{~g}$

$\mathrm{Na}_{2} \mathrm{Co} 3$		$\mathrm{H}_{2} \mathrm{O}$
Mass 0.6625g RFM 106		$\begin{aligned} & 1.0125 g \\ & 18 \end{aligned}$
Mole 0.6625 =	$\frac{0.00625}{106}$	$\frac{1.0125}{18}=0.5625$

$$
\begin{aligned}
& \text { 6. } R M M\left(\mathrm{CH}_{3} \mathrm{OOH}\right)=60 \\
& \text { Mass of } 15 \mathrm{~cm}^{3} \text { and }=1.05 \boldsymbol{x}^{\checkmark} 15^{1 / 2}=15.75 \mathrm{~g} \quad \checkmark 1 / 2 \\
& \text { Moles in } 500 \mathrm{~cm}^{3} \text { solution }=\underline{15.75}=0.2625 \quad \checkmark 1 \\
& \text { Molarity }=\frac{1000 \times 0.2625}{5000} \\
& =0.525 M \quad \checkmark 1 / 2
\end{aligned}
$$

8. $\mathrm{MgCl}_{2} \longrightarrow \mathrm{Mg}^{2+}{ }_{(s)} \mathbf{2 C l}^{-}$
R.F.M of MgCl $_{2}=24+71$ $=95$
Moles of Mass $=\frac{1.7}{95} \quad$ R.F.M

$$
=0.01789 \mathrm{moles}
$$

I mole of $\mathrm{MgCl}_{2}=2$ moles of Cl-ions
0.01789 moles of $\mathrm{MgCl}_{2}=0.01789 \times 2$
$=0.03478 \mathrm{moles}$ of Clions
$1 \mathrm{~mole}=6.0 \times 10^{23}$ ions
$0.03578 \mathrm{moles}=\underline{0.03578 \times 6.0 \times 10^{23}}$
1
$=2.1468 \times 10^{22}$ ions of Cl^{-}
12. Mass of $\mathrm{O}_{2}=(4.0-2.4)=1.6 \mathrm{~g}$

Moles of $\mathrm{O}_{2}=1.6 / 16=0.1$
If $1 \mathrm{~mol} \mathrm{O}_{2}$ \qquad $24000 \mathrm{~cm}^{3}$
$0.1 \mathrm{Mol} \mathrm{Mg}=0.5 \mathrm{~mol} \mathrm{ol}_{2}=1200 \mathrm{~cm}^{3}$

13. i

		$\mathrm{H}_{2} \mathrm{O}$	
20.2/56	11.5/32	23.0/16	45.3/18
0.36/0.36	0.36/0.36	1.44/0.36	2.52/0.36
1	1	4	7

ii) $6.95 g=6.95 / 278=0.025$
$\therefore 0.05$ moles in $250 \mathrm{~cm}^{3}=0.025 x^{1000} / 250=0.1$
14. R.F.M of $\mathrm{pbI}_{2}=207+(127 X 2)=461$

2 moles of I-ions produces I mole of pbI_{2}
Moles of I-ions $=\underline{0.1 X 300}=0.03$ mole 1000
Mole ratio PbI ${ }_{2}$: I^{-}mole of PbI2 formed $=\underline{0.03}=0.05$

$$
I: 2
$$

$$
2
$$

Mass of pbI_{2} formed $=0.015$ mole $X 461$

$$
=6.915 \mathrm{~g}
$$

d(i) Yellow precipitate
Mocks Topical Analysis
15. a) i)
ii) At 25C, sodium chloride is in solid form. Ions cannot move. Between 801 and 1413C sodium chloride is in liquid state, ions are mobile
b) Both ammonia and water are polar moleculer and hydrogen bonds are formed
c) N \qquad H // co-ordinate bond / Dative bond
d) i) Allotrope
ii) Add methylbenzene to soot in a beaker. Shake and filter. Warm the filtrate to concentrate it. Allow the concentrate to cool for crystals to form. Filter to obtain crystals of fullerene
iii) $720 / 12=60$
16. Mass of $\mathrm{O}_{2}=(4.0-2.4)=1.6 \mathrm{~g}$

Moles of $\mathrm{O}_{2}=1.6 / 16=0.1$

17. i) $C_{n} H_{2 n}$, where $n=$ No. of carbon atoms
ii) 70
iii) $\mathrm{C}_{5} \mathrm{H}_{10}, \mathrm{CH}_{3} \mathrm{CH}=\mathrm{CHCH}_{2} \mathrm{CH}_{3}$ OR $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CHCH}_{2}=\mathrm{CH}_{2}$
18.

i)	Fe		S		\boldsymbol{O}		
		20.2/56		11.5/32		23.0/16	45.3/18
		0.36/0.36		0.36/0.36		1.44/0.36	2.52/0.36
		1		1		4	7

Empirical formula: $\mathrm{FeSO}_{4}+\mathrm{H}_{2} \mathrm{O}$
ii) $6.95 \mathrm{~g}=6.95 / 278=0.025$
$\therefore 0.05$ moles in $250 \mathrm{~cm}^{3}=0.025 x^{1000} / 250=0.1$
Concentration $\quad=6.95 / 278 x^{1000 / 250}=0.1$
19. a) Zinc is more reactivel/ higher reduction potential than copper it will react with// get oxidized in preference to iron oxygen to form Zinc Oxide coat which protects iron from rusting
ii) Sacrificial protection or cathodic protection
20. Mole of Mg that reacted $=\underline{\text { Answer in (c) (iii) } x \underline{2}}$ $1000 \quad 2$

$$
=\frac{26}{1000}=0.026 \sqrt{1 / 2}
$$

Mass of Mg in the alloy $=0.026 \times 24$

$$
=0.624 g \sqrt{ } 1 / 2
$$

Mass Cu in the alloy $=(1.0-0.624)$

$$
\begin{aligned}
\% \text { of } C u \quad & =0.376 g \sqrt{ } 1 / 2 \\
& =\frac{0.376}{1.0} \times 100 \\
& =37.6 \% \sqrt{1 / 2}
\end{aligned}
$$

21. $\mathrm{NH}_{(g)}+\mathrm{HNO}_{(g)} \longrightarrow \mathrm{NH}_{4} \mathrm{NO}_{1^{3(s)}}$

$$
R M M \text { of } \mathrm{NH}_{4} \mathrm{NO}_{3}=80
$$

Moles of $\mathrm{NH}_{4} \mathrm{NO}_{3}=\frac{4800}{80}=60 \mathrm{moles}$
RMM of $\mathrm{NH}_{3}=17$
Mass of $\mathrm{NH}_{3}=60 \times 17=1020 K J_{1}$
22. From the equation of step 3

$$
\begin{aligned}
& \mathrm{SO}_{3(\mathrm{~g})}+\mathrm{H}_{2} \mathrm{SO}_{4(L)} \\
& \mathrm{RFM} \text { of H2S2O7 }=2+(2 \mathrm{H} 32)+\left(7 \mathrm{H} \mathrm{~S}_{2} \mathrm{O}_{7(L)}\right. \\
& \hline 16)=178 \sqrt{1 / 2 \mathrm{mark}}
\end{aligned}
$$

178 g of Oleum are produced by 22.4 liters of $\mathrm{SO}_{3} \sqrt{ } 1 / 2$ mark

$=22,4000$ liters $\sqrt{ } 1 / 2$ mark
(Total 13 marks)
23. i) Moles of copper $=\underline{0.635}=0.01$ moles
63.5

Volume of 1M Nitric acid $\frac{40}{0.01}=4000 \mathrm{~cm} 3 \quad \sqrt{ } 1 / 2 \mathrm{mark}$

- Use value in d(ii) above

$$
\text { ii) } \begin{aligned}
\frac{480 \mathrm{~cm}^{3}}{0.01} \sqrt{ } 1 / 2 \operatorname{mark} & =48,000 \mathrm{~cm}^{3} \sqrt{ } 1 / 2 \mathrm{mark} \\
\text { OR } 4000 \times 480 & \\
& \\
& 48,000 \mathrm{~cm} 3 \sqrt{ } 1 / 2 \mathrm{mark}
\end{aligned}
$$

$40 \mathrm{~cm}^{3}$
i.e. Answer in e(i) $X 480 \mathrm{~cm}^{3}$

Answer in d(i)
[Total = 11 marks]
24.

$$
\text { (i) } \begin{aligned}
& \frac{35.2 \times 1000}{100 \times 16} \\
& =10 \text { Moles } \checkmark 1 / 2
\end{aligned} \quad \checkmark 1 / 2
$$

Or mass of $\mathrm{CH}_{4}=\frac{35.2 \times 5}{1000}=1.76 \mathrm{~g}$
Mass in $g=1.76 \times 1000=176^{1 / 20} \mathrm{~kg}$
Moles of methane $=\frac{1760}{16} \quad \checkmark 1 / 2$

$$
=110 \mathrm{Moles}
$$

(ii) $\mathrm{CH}_{4}+2 \mathrm{O}_{2} \rightarrow \mathrm{CO}_{2}+2 \mathrm{H}_{2} \mathrm{O}-$ (ignore states)

$$
\begin{aligned}
\text { Volume } & =110 \times 24.0 \\
& =2640 \mathrm{dm}^{3}
\end{aligned}
$$

Mark consequential from equation and b(ii) (Without equation max *TZM*)
25. Volume of Cl2 used

$$
\begin{aligned}
&=0.047 \times 24 \\
&=1.128 d^{3}
\end{aligned}
$$

26. Mass due Carbon in $\mathrm{CO}_{2}=12 / 4 \times 35.2$

$$
=0.96
$$

Moles carbon $=0.96 / 12=0.08$
Mass due Hydrogen in $\mathrm{H}_{2} \mathrm{O}=2 / 18 \times 1.40$

$$
=0.156
$$

Moles hydrogen $=\underline{0.156}=0.156$
Mole ratio $C: H=1: 1.95$

$$
\text { E. } F=\mathrm{CH}_{2}
$$

27. $\mathrm{Na}_{2} \mathrm{CO}_{3} \times \mathrm{H}_{2} \mathrm{O} \longrightarrow \mathrm{Na}_{2} \mathrm{CO}_{3}+\mathrm{H}_{2} \mathrm{O} \sqrt{ } 1$
34.8 g
$\frac{15.9 g}{106} \quad \frac{18.9 g}{18}$
$\left.\begin{array}{ll}\frac{0.15}{0.15} \sqrt{ } 1 & \frac{1.15}{0.15}\end{array}\right\} 3$
$x=7 \sqrt{ } 1$
28. $\%$ of $\mathrm{H}_{2} \mathrm{O}$ lost $=14.5 \%{ }^{\wedge}$

5 of anhydrous $\mathrm{Na}_{2} \mathrm{CO}_{3}=85.5 \% \quad(1 / 2 m k)$
R.F.M of $\mathrm{Na}_{2} \mathrm{CO}_{3}=106 \quad(1 / 2 \mathrm{mk})$
$R M M$ of $\mathrm{H}_{2} \mathrm{O}=18 \quad(1 / 2 m k)$

NaCO_{3}	$\mathrm{H}_{2} \mathrm{O}$	
85.5	$\underline{14.5}$	
106	18	(1/2mk)
0.8066	0.8055	
0.8055	0.8055	(1/2mk)

$n=1\left(\mathrm{Na}_{2} \mathrm{CO}_{3 .} \cdot \mathrm{H}_{2} \mathrm{O}\right) \quad(1 / 2 m k)$
29. Moles of $\mathrm{Na}_{2} \mathrm{CO}_{3}=\frac{20 \times 0.1}{1000}=0.002$ moles
$\mathrm{Na}_{2} \mathrm{CO}_{3}+\mathrm{H}_{2} \mathrm{SO}_{4(a q)}$ \qquad $\mathrm{Na}_{2} \mathrm{SO}_{4(a q)}+\mathrm{H}_{2} \mathrm{O}_{(L)}+\mathrm{CO}_{2(g)}$
Mole ratio 1:1
Moles of $\mathrm{H}_{2} \mathrm{SO}_{4}=$ Moles of $\mathrm{Na}_{2} \mathrm{CO}_{3}$

$$
=0.002 \mathrm{moles}
$$

Molarity of $\mathrm{H}_{2} \mathrm{SO}_{4}=\frac{10000 \times 0.002}{13}=0.154$ moles
30.

Element	\boldsymbol{C}	\boldsymbol{H}	\boldsymbol{O}

Mocks Topical Analysis eeducationgroup.com

\%	68.9	13.5	21.6
Molar mass	12	1	16
Moles	$68.9 / 12$	$13.5 / 1$	$216 / 16$
	5.403	13.5	1.35
MR	$5.43 / 1.33$	$13.5 / 1.35$	$1.35 / 1.35$
	4	10	1
Ratio	4	10	1

$h\left(C_{4} H_{10} O\right)=74$
$h(12 x 4)+(10 x 1)+16=74$

$$
74 h=74
$$

$$
H=1
$$

Formula $\mathrm{C}_{4} \mathrm{H}_{10} \mathrm{O}$
31.
Moles $C_{4} H_{10}=\frac{1.12}{22.4}=0.05 \mathrm{~mol}$
Heat produced $+0.05 \times(3000)=150 \mathrm{kj}$
Usefull heat $=\frac{75 \times 150}{100}=112.5 \mathrm{kj}$
32.

RFM $\mathrm{Na}_{2} \mathrm{CO}_{3}=43+12+48=106$
Mol. $\mathrm{Na}_{2} \mathrm{CO}_{3}=\frac{19.6}{106}=0.8149057$
Molarity of $\mathrm{Na}_{2} \mathrm{Co}_{3}=\frac{0.1849057}{0.25}=0.73962 \mathrm{~m}$ 0.25
$\mathrm{Na}_{2} \mathrm{Co}_{3(a q)}+\mathrm{Mg} \mathrm{Cl}_{2(a q)}+\mathrm{MgCo}_{3(s)}$
Mole ratio $\mathrm{Na} \mathrm{CO}_{3}: \mathrm{Mg} \mathrm{Cl}_{2}$ is 1:1
\therefore mol. $\mathrm{Mg} \mathrm{Cl}_{2}$ Reacted $=0.1849$
$\begin{array}{ll}\text { If } 2.0 \mathrm{~mol} . & =1000 \mathrm{~cm} 3 \text { solution } \mathrm{mg} \mathrm{cl} l_{2} \\ =0.1849 \mathrm{~mol} & =\frac{0.1849 \mathrm{X} 1000}{2} \\ & =92.45 \mathrm{or} 92.5 \mathrm{~cm}^{3}\end{array}$
33. i)

$B A S E$	
2	
$20 \mathrm{~cm}^{3}$ X 0.2 moles	
$1000 \mathrm{~cm}^{3}$	$=0.004$ moles

$25 \mathrm{~cm}^{3}$ \qquad 0.002 moles $\sqrt{ } 1 / 2$
$1000 \mathrm{~cm}^{3}$ \qquad ?

$$
1000 \mathrm{~cm}^{3} \times 0.002 \text { moles }=0.08 \mathrm{M} \sqrt{ } 1 / 2
$$

ii) 0.08 moles \qquad $10.08_{g} \mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4} \mathrm{xH}_{2} \mathrm{O} \sqrt{1 / 2}$
1 mole \qquad ?

$$
\begin{aligned}
& \text { Let volume of water } \quad=V \\
& \text { Room temperature } \quad=25^{\circ} \mathrm{C} \\
& \text { Boiling point } \quad=100^{\circ} \mathrm{C} \\
& \text { Change in temperature, } \Delta T=100-25=75^{\circ} \mathrm{C} \quad 1 / 2 \mathrm{mk} \\
& \Delta T X \text { mass } X C \quad Q \quad 315 V=112500 \\
& =\frac{75 X V X 4.2}{1000} \quad 1 \quad=112.5 \quad V=\frac{112500}{315} \quad 1 / 2 m k \\
& V=357 . \mathrm{km}^{3} \quad 1 / 2 m k
\end{aligned}
$$

$\frac{1 \text { mole }}{0.08 \text { moles }} X 10.08=126 \sqrt{ } 1 / 2$
$126 _\mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4} \mathrm{xH}_{2} \mathrm{O}$

$$
\begin{aligned}
18 x & =126-90 \quad \sqrt{ } 1 / 2 \\
18 x & =36 \\
X & =2 \quad \sqrt{1 / 2}
\end{aligned}
$$

34. $\quad \mathrm{Mg}_{(\mathrm{g})}+2 \mathrm{HCL}_{(a q)}$ \qquad $\mathrm{MgCl}_{2(a q)}+\mathrm{H}_{2(g)}$ $24 g$ \qquad 22.4 dm 3
$16 g$ \qquad ?

$$
1.6 \mathrm{gx}^{22.4 \mathrm{dm}^{3} \sqrt{ } 1 / 2=1.4933 \mathrm{dm}^{3} \mathrm{c}}
$$

35.

a) $\underset{2}{2 \mathrm{SO}_{2}(\mathrm{~g})} \mathrm{e}+\underset{2}{ }+\underset{\mathrm{O}}{2}(\mathrm{~g})$

SO_{2}	$:$	O_{2}
60	$:$	$30 \sqrt{1 / 2}$
Oxygen	$\sqrt{1 / 2}$	by 10 litres

36. Mass of Oxygen $=12-8.4=3.5 g$

Element	Fe	O
Mass	8.4	3.6
R.A.M	56	16
No. of moles	$\begin{aligned} & \frac{8.4}{56} \\ & 0.15 \end{aligned}$	$\begin{array}{\|lrl} \hline \frac{3.6}{16} & \checkmark 1 / 2 \\ 0.225 & \checkmark 1 / 2 \\ \hline \end{array}$
Mole ration	$\begin{aligned} & \frac{0.15}{0.15} \\ & 1 \\ & 2 \end{aligned}$	$\begin{array}{ll} \frac{0.225}{0.15} & \checkmark 1 / 2 \\ 1.5 & x 2 \\ 3 & \checkmark 1 / 2 \end{array}$

\therefore The empirical formula is $\mathrm{Fe}_{2} \mathrm{O}_{3}$

Organic chemistry 1

1. a) Bromine decolorized immediately in ethane gas $\sqrt{ } 1$
b) Temperature between $150^{\circ} \mathrm{C}-250^{\circ} \mathrm{C}$ or temperature of $180^{\circ} \mathrm{C}$
c) Carbon (IV) oxide or $\mathrm{CO}_{2(\mathrm{~g})} \sqrt{ }$
2. (a) Butane
(b) Manufactures of cooking fats and margarine
3. (a)

4. a) Existence of cpds with the same molecular formula but different structural formula/arrangement of atoms
b)

$\begin{array}{lll}\begin{array}{l}\text { n-butane/ } \\ \text { l-butane/ } \\ \text { But-1-ene }\end{array} & \begin{array}{l}\text { 2-butane/ } \sqrt{1} 1 / 2 \\ \text { But-2-ene }\end{array} & \begin{array}{l}\text { 2-methyl } \\ \text { prop-1-ene }\end{array}\end{array}$
5. a) 2.5
b) \boldsymbol{Q} Group $1 \sqrt{1 / 2}$, Period $4 \sqrt{1 / 2}$
R Group $2 \sqrt{112}$, Period $3 \sqrt{1 / 2}$
6. a)

| | \boldsymbol{H} | \boldsymbol{H} | |
| :--- | :--- | :--- | :--- | :--- | :--- |
| $\boldsymbol{W}-\boldsymbol{H}$ | $\boldsymbol{C}-$ | \boldsymbol{H} | \boldsymbol{H} |
| | \boldsymbol{H} | | |

7. a) To produce simpler hydrocarbons of industrial importance e.g. ethane which is widely used b) Elevated temperature / high temperature 900 C

Catalyst
c) $\mathrm{HC}-\mathrm{CCH}_{3}$
8. a) Reagent concentrated sulphuric acid

Condition temperature $180^{\circ} \mathrm{C}$
9. a) $\mathrm{H}_{2} \mathrm{CHCL} \mathrm{CHCLCH}_{2} \mathrm{CH}_{3}$

Name: 2, 3 dichloropentane
b) i) Structural Formula

ii) IUPAC name
pent-1,3-diene
10. Isotopes are atoms of the same element with same atomic number but different mass numbers while isomers are compounds with the same molecular formula but different structural formula
11. Addition polymerization. $\sqrt{ } /$
12. (a) When gases combine they do so in volume which bear a simple ratio to one another and to the product if gaseous under standard temperature andpressure
13. $\mathrm{CH} 4+2 \mathrm{O}_{2(g)} \quad \mathrm{CO}_{2(g)} \longrightarrow 2 \mathrm{H}_{2(l)}$ $10 \mathrm{~cm}^{3} 20 \mathrm{~cm}^{3} \quad 10 \mathrm{~cm}^{3} \checkmark 1 / 2$

Volume of $\mathrm{O}_{2}=\underline{20} \times 150$

$$
\begin{gathered}
\overline{100} \\
=30 \boldsymbol{c m}^{3}
\end{gathered} \quad \checkmark 1 / 2
$$

Remaining volume of $O_{2}=30-20=10 \mathrm{~cm}^{3}$
Total volume of the gases $=20+10+10$

$$
=40 \mathrm{~cm}^{3} \quad \checkmark^{1 / 2}
$$

14.

(ii)

15.

$$
\begin{aligned}
& T_{2}= \frac{690 \times 15 \times 259}{} \sqrt{650 \times 105} \\
&=39.3 \mathrm{~K} \sqrt{ } \\
&=-233.7^{\circ} \mathrm{C} \sqrt{ }
\end{aligned}
$$

16. $\mathrm{CH}_{2}=\mathrm{CH}_{2 g}+\mathrm{H}_{2} \mathrm{SO}_{4(L)}$ \qquad $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OSO}_{3} \mathrm{H}_{(a q)} \sqrt{ } 1$ mark

17
(a) i) Fractional Column.
ii) fractional distillation. iii)different boiling points.

IV I A II F III B
b) G - road making or water proofing C jet fuel or cooking and lighting.
18. (i) ethyne

(ii) Alkynes - because it has triple bond between the two carbon atoms
(iii) Water is calcium carbide
(iv) - Colourless, odourless
-less denser than air

- Insoluble in water but soluble in organic solvents
(v) Hydrogenation
(vi) Halogenations

19. (a) (i) Gas /vapour
(ii) B-It has the second lowest boiting point thus second lowest molecular mass
(iii) C is impure since it boils over` lange of temperature
(iv) It is boiled heated and the vapour of the components ${ }^{1}$ condense at different temperatures (v) - Liquid air

- Crude oil

20. (a) (i) Gas /vapour
(ii) B-It has the second lowest boiting point thus second lowest molecular mass
(iii) C is impure since it boils over`a lange of temperature
(iv) It is boiled heated and the vapour of the components ${ }^{1}$ condense at different temperatures
(v) - Liquid air

- Crude e bil

21. a) i) Bitumen it has the highest boiling point
ii) Fractional distillation; during distillation petrol would distill off at 175C, while diesel will distill at 350C
iii) Each component is a mixture of hydrocarbons which have different boiling points
iv) Methane, CH $_{4}$, Ethane $C_{2} H_{6}$ propane, $C_{3} H_{8}$, Butane $C_{4} H_{10}$
b) i) Burning in limited amount of air will produce carbon monoxide (carbon (II) Oxide) which is poisonous
ii) Manufacture of Tar used in road tarmacking sealing of leakages on roofs
22. A. (i) Calcium carbide - CaC_{2}
(ii) Over water method
(iii) $\mathrm{CaC}_{2(s)}+2 \mathrm{H}_{2} \mathrm{O}_{(s)}+2 \mathrm{H}_{2} \mathrm{O}_{(\text {l }} \longrightarrow \mathrm{Ca}(\mathrm{OH})_{2(a q)}+\mathrm{C}_{2} \mathrm{H}_{2(g)}$
(iv) $\mathrm{C}_{2} \mathrm{H}_{2}+2 \mathrm{I}_{2} \longrightarrow \mathrm{C}_{2} \mathrm{H}_{2} \mathrm{I}_{2}$
(v) The reaction if highly exothermic hence sand helps to absorb excess heat.
B. (i) A reaction in which an organism acid reacts with an alkanol to form a sweet smelling compound called ester.
(ii) $\mathrm{CH}_{3} \mathrm{COOCH}_{3}+\mathrm{H}_{2} \mathrm{O} \longrightarrow \mathrm{CH}_{3} \mathrm{COOH}+\mathrm{CH}_{3} \mathrm{OH}$
(iii) Hydrolysis

C (i) F -Aluminium oxide $-\mathrm{Al}_{2} \mathrm{O}_{3}$
$\mathrm{N}-\mathrm{C}_{6} \mathrm{H}_{14}$ - Hexane
(ii) Cracking
D. A fuel
23. i) Cracking of crude oil fractions. $\sqrt{ } 1$
ii) Temp - 400-500 ${ }^{\circ}$

Pressure - 200-500 atmospheric Any $2=1$
Catalyst - Finally divided iron.
iii) $4 \mathrm{NH}_{3}(\mathrm{~g})+5 \mathrm{O}_{2}(\mathrm{~g}) \longrightarrow 4 \mathrm{NO}(\mathrm{g})+6 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$
iv) - Manufacture of nitrate fertilizers. $\sqrt{ } 1$

- Manufacture of explosives.
- Purification of metals.
b) - Red brown gas $\sqrt{1}$ with pungent irritating smell due to reduction of HNO_{3} to NO_{2}
- Blue $\sqrt{1}$ solution due to formation of $\mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2}$

24. (a) (i) 2-bromo propene or 2- bromo prop-i-ene
(ii) Pent-i-ene
(b) (i) Changes form orange to Green
(ii) Effervescence//bubbles of gas produced
(c) Step 1
-Fermentation of glucose
Glucose broken down in obscene of oxygen using enzymes

- Dehydration of ethanol; using concentrated sulphuric (VI) acid and high temperature of $170^{\circ} \mathrm{C}$
Step II
- Dehydration of ethanol; using concentrated sulphuric (VI) acid and high temperature of $170^{\circ} \mathrm{C}$
(d) Compound A
(e) - release chlorine gas which destroy ozone layer
- Chlorine gas combines with vapour in atmosphere to form acid rain which destroy vegetation
- Chlorine gas can cause respiratory diseases

25. (a) (i) 2,2-dimethyl pentane
(b) I carbon IV oxide.

II Hydrogen gas.
III Propane.
(ii) I Hydrogenation.

II Neutralization
III substitution
(iii) $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Ol}+902_{(\mathrm{g})} \longrightarrow 6 \mathrm{CO}_{2(\mathrm{~g})}+8 \mathrm{H}_{2} \mathrm{O}_{(\text {l) }}$
(iv) Condition Presence of U.u light

Reagents - Chlorine gas
(v) $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CooH}+\mathrm{NaOH} \longrightarrow \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COONa}+\mathrm{H}_{2} \mathrm{O}_{(c)}$

Mole ratio :
74 tones of acid 96 tones of salt
21.9

$$
\frac{21.9 \times 96}{74}=28.4 \text { tones }
$$

Or $\underline{21.9}=0.29$ moles of salt
74
$=0.29 \times 96=\xrightarrow{28.4 \text { tones }}$
(iv) I

(ii) use in making - Plastic crates plastic boxes plastic ropes
(c) I (i) soap detergent
(ii) Soap less detergent

II Soap less Detergent
26. (i)

(ii) Bromine water is decolourised because X is unsaturated or has a $(-C=C$-) double bond.
(iii) $\mathrm{C}_{3} \mathrm{H}_{8(\mathrm{~g})}+5 \mathrm{O}_{2(g)} \longrightarrow 3 \mathrm{CO}_{2(g)}+4 \mathrm{H}_{2} \mathrm{O}_{\mathfrak{(})}{ }_{1} \vee 1$
27. a) i) Propane
ii) But-2 -yne
b) i) Ploythene
ii) Bubble pass ethane gas in acidified $\mathrm{KMnO4}$ or acidified K 2 Cr 2 OT
c) i) CnH 2 n
ii) @5H10
d) i) Step I - hydrogen

Step II - Hydrogen chloride
Step IV - Sodalime
ii) $\mathbf{2 C H}=\mathbf{C H}(\mathrm{g})+\mathbf{O} 2(\mathrm{~g})$ \qquad $4 \mathrm{CO} 2(\mathrm{~g})+2 \mathrm{H} 2 \mathrm{O}(\mathrm{L})$

- A fuel
- Manufacture of methanol
- Manufacture of methanol

28. i) 2-Methylprop-lene $\sqrt{1}$ mark
ii) Pent - L-yne $\sqrt{1}$ mark [Total 12 marks]
29. The melting point increases from \boldsymbol{A} to \boldsymbol{C} this is due to increase in number delocalized electron hence increase in the strength of metallic bond.
D forms a giant structure with strong covalent bonds. Hence high melting.
It exhibits allstrophy ie may exist as two different form in the same state.
C2 (so4)3
Noble gases or inert
Used in filament bubls
Used to produce an inert atmosphere in high temperature inetallurgical processes e.g welding.
C is amphoteric oxide
F acidic it is non-metal oxide.
Ethene

Acidified potassium Manganate VI abromine water it from a colourless solution
$\mathrm{CH}_{2} \mathrm{CH}_{2}+\mathrm{H}_{2} \longrightarrow \mathrm{CH}_{3} \mathrm{CH}_{3}$
Nickel catalyst
30. a) i) Bitumen it has the highest boiling point
ii) Fractional distillation; during distillation petrol would distill off at 175C, while diesel will distill at 350C
iii) Each component is a mixture of hydrocarbons which have different boiling points
iv) Methane, CH_{4}, Ethane $\mathrm{C}_{2} \mathrm{H}_{6}$ propane, $\mathrm{C}_{3} \mathrm{H}_{8}$, Butane $\mathrm{C}_{4} \mathrm{H}_{10}$
b) i) Burning in limited amount of air will produce carbon monoxide (carbon (II) Oxide) which is poisonous
ii) Manufacture of Tar used in road tarmacking sealing of leakages on roofs
31. i) $C_{n} H_{2 n}$, where $n=$ No. of carbon atoms
ii) 70
iii) $\mathrm{C}_{5} \mathrm{H}_{10}, \mathrm{CH}_{3} \mathrm{CH}=\mathrm{CHCH}_{2} \mathrm{CH}_{3}$

OR $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CHCH}_{2}=\mathrm{CH}_{2}$
32. (a) Hydrocarbon. $\sqrt{ } 1$
(b) Black specks is carbon

Colourless gas is steam$\succ \sqrt{ } 1$
Hydrocarbon burn in air to form carbon $\sqrt{ } 1 / 2$ and water $\sqrt{11 / 2}$
33. $\mathrm{NaCl}_{(a q)} \mathrm{AgNO}_{3(a q)} \longrightarrow \mathrm{NaNO}_{3(a q)}+\mathrm{AgCl}_{(s)}$

Moles of $\mathrm{AgCl}=$ Mass
R.F.M
$=\frac{2.36}{143.5}$

$$
=0.016446 \mathrm{moles} \quad \checkmark 1 / 2
$$

Mole ratio Nacl: AgCl
$1: 1$
Moles of $\mathrm{NCl}=0.61446 \mathrm{moles}$
Mass of $\mathrm{NaCl}=\mathrm{RFM} \times$ moles

$$
\begin{aligned}
& =58.5 \times 0.016446 \\
& =0.962091 \mathrm{~V}
\end{aligned}
$$

Mass of solvent $($ water $)=2.63-0.962091$

$$
=1.667909 \mathrm{~g}
$$

1.667909 g of water dissolves 0.962091 g of NaCl

100 g of water dissolves $=\frac{100 \times 0.962091 \mathrm{~g}}{1.67909}$ 1.667909
$=57.68 / 100 \mathrm{~g}$ of water $\quad \checkmark 1 / 2$
33. $24000 \mathrm{~cm}^{3}=1 \mathrm{~mol}$

$$
\begin{aligned}
& 80 \mathrm{~cm}^{3}=\frac{80 x 1}{2400} \\
& =0.00333 \mathrm{moles}
\end{aligned}
$$

34.. (i) $\mathrm{CH}_{3} \mathrm{CH}=\mathrm{CHCH}_{3}$ - But-z-ene

(iii) $\mathrm{CH}_{2}=\mathrm{CHCH}_{2} \mathrm{CH}_{3} \quad-$ But-I-ene
35. (a) Octane
or $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}$
36. a) Existence of same molecular formula but different structural formula $\sqrt{ } 1$ b) i)

Nitrogen and its compounds

1. (i) $4 \mathrm{HN}_{3}(\mathrm{~g})+5 \mathrm{O}_{2(\mathrm{~g})} 4 \mathrm{NO}_{(\mathrm{g})}+6 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{g})}$
(ii) Act as catalyst
(iii) $\mathrm{Zn}\left(\mathrm{NH}_{3}\right)_{4}{ }^{2+}$
2. a) Platinum/ copper
b) Brown fumes

Hot rod m continues to glow red

- NO formed reacts with oxygen to form NO_{2} (brown flames)
- Reaction highly exothermic

3. a) Calcium hydroxide
b) $\mathrm{Ca}(\mathrm{OH})_{2(g)}+2 \mathrm{NH}_{4} \mathrm{CL}_{(g)}$ \qquad $2 \mathrm{NH}_{3(\mathrm{~g})}+\mathrm{CaCL}_{2}+2 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{L})}$
4. (a) It neutralizes air to prevent violent combustion reaction from occurring.
(b) Its inert and have very low b.pt of $-196^{\circ} \mathrm{C}$
*MAT
5. a) X is Nitrogen. $\sqrt{ } \sqrt{1}$
b) It is less dense than air. ${ }^{1 / 2}$
c) - In preservation of semen in artificial insemination. $\sqrt{\sqrt{ }}$
6. a) (i) Solution \boldsymbol{A} contains $\boldsymbol{P b}^{2+}(a q)$ ions $\sqrt{1 / 2}$
(ii) Solution B contains $\boldsymbol{A l}^{3+}(a q)$ ions. $\sqrt{1 / 2}$
b) - A colourless liquid at cooler parts ${ }^{\sqrt{ } /}$ of test-tube is formed.

- A white reside remains in the test-tube. $\sqrt{ } /$

7. a) to expel air that is in the combustion tube so that oxygen in it does not react with hot copper $\sqrt{1}$
b) brown $\sqrt{1 / 2}$ copper metal will change to black $\sqrt{1 / 2}$
c) nitrogen $\sqrt{1}$
8. (a) To increase the surface area over which the reaction occurs hence increased rate of'reaction. $\quad \checkmark 1$
(b) NH_{3} is basic and reacts with some moles of the acid hence reduction in concentration
9. (a) (i) The solution changes from green $\sqrt{ } 1$ to brown $\sqrt{ } 1 \quad$ (1 mk) (ii) A brown $\sqrt{1}$ precipitate is formed.
(b) $\mathrm{Fe}_{(\text {aq })}^{3+}+3 \mathrm{OH}_{(\text {(aq })} \longrightarrow \mathrm{Fe}(\mathrm{OH})_{3(s)} \sqrt{ } 1$

10. (a) - Absorbs carbon (IV) oxide from $\sqrt{1}$ the air.
(b) $2 \mathrm{Cu}_{(s)}+\mathrm{O}_{2} \longrightarrow 2 \mathrm{CuO}_{(s)} \sqrt{ } 1$
(c) Because it has the rare gases. $\sqrt{ } 1$

11. (a) Anion $-\mathrm{CO}_{3}$

Cation-Cu ${ }^{2+}$
(b) $\left.\mathrm{Cu}^{2+}+4 \mathrm{NH}_{3} \longrightarrow\left\{\mathrm{CuNH}_{3}\right)_{4}\right\}^{2+}$
12. (a) (i) $\mathrm{NH}_{4} \mathrm{NO}_{3(s)} \rightarrow \mathrm{N}_{2} \mathrm{O}_{(g)}+2 \mathrm{H}_{2} \mathrm{O}_{(g)}$
(ii) $\mathrm{NH}_{4} \mathrm{NO}_{3}$ should not be heated further if the quantity remaining is small because it may explode
or A mixture of $\mathrm{NH}_{4} \mathrm{Cl} \& \mathrm{KNO}_{3}$ can be used instead of $\mathrm{NH}_{4} \mathrm{NO}_{3}$ leading to double decomposition taking place safely without explosion
(iii) An hydrous calcium chloride in a u-tube
(iv) Reacts with oxygen to form brown fumes of Nitrogen (IV) Oxide

$$
2 \mathrm{~N}_{2} \mathrm{O}_{(\mathrm{g})}+\mathrm{O}_{2(\mathrm{~g})} \longrightarrow 2 \mathrm{NO}_{2(\mathrm{~g})}
$$

(v) - Has no colour

- Has a slight sweet smell
- Fairly soluble in water \checkmark
- Denser than airr
(b) (i) Provides a large surface area for the absorption of ammonia gas by the water or prevent "bricking" back of water
(ii) Water would brick back into the hot preparation flask causing it to crack or break /an explosion can occur
(iii) Red litmus paper would turn to blue, blue litmus paper remains blue each

13. (a) B-ammonia gas $\sqrt{ } 1$
C - nitrogen (II) oxide (NO) $\sqrt{ } 1$
E-water $\sqrt{ } 1$
F - unreacted gases $\sqrt{ } 1$
(b) The mixture of ammonia and air is passed through heated/catalyst where ammonia (II) is oxidized to nitrogen (II) oxide. $\sqrt{ } 1$
(c) Gases are cooled and air passed through heated/ catalyst where ammonia is further oxidized to nitrogen(IV) oxide. $\sqrt{ } 1$
(d) Fractional distillation, $\sqrt{1 / 2}$

Water with a lower boiling point $\sqrt{1 ⁄ 2}$ than nitric (V) acid, distills left leaving the concentrates acid.
14. a)i) Fractional distillation
ii) Argon
b) A Sulphur

B Ammonia gas
C Oteum
D Amonium sulphate
c) i) Finely divided iron
ii) Vanadium (v) Oxide
d) Speeds up the rate of reaction by lowering the activation energy
e) $2 \mathrm{NH}_{3(g)}+\mathrm{H}_{2} \mathrm{SO}_{4(a q)}$ \qquad $\left(\mathrm{NH}_{4}\right) \mathbf{S S O}_{4(a q)}$

$$
\begin{aligned}
& \text { f) R.M.M of }\left(\mathrm{NH}_{4}\right)=132 \\
& \quad \begin{array}{l}
\text { aass of } N=28 \\
\% ~ N=28 / 132 \times 100=21.212 \%
\end{array}
\end{aligned}
$$

g) Used as a fertilizer

15. (a) (i) Fused calcium chloride /Cao (quick lime)
(ii) To remove carbon (IV) Oxide
(iii) $4 \mathrm{Fe}^{+}(\mathrm{s})+3 \mathrm{OO}_{2(\mathrm{~g})} \longrightarrow 3 \mathrm{Fe}_{2} \mathrm{O}_{3(\mathrm{~s})}$
$\mathrm{OR} 3 \mathrm{Fe}_{(\mathrm{s})}+2 \mathrm{O}_{2(\mathrm{~g})} \longrightarrow \mathrm{Fe}_{3} \mathrm{O}_{4(\mathrm{~s})}$
(iv) Argon/Helium/Neon/Krepton
(v) Provide very low temperature so that the semen does not decompose /is not destroyed
(b) (i) Concentrated sulphuric acid
(ii) $\mathrm{NaNO}_{3(s)}+\mathrm{H}_{2} \mathrm{SO}_{4(I)}$
OR $2 \mathrm{NaNO}_{3}+\mathrm{H}_{2} \mathrm{SO}_{4(I)} \longrightarrow$
$\mathrm{Na}_{2} \mathrm{HSO}_{4(a q)}+\mathrm{HNO}_{3(a q)}^{\checkmark}{ }^{1}$
$\mathrm{OR} 2 \mathrm{NaNO}_{3}+\mathrm{H}_{2} \mathrm{SO}_{4(I)} \longrightarrow \mathrm{Na}_{2} \mathrm{SO}_{4}+2 \mathrm{HNO}_{3}$
(reject unbalanced chemical equation)
(b) Copper reacts with 50% nitric acid to give nitrogen II Oxide which is colourless. Air oxidizes

Nitrogen II oxide to Nitrogen IV oxide which is brown.
$\underset{\text { colourless }}{2 \mathrm{NO}_{(g)}}+\mathrm{O}_{2} \longrightarrow \underset{\text { Brown }}{2 \mathrm{NO}_{2(8)}}$
16. (a) (i) Nitrogen - Fractional distillation of liquid air -($1 / 2 \mathrm{mk}$)

Hydrogen - Cracking of alkanes
-Electrolysis of acidified water
(ii) Temperature $-400^{\circ} \mathrm{C}-500^{\circ} \mathrm{C}$

Pressure-400atm-500atm
Catalyst - kinely divided iron
(iii) Catalyst P-Nickel

Gas M - Nitrogen IV oxide
(iv) (a) $2 \mathrm{NO}_{(g)}+\mathrm{O}_{2(\mathrm{~g})} \quad 2 \mathrm{NO}_{2(g)}$
(b) $\mathrm{NO}_{2(g)}+\mathrm{H}_{2} \mathrm{O}_{(l)} \longrightarrow \mathrm{HNO}_{2(a q)}+\mathrm{HNO}_{3(a q)}$
(v) To a small portion of the nitrate liquid in a test tube add equal amount o freshly prepared iron (II) sulphate followed by some drops of conc. $\mathrm{H}_{2} \mathrm{SO}_{4}$ slowly on the sides. If a brown ring forms on the boundary of the two solutions, a nitrate is confirmed.
(vii) - Manufacture of nitrogenous fertilizers

- Manufacture of synthetic fibres e.g nylon
- Manufacture of explosives e.g TNT
- Manufacture of textile dyes
- Manufacture of other acids e.g. phosphoric acid

17. (a) (i) Nitrogen (I) Oxides.

Rej. Dinitrogen oxides.
(ii) $\mathrm{NH}_{4} \mathrm{NO}_{3(\mathrm{~s})} \longrightarrow \mathrm{N}_{2} \mathrm{O}_{(\mathrm{g})}+2 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{g})}$
(iii) The gas is soluble in cold water.
(iv) An irritating choking smell of a gas.
(b) (i) Platinum wire.
(ii) $4 \mathrm{NH}_{3(\mathrm{~g})}+5 \mathrm{O}_{2(\mathrm{~g})} \longrightarrow 4 \mathrm{NO}_{(\mathrm{g})}+6 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{g})}$
$2 \mathrm{NO}_{(g)}+\mathrm{O}_{2} \quad>\quad 2 \mathrm{NO}_{2(g)}$

(iii) Nitrogen (I) Oxide $|$| Nitrogen (IV) Oxid |
| :--- | :--- |

Colourless.
Relights a glowing splint.
Reddish brown.
Has a sweet smell.
Extinguishes a glowing splint.
Fairly soluble in water.
Irritating pungent smell.
Readily soluble in water.
(Accept any 1 correct comparative)
(c) (i) It corrodes/reacts with rubber and cork.
(ii) I) Oxidized: Sulphur /S

Reduced: Nitric (V) acid $/ \mathrm{HNO}_{(a q)}$
II) It decomposes by heat into NO_{2} which dissolves in the acid.
18. a) Pass air through purifiers to remove dust particles by electrostatic precipitation. Then pass it through conc. Sodium Hydroxide to absorb CO2. Then through condensers at 25C to
remove water vapour. It is further cooled to liquefy it. The liquefied air is then fractionally distilled to obtain oxygen at - 183C
b) i) X - Ammonia// NH_{3} \boldsymbol{Y} - Air

$$
\begin{array}{ll}
\text { ii) } 4 \mathrm{NO}_{2(\mathrm{~g})}+2 \mathrm{H}_{2} \mathrm{O}_{(s)}+\mathrm{O}_{2(\mathrm{~g})} \ldots & 4 \mathrm{HNO}_{3(a q)} \\
\text { Accept }
\end{array}
$$

iii) Through fractional distillation
iv) $\mathrm{HNO}_{3(a q)}+\mathrm{NH}_{3(g)}$ \qquad $\mathrm{NH}_{4 N D}^{3(a q)}$ RMM of $\mathrm{NH}_{3}=17$ RFM of $\mathrm{NH}_{4} \mathrm{NO}_{3}=80$ If $80 \mathrm{~g} \mathrm{NH}_{4} \mathrm{NO}_{3}$ \qquad 17 g
960000 \qquad $\frac{960000}{80 \times 1000} \times 17=2040 \mathrm{~kg}$
19. (a) Potassium hydroxide solution
(b) To remove dust particles
(c) Water vapour Moisture
(d) $-183^{\circ} \mathrm{C}$
(e) Fractional distillation of liquid air
(f) Liquid air and passed through fractionating column, where nitrogen with lowest B.P-196ºC distils out first and liquid oxygen with highest distil out last.
(g) Nitrogen in liquid form is used as a refrigerant e.g. in storing semen for artificial insemination

- Used as a raw material in Haber process e.t.c
II. Air is a mixture because:
- It contains gases which are not chemically combined
- - The gases are not in fixed ratios.

20. $\mathrm{HOCL}_{(a q)}+$ Dye \qquad $\mathrm{HCL}_{(a q)}+[\mathrm{Dye}+\mathrm{O}]$
Coloured Colourless $\sqrt{ }$
$\mathrm{H}_{2} \mathrm{SO}_{3(a q)}+[\mathrm{Dye}+\mathrm{O}] \quad \mathrm{H}_{2} \mathrm{SO}_{4(a q)}+D y e$
Coloured
Colourless
21. a) Drying agent $\sqrt{ } 1 / 2$ which must be CaO

Method of collection $\sqrt{ }$-upward delivery
Workabillity $\sqrt{1} 1 / 2$
b) $\mathbf{N N H}_{4} \mathrm{CL}_{(g)}+\mathrm{Ca}(\mathrm{OH})_{2(g)}$ \qquad $\mathrm{CaCL}_{2(\mathrm{~g})}+\mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})}+2 \mathrm{NH}_{3(\mathrm{~g})} \sqrt{ }$
22. a) Heat
b) $\mathrm{Cu}_{(g)}+\mathrm{N}_{2} \mathrm{O}_{(g)}$ \qquad $\mathrm{CuO} \mathrm{O}_{(\mathrm{g})}+\mathrm{N} 2_{(g)}$
c) - Manufacture of ammonia

- In light bulbs
- As a refrigerant

23. - At $113^{\circ} \mathrm{C}$ consists of S_{8} rings that flow easily;

- Darkens due to breaking of S_{8} rings and forming long chains consisting of thousands of atoms. The chains also entangle;
- The long chains consisting of thousands of atoms. The chains also entangle;
- The long chains break near b.p. to form shorter one;

24. Difference is at the cathode electrode where in concentrated sodium chloride sodium is deposited while in dilute sodium chloride, hydrogen is liberated, because
25. (i) $2 \mathrm{~N}_{2} \mathrm{O}_{(g)}+\mathrm{C}_{(s)} \longrightarrow \mathrm{Co}_{2(g)}+2 \mathrm{~N}_{2(\mathrm{~g})}$
(ii) Ammonium chloride and sodium nitrate
(iii)The hydroxide ions $\sqrt{ } 1$ (Ammonia dissolves forming ammonia hydroxide.(1 mk)
26. (a) E-Ammonium chloride (1/2 mk) F-Aluminium hydroxide (1/2mk)
(b) $\quad \mathrm{Al}_{3}++3 \mathrm{OH}^{-}(a q) \longrightarrow \mathrm{AL}(\mathrm{OH})_{3(s)}$
27.

a) Zinc hydroxide
b) [Zn (NH3)4] 2+
c) $\mathrm{Zn}^{2+}{ }_{(a q)}+2 \mathrm{OH}(a q)$ \qquad $\mathrm{Zn}(\mathrm{OH}) 2(\mathrm{~s})$
28. a) Plantinum/platinum Rhodium $\checkmark 1$
b) $4 \mathrm{NH}_{3}(\mathrm{~g})+5 \mathrm{O}_{2}(\mathrm{~g}) \longrightarrow 4 \mathrm{NO}(\mathrm{g}) \checkmark 1+6 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$
c) - Fertilizers $\sqrt{ } 1$

- Preparation of Nitrogen (I) oxide.
- Explosives

29. Blue ppt $\sqrt{ } 1$ is formed which dissolves in excess to form a deep blue $\checkmark 1$ solution due to formation of tetra amine Copper (II) ions
30. (a) - Finely divided iron impregnated by alumina ($\mathrm{Al}_{2} \mathrm{O}_{3}$)

- 200 atmosphere pressure
- Temperature of $450^{\circ} \boldsymbol{C} \quad 1 / 2$
b) - CuO is reduced to Copper metal
- NH_{3} is oxidized to water and nitrogen

31. (a) Colour of copper (II) Oxide changes from black to brown
(b) (i) Nitrogen $/ \mathrm{N}_{2(g)}$
(ii) Water $/ \mathrm{H}_{2} \mathrm{O}_{\text {(l) }}$

5. Sulphur and its compounds

1. (a) Frasch process
(b) Hot compressed air
(c) Monoclinic /prismatic sulphur /beta sulphur ${ }^{\checkmark}$

Rhombic/octahedral sulphur /alpha sulphuy
2. (a) RFM of $\mathrm{H}_{2} \mathrm{SO}_{3}=\mathbf{9 8}$ (no units)

Number of moles of $\mathrm{H}_{2} \mathrm{SO}_{4}=\frac{1.8}{\mathbf{9 8}}$

$$
=0.01837 \mathrm{moles}
$$

$$
\begin{aligned}
\text { Molarity of } \mathrm{H}_{2} \mathrm{SO}_{4} & =\frac{0.01837 \times 1000}{1} \\
& =18.37 \mathrm{M}
\end{aligned}
$$

(b) Apply form ular; M conc. X Vol conc. $=$ Mdil. x Vdil.

$$
18.37 \times \text { V conc: }=0.2 \times 500 \Rightarrow \text { Vconc. }=\frac{0.2 \times 500}{18.37}
$$

$$
=5.44 \mathrm{~cm}^{3} \text { of conc. } \mathrm{H}_{2} \mathrm{SO}_{4}
$$

3. (a) By dissolving in water
(b) - Manufacture of fertilizers

- Manufacture of detergents
- Cleaning of metal surfaces
- As an electrolyte in car batteries
- In refining of petroleum
- Manufacture of synthetic fibre (e.g. rayon)
- Manufactures of paints, dyes and explosives (award 1mk any one)

4. Chlorine bleaches permanently by oxidation $\sqrt{ } 1$ while sulphur (IV) oxide bleaches temporary by eduction. $\sqrt{ } 1$
5. (i) Weak acid $\sqrt{ } 1$
(ii) Has few free \boldsymbol{H}^{+}(Hydrogen) ions
6.

$$
\begin{array}{lc}
\text { a) Vanadium (v) oxide } & V_{2} \mathrm{O}_{\mathrm{S}} \quad \sqrt{1 / 2} \\
\text { b) } 2 \mathrm{SO}_{2(\mathrm{~g})}+\mathrm{O}_{2(\mathrm{~g})} \ldots & 2 \mathrm{SO}_{3(\mathrm{~g})} \sqrt{1 / 2} \\
\text { c) } \mathrm{SO}_{3(\mathrm{~g})}+\mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{l}) \\
\mathrm{H}_{2} \mathrm{~S}_{2} \mathrm{O}_{7(L)}+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \\
\text { Student must explain } & \mathrm{H}_{2} \mathrm{~S}_{2} \mathrm{O}_{7(l)} \\
& \mathrm{H}_{2} \mathrm{SO}_{4(l)}
\end{array}
$$

$$
\text { Explanation } 1 \text { mark }
$$

7. - Concentrated sulphuric acid oxidizes copper turnings to copper(II) oxide black solid,SO S_{2} gas and water.

- Then copper (II) oxide reacts excess conc. sulphuric acid to produce copper (II) sulphate mk
- Which is dehydrated bv conc. Sulphuric acid to an hydrous copper (II) sulphate white solid 1½ Which dissolves in water to produce blue solution

8. a) Method of collection is wrong. $\sqrt{\sqrt{1 / 2}}$ Should be collected by downward delivery/upward displacement of air ${ }^{\sqrt{1 / 2}}$ since the gas is denser than air.
b) $\mathrm{Na}_{2} \mathrm{SO}_{3}(\mathrm{~s})+\mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{aq}) \longrightarrow \mathrm{Na}_{2} \mathrm{SO}_{4}(\mathrm{aq})+\mathrm{SO}_{2}(\mathrm{~g}) \quad+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \sqrt{ }$
c) By passing it through calcium hydroxide in which the gas dissolves. $\sqrt{ } 1$
9. a) Dirty grey solids are formed. $\sqrt{ } /$
b) $\mathrm{FeS}_{(s)}+2 \mathrm{HCl}_{(a q)} \longrightarrow \mathrm{FeCl}_{2(a q)} \sqrt{ } \sqrt{1}+\mathrm{H}_{2} \mathrm{~S}_{(\mathrm{g})}$
c) Iron powder has high surface area hence the reaction is none vigorous than iron fillings with low surface area.
10. a)a sulphate e.g. sodium sulphate $\sqrt{1}$
b)moist blue litmus paper turns to red $\sqrt{1} 12$ then after some minutes to white $\sqrt{1} 12$.it is bleached by

Mocks Topical Analysis eeducationgroup.com 217
sulphur(iv)oxide

$$
\mathrm{SO}_{2(g)}+\mathrm{H}_{2} \mathrm{O}_{(l)}+\text { Dye } \quad \mathrm{H}_{2} \mathrm{SO}_{4(a q)}+(\mathrm{Dye} e-\mathrm{o}) \sqrt{1}
$$

(litmus)
(white)
11. (a) - Flexible (elastic

- Strong and tough
- Non-sticky
(any two)
$\checkmark 1 / 2 \quad \checkmark 1 / 2$
(b) Molten sulphur would have lost heat to the surrounding hence solidify/ in the middle pipe sulphitr cannot solidify since hot air in the inner pipe and hot water in the outer pipe mountains high temperature.

12. (a) It dissolves in water releasing $\sqrt{ } 1$ a lot of heat which boils the acid which can easily be spilt to the body. $\sqrt{ } 1 \quad(2 \mathrm{mks})$
(b) - It is used in manufacture $\sqrt{ } 1$ of batteries/acid accumulator ς. Any

- Manufacture of soap, plastics, detergents.

13. (a) Deposits of a yellow solid; and droplets of colourless liquid;
(b) $2 \mathrm{H}_{2} \mathrm{~S}_{(a q)}+\mathrm{SO}_{(g)} \longrightarrow 2 \mathrm{H}_{2} \mathrm{O}_{(l)}+3 \mathrm{~S}_{(s)}$
(c) Oxidizing agent
14. (a) A-takes in hot compressed air to force out molten sulphur to the surface.

B - takes out molten sulphur.
C-takes in super heated water to melt the sulphur.
(b) Rhombic, Monoclinic
(c) $\mathrm{S}(\mathrm{s})+\mathrm{O}_{2}(\mathrm{~g}) \longrightarrow \mathrm{SO}_{2}(\mathrm{~g})$
(d) Iron (II) sulphide.
(e) - Vulcanization of rubber.

- Making chemicals
- Manufacture of matches and fire works.
(f) (i) $2 \mathrm{SO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \amalg 2 \mathrm{SO}_{3}(\mathrm{~g})$
(ii) $24 \mathrm{dm}^{3}$ of $\mathrm{SO}_{2}=1$ mole
$6.0 \mathrm{dm}^{3}\left(\frac{1 \mathrm{~mol} x 6 \mathrm{dm}^{3}}{24 \mathrm{dm}^{3}}\right) \checkmark^{1 / 2}=0.25$ mole $\checkmark^{1 / 2}$
From the equation :-
Moles of O_{2} used $=\frac{0.25}{2} \quad \boldsymbol{J}^{1 / 2}=0.125$ moles $\checkmark^{1 / 2}$
(iii) 1 mole of $\mathrm{O}_{2}=0.125$

$$
\begin{aligned}
0.25 \mathrm{~mole} & =\left(\frac{24 \mathrm{dm}^{3} \times 0.125 \mathrm{~mol}}{1 \mathrm{~mol}}\right) \checkmark 1 \\
& =3 . \mathrm{dm}^{3} \checkmark 1
\end{aligned}
$$

15. i) X-Rhombic $\sqrt{1 / 2}$

$$
Y \text { - Monoclinic } \sqrt{11 / 2}
$$

ii) I) Mg has a higher $\sqrt{ } 1 \sqrt{ } 1$ affinity for combined oxygen than S.
II) Add $\sqrt{ } 1$ dilute nitric acid to the mixture. It reacts with $\mathrm{MgO} \sqrt{ } 1$ to form $\mathrm{Mg}\left(\mathrm{NO}_{3}\right)_{2}$ Filter $\sqrt{ } 1$ to obtain S as residue.
16. (a) (i) - Rhombic sulphur ($1 / 2 \mathrm{mk}$)
(ii) Sulphur is heated until it boils. The boiling liquid sulphur is then poured into a beaker containing water to form plastic sulphur ($1 / 2 \mathrm{mk}$)
(a)

0-sulphur ($1 / 2 \mathrm{mk}$)

- Iron (II) Sulphide (Iron pyrites)
- Zinc sulphide (Zinc blend)
- Dust or Arsenic compounds (1/2 mk)
(c) - Avoid poisoning of the catalyst (Avoid destruction of catalytic properties by impurities)
(d) $\mathbf{2 5 O} \mathrm{O}_{2(g)}+\mathrm{O}_{2(g)} \longrightarrow 2 \mathrm{SO}_{3(g)}$
(e) (I) - Vanadinim (V) Oxide ($1 / 2 \mathrm{mk}$)
(II) - Heat incoming air ($\mathrm{SO}_{2} \&$ Air)
- Cools the SO_{3}
(III) - The reaction between SO_{2} and water is highly exothermic which makes the solution boil to form a mist of dilute sulphuric (VI) acid which pollutes the environment
(g) I. $-\mathrm{SO}_{2}$ II- Un reacted SO_{2} is recycled \bigcirc Absorbed by $\mathrm{Ca}(\mathrm{OH})_{2}$ in tall chimneys - Passed over hot carbon (IV) Oxide and sulphur which is recycled and Carbon (IV) Oxide released to the environment
(h) Manufacture of fertilizers

17.

18
(a) (i) Red-brown fumes
(ii) It is not an oxidizing agent
(iii) $\mathrm{S}_{(\mathrm{s})}+\mathbf{6 H N O} \mathrm{H}_{3(\mathrm{l})} \longrightarrow 2 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})}+\mathbf{6 N O _ { 2 (g) }}+\mathrm{H}_{2} \mathrm{SO}_{4(l)}$
(iv) Neutralization

Mocks Topical Analysis
eeducationgroup.com
(v) Sulphuric acid
(vi) Forms acid rain / plant + yellowing corrodes metallic and stone works
19. a) i) They are different physical/ structural forms of an element
ii) Trausition temperature
b) i) X - Diluter
Y - Heat exchanger
Z- Roaster/ Burner
ii) Catalyst- Vanadium (v) Oxide, $V_{2} \mathrm{O}_{5}$

Temperature - 450C
Pressure - 1 atmosphere
iii) I- They are purified not to poison the catalyst

II - The reaction in the convertor/ production of sulphur (vi) Oxide is exothermic/
heat is produced. Chamber Yis used to ensure temperature does not rise above $450^{\circ} \mathrm{C}$

20. - Test tube L-Acidified KMnO_{4} changed from purple to colourless (it is decolourized) - SO_{2} is a reducing aǧent.

- Test tube K Hal ${ }^{+} / \mathrm{KMnO} 4$ was not decoloured - SO_{2} was absorbed by ash solution hence did not reach the $\mathrm{H}^{+} / \mathrm{KMnO}_{4}$.

21. a) Metal sulphide
b) Hydrogen sulphide is less soluble in warm water compared to cold water
22. SO_{2} form acidic when it dissolves in atmospheric moisture. The acidic rain lowers soil PH/ corrodes stone building
No - disrupts the Ozone cycle hence causing depletion of Ozone layer which react with oxygen in the atmosphere to form NO_{2} gas
23. a) The solution changed from brown/yellow $\sqrt{1} 1 / 2$ to light/pale green $\sqrt{1} 1 / 2$
b) $2 \mathrm{FeCl}(a q)+\mathrm{H}_{2} \mathrm{~S}(\mathrm{~g}) \longrightarrow 2 \mathrm{FeCl}_{2}(a q)+2 \mathrm{HCl}(a q)+\mathrm{S}(\mathrm{s}) \quad \sqrt{ } \mathrm{mk}$
c) Oxidation. $\sqrt{ } 1 \mathrm{mk}$
24. Barium carbonate reacts with dilute sulphuric (VI) acid to form the insoluble Barium sulphate $\left(\mathrm{BaSO}_{4}\right)$ which covers the reactant. Barium Carbonate preventing any contact between the acid and the Carbonate salt.
Hence, the reaction is slow and stops after a very short time.

$$
\mathrm{BaCO}_{3(\mathrm{~s})}=\mathrm{H}_{2} \mathrm{SO}_{4(a q)} \quad \mathrm{BaSO}_{4(\mathrm{~s})}+\mathrm{CO}_{2(g)}+\mathrm{H}_{2} \mathrm{O}_{(l)}
$$

Chlorine and its compounds

1. (i) It catches fine or presence white fumes
(ii) $\mathrm{PCl}_{3} / /$ Phosphorous Trichlpride
(iii) $\mathrm{PCl}_{5} / /$ Phosphorous Pentachlgride
2. (a) - In water hydrogen chloride dissociates to form hydrogen (H^{+}) and chloride (Cl.) ions.

- The presence of H^{+}ions in aqueous solution of hydrogen chloride is responsible for acidic properties which turns blue litmus paper red
(b) - To increase the surface area for the dissolution of the gas
- Prevent suck back
(Award full 1mk for any one given)

3. a)-Refrigeration $\sqrt{ } 1$

- Maintains pressure in aerosol cans and enables sprays tobe sprayed in liquid form
b) - They deplete the ozone layer. $\sqrt{ } 1$
- They cause green house effect/Global warming.

4. a) Acidify water with nitric acid $\sqrt{1} / 2$. Add aqueous lead nitrate $/ \operatorname{AgNO}_{3} \quad \sqrt{1 / 2}$

Formation of a white ppt. Show presence of Cl^{-1} white ppt of PbCl_{2} or AgCl formed.
5. a) Yellow solid deposit of sulphur on the wall of boiling tube
b) $\mathrm{H}_{2} \mathrm{~S}_{(\mathrm{g})}+\mathrm{CL}_{2 \mathrm{~g}} \quad 2 \mathrm{HCl}_{(\mathrm{g})}+\mathrm{S}_{(\mathrm{s})}$
c) - Done in fume chamber/ open air
-Poisonous gases
6. i) $2 \mathrm{Fe}_{(S)}+3 \mathrm{Cl}_{2(g)}$ \qquad $2 \mathrm{FeCL}_{3(\mathrm{~g})}$
$\boldsymbol{F e}_{(s)}+2 \mathrm{HCl}_{(\mathrm{g})}$ \qquad $\mathrm{FeCL}_{2(\mathrm{~g})}+\mathrm{H}_{2(\mathrm{~g})}$
N.B Must be balanced

State symbol must be correct
Chemical symbols must be correct
ii) In the absence of moisture, chlorine cannot form the acidic solution, hence no effect on the blue litmus paper

7 a) Heat is necessary * REJECT high temperature ACCEPT, BOIL or if implied ○ MnO_{2} is a weak oxidizing agent.
b) $\mathrm{Cl}_{2} \mathrm{O}_{(g)}+\mathrm{H}_{2} \Theta_{(t)} \xrightarrow[2 H O C l]{(a q)}$ C.A.O
8. (a) Chlorine gas
(b) $\mathrm{HCl}_{(a q)}+\mathrm{MnO}_{2} \longrightarrow \mathrm{MnCl}_{2(a q)}+\mathrm{Cl}_{2(g)}+2 \mathrm{H}_{2(g)}$
(c) The petals turn to white due to the bleaching effect of $\mathrm{NaOCl}($ sodium hypochlorite)
10. (a) (i) $\mathrm{MnO}_{2(s)}+4 \mathrm{HE}_{(1)} \longrightarrow \quad \mathrm{MnCl}_{2(a q)}+2 \mathrm{H}_{2} \mathrm{O}+\mathrm{Cl}_{2(\mathrm{~g})}$
\checkmark Penalize $1 / m k$ if state symbols are not correct
${ }^{1}$ (ii) KMnO_{4} or PbO_{2}
$n \quad$ (iii) The Chloride gas can be dried by passing it through a wash-bottle of concentrated sulphuric acid and is then collected by downward delivery.
(b)(i) A-Aluminium (III) Chloride
(ii) $2 \mathrm{Al}_{(s)}+3 \mathrm{Cl}_{2(g)} \longrightarrow \mathrm{AlCl}_{3(s)}$

Penalize $1 / 2 m k$ for wrong state symbols
(iii) Moles A_{1} used from the equation in b(ii)
$=\frac{0.84}{27}=0.037 \mathrm{Moles}$
Moles of Cl_{2} used $=\frac{0.031}{2} \times 3=0.047$
Mark consequently from the equation
11. (a) $\mathrm{Cl}_{2(g)}+\mathrm{H}_{2} \mathrm{~S}_{(g)}-\mathrm{HCl}_{(g)}+\mathrm{S}_{(s)}$
(b) Yellow solid particles deposited in the flask
(c) Excess chlorine and hydrogen sulphide gas should not be emitted into the atmosphere because they are pollutants /harmful
Mocks Topical Analysis
eeducationgroup.com
12. (a) Chlorine gas
(b) (i) Remove traces of hydrogen chloride gas
(ii) Drying agent
13. (a) Fe^{3+}
(b) It is an oxidizing agent
(c) $2 \mathrm{Fe}(\mathrm{OH})_{3(s)} \longrightarrow \mathrm{Fe}_{2} \mathrm{O}_{3(\mathrm{~s})}+3 \mathrm{H}_{2}$ O$_{(\text {l })}$
14. (i) Anhydrous Calcium Chloride ($1 / 2 \mathrm{mks}$)
(ii) A white ppt is formed

HCl gas forms Cl- ions solution which react with silver ions to form silver Chloride which is insoluble OR

Acids, bases and salts

1. (a) Proton donor/electron acceptor/a substance which when dissolved in water dissociates/break to hydrogen ions as the only positive ion.
(b) Water $\mathrm{H}_{2} \mathrm{O}$
(c) It is a proton donor/electron acceptor
2. (i) Ethylbutanoate
(ii) $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2}$
(iii) Esters

3. (a) Temporary water hdPdness. This is because hardness is removed by boiling
(b) - Provide Ca ${ }^{2+}$ ions needed in formation of strong teeth and bones

- Hard water form a layer of carbonate of lead which prevent water coming in contact with lead which cause poisoning (award $1 m k$ for any one)

4. Let x be the mass of FeSO4 crystals in saturated solution
\therefore Mass of water $=45-x_{\checkmark} \quad \checkmark_{1 / 2}^{1 / 2}$
$X \mathrm{~g}$ of FeSO_{4} dissolves in $\left(45^{2}-x\right) \mathrm{g}$ of water
100 x of FeSO_{4} dissolves in 100 g of water
45-x
So, solubility is $100 x=15.65$
$45-x$
$100 x=15.56(45-x)$
$100 x+15.65 x=15.65 \times 45$
$115.65 x=15.65 \times 45$
$x=\frac{15.65 \times 45}{115.65} \quad 1 / 2$
$=6.0895$
So solubility $=6.09 \mathrm{~g}$ of FeSO_{4} in 100 g of water
5.

(a) $\mathrm{Ca}\left(\mathrm{HCO}_{3}\right)_{2(a q)}$
$\mathrm{CaCO}_{3(\mathrm{~s})}+\mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O}_{(\text {l }}$
or:- $\mathrm{Mg}\left(\mathrm{HCO}_{3}\right) \xrightarrow{\text { heat }} \mathrm{MgCO}_{3(s)}+\mathrm{CO}_{2(g)}+\mathrm{H}_{2} \mathrm{O}_{(s)}$
(award 1mk for any)
(b) - Addition of $\mathrm{Na}_{2} \mathrm{CO}_{3}(\mathrm{~s})$

- Addition of $\mathrm{Ca}(\mathrm{OH})_{2}(\mathrm{~s})$
- Addition of aqueous ammonia (award 1mk each for any two; Total $=2 m k s$)

6. - Provides essential minerals e.g. Ca $^{2+}$ for strong bornes and teeth $\checkmark 1$

- It has a better taste

7. a) The acid is water $\mathrm{H}_{2} \mathrm{O}$

Reason $\mathrm{H}_{2} \mathrm{O}$ has donated a proton (H^{+})
b) $2 \mathrm{H}^{+}{ }_{(g)}+\mathrm{CO}_{3}{ }^{2-}(a q)$ \qquad $\mathrm{CO}_{2(\mathrm{~g})}+\mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})}$
8.

Magnesium carbonate reacts w ith rain water
Mocks Topical Analysis eeducationgroup.com

- Containing caborn (iv) oxide dissolved.
- Forming magnesuin hydrogencarbonate
- $\mathrm{OrMgCO} \mathrm{Br}_{(\mathrm{s})}+\mathrm{CO}_{2(g)}+\mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})}+\mathrm{Mg}\left(\mathrm{HCO}_{3}\right)_{2(a q)}$

9. (a) Lead ions $\quad \checkmark 1$
(b) Lead (II) hydroxide
(c) $\left[\mathrm{Pb}(\mathbf{O H})_{4}\right]^{2-} \quad \checkmark 1$
10. a) Solubility of a salt is mass of a salt that dissolves in 100 g of water at a given temperature. $\sqrt{ } 1$
b) Mass of Q that crystallizes out $=19.0-7.4 \sqrt{ } / 1 / 2^{1}=11.6 \mathrm{~g}$.

Mass of R that crystallizes out $=33-20.7^{1 / 2}=12.3 \mathrm{~g}$.
Total mass of crystals $=12.3+11.6^{\sqrt{ } / 2}=23.9 \mathrm{~g} \sqrt{ } / 1 / 2$
11. Mass of dry salt $=16.86-15.86 \sqrt{ } 1 / 2$

$$
=1.00 \mathrm{~g} \sqrt{1} / 2
$$

Mass of water $=26.86-16.86=10 g \sqrt{1 / 2}$
Mass of salt in 60 g of water $=\frac{60 \times 1}{10}=6 \mathrm{~g} \sqrt{1 / 2}$
12. (a) This is the maximum mass of a salt that will dissolve in 100 g of water of a given temperature
(b) 15 g dissolve in $25 \mathrm{~cm}^{3}$ water
? dissolve in $2100 \mathrm{~cm}^{3}$ water
$=\frac{15 \times 100}{25}=60 \mathrm{~g} / 100 \mathrm{gwater}$
(c) (i) in graph paper
(ii) Every point on the solubility curve is a saturated point of a solution which contains a maximum amount of salt X at a graph temperature
(iii) I $16 g$

II 25g
(iv) $25-16=9 g / 100 \mathrm{~g}$ water
(v) - Extraction of $\mathrm{Na}_{2} \mathrm{co}_{3}$ from Lake Magadi

- Extraction of Nacl from sea water

13. Add Methyl benzene to the mixture and stir to dissolve iodine. Filter and crystallize the filtrate to obtain sodium chloride crystals.
14. (a) (ii) $72 \mathrm{~g} / 100 \mathrm{~g}$ water ± 1.0
(iii) $100 \mathrm{~cm}^{3}$ dissolve 72 g
$1000 \mathrm{~cm}^{3}$ dissolve $\left.=\frac{(1000 \times 72}{100}\right) / 2$

$$
=720 \mathrm{~g} / \mathrm{l} \quad \vee 1 / 2
$$

$\mathrm{KClO}_{3}=39+35.5+3 \times 16=122.5$
molarity $=\underline{720 \mathrm{~g} / \mathrm{l}}$

$$
\begin{aligned}
& \overline{122.5 \mathrm{gmol}}{ }^{-1} \\
= & 5.878 \mathrm{~m}^{2} \mathrm{o} / \mathrm{l}
\end{aligned}
$$

(iv) Mass dissolved at $62^{\circ}=116 \mathrm{~g}$

Mass dissolved at $42^{\circ}=666 \quad \checkmark 1 / 2 \quad \checkmark 1$
mass crystallized out $=\mathbf{5 0 g}$
(b) (i) $\left(\frac{25 \times 0.2 M}{1000}\right)=0.005^{\frac{1}{2}} \mathrm{o} l$ 1000
(ii) 0.005 mol (mole ration Acid: Base $=1: 1$)
(iii) $20 \mathrm{~cm}^{3}$ contain 0.005 mol

$$
\begin{aligned}
25 \mathrm{~cm}^{3} \text { contain } & =\frac{\left(250 \mathrm{~cm}^{3} \times 0.005 \mathrm{~mol}\right)}{20 \mathrm{~cm}^{3}} \\
& =0.0625 \mathrm{~mol}
\end{aligned}
$$

(iv) Mass $=\left(0.0625 x\right.$ 4ogmol $\left.^{-1}\right)=2.5 g \quad \checkmark 1$
(v) Mass of solvent $=\mathbf{2 8 g} \mathbf{- 2 . 5 g}=\mathbf{2 5 . 5 g} \quad \checkmark 1 \quad \checkmark 1$

$$
\begin{aligned}
\text { solubility } & =\left(\frac{(100 \times 2.5}{25.5}\right)^{1 / 2} \\
& =9.804 \mathrm{~g} / 100 \mathrm{~g} \text { water }^{\vee 1 / 2}
\end{aligned}
$$

15. a) Solubility refers to the maximum mass of solute dissolving in a 100 g of a solvent at a particular temperature
b) i) Fractional crystallization
ii) \quad Scale $=1 \mathrm{mk}$

Plotting $=1 \mathrm{mk}$
Curve L = 1 mk
Curve $M=1 \mathrm{mk}$
iii) $I=$ Actual value from students curve $+1 C$
$I I=$ Actual value from students curve +1
iv) Mass per litre $=\underline{1000 X \text { Actual value in iii (II) }}$

100
Concentration $=\underline{\text { Above answer }}$
$=\begin{aligned} & 132 \\ & M\end{aligned}$
16. (a) (i) Conductivity decreases wince H^{+}ions form he acid are neutralized by OH-ions
from the base. This reduces the concentration of ions available for conductivity.
(ii) Conductivity increases since the OH^{-}ions accumulate after complete neutralization of the acid OH^{-}increases conductivity.
(iii) Neutralization leads to the formation of a slat. The ions in the salt are responsible for conducting of electricity.
(iv) They yield different concentration of H^{+}ions

For HNO_{3} - dissociates completely hence more H^{+}ions
HCOOH - dissociates partially hence less H^{+}ions
(b) $2 \mathrm{HCOOH}_{(a q)}+\mathrm{Na}_{2} \mathrm{CO}_{3(a q)} \longrightarrow 2 \mathrm{HCOONa}_{(a q)}+\mathrm{H}_{2} \mathrm{O}_{(l)}+\mathrm{CO}_{2(g)}$
moles of $\mathrm{HCOOH}=\underline{50} \times 0.1$ 1000

$$
=0.005 \mathrm{moles}
$$

mole ration acid: base

$$
2: 1
$$

moles of $\mathrm{Na}_{2} \mathrm{CO}_{3}=\frac{0.005}{2}$

$$
=0.0025
$$

Molarity of $\mathrm{Na}_{2} \mathrm{CO}_{3}=\frac{0.0025 \times 1000}{20}$

$$
=0.125 M
$$

17.

a) i) I) Heating $\sqrt{ } 1$
 II) Filtration. $\sqrt{ } 1$

ii) Effervescence $\sqrt{ } 1 /$ Bubles.

Mocks Topical Analysis
eeducationgroup.com
iii) $\mathrm{Zn}^{2+}(\mathrm{aq})+2 \mathrm{OH}-(\mathrm{aq}) \longrightarrow \mathrm{Zn}(\mathrm{OH})_{2}(\mathrm{~s}) \sqrt{ } 1$
iv) Pass the water vapour over white anhydrous $\sqrt{ } 1$ Copper (II) suplhate. It turns blue. $\sqrt{11 / 2}$
b) i) R is a mixture of sulphur $\sqrt{1} 1 / 2$ and insoluble $\sqrt{1 / 2}$ salt. It forms $\sqrt{ } 1$ a filtrate and residue in filtration of mixture
ii) Carbonate $\sqrt{ } 1 / \mathrm{CO}_{3}{ }^{2-} \sqrt{ } 1$

It produces CO_{2} on reaction with H^{+}
iii) $\mathrm{Zn}^{2+} \sqrt{1} \mathrm{Al}^{3+} \sqrt{ } 1$
18. a) The quantity of a substance in grammes that can dissolve in 100 g of water at a given temperature
b) i) Fractioned crystallization
ii)
iii)

I 26C
II $18 g$
iv) 1 mole of salt M \qquad 132 g
$18 x 1 / 132=0.13863636$ moles
Concentration $=\underline{1000 x 0.13863636}$

$$
100
$$

$=1.386 \mathrm{M}$
v) $L=\underset{\substack{38 g-20=}}{ } \begin{aligned} 22-18 & =3+ \\ & \text { Total } 21 g\end{aligned} \quad M=19 g$
19. (a) (i) A saturated solution is one which cannot dissolve more solute at that particular temperature.
$\checkmark 1$
(1 mk)
(ii) Solubility of a soluble is the amount of grams of solute present in 100 g of water at that particular temperature. $\sqrt{ } 1$
(b) (i) $M o l e=M x \frac{V}{1000}$

$$
0.1 x \frac{24}{1000} \sqrt{ } 1=0.0024 \text { moles } \sqrt{ } 1
$$

(ii) Moles of NaCl in $25 \mathrm{~cm}^{3}$

Mole ratio is 1:1
Moles of $\mathrm{NaCl} \quad=0.0024$ moles $\sqrt{ } 1$
(iii) Moles of NaCl in $500 \mathrm{~cm}^{3}$

If $25 \mathrm{~cm}^{3}=0.0024$ moles

$$
\begin{aligned}
\therefore 500 \mathrm{~cm}^{3} & =? \\
& =\frac{500}{25} \mathrm{~cm}^{3} \checkmark 1 \times 0.0024 \text { moles } \\
& =0.048 \text { moles } \checkmark 1
\end{aligned}
$$

(iv) Mass of NaCl in $10 \mathrm{~cm}^{3}$

Mass $=$ moles x R.F.M.

$$
=0.048 \times 58.5=2.808 \mathrm{~g}
$$

$$
\text { (v) Mass of water } \begin{aligned}
& =\text { mass of solution }- \text { mass of } \mathrm{NaCl} \\
& =(10.70-2.808) \mathrm{g} \sqrt{ } 1 \\
& =7.892 \mathrm{~g} \sqrt{ } 1
\end{aligned}
$$

(vi) If 7.892 of $\mathrm{H}_{2} \mathrm{O} \longrightarrow 2.808 \mathrm{~g} \sqrt{ }$

100 g of $\mathrm{H}_{2} \mathrm{O} \xrightarrow[\underline{100 g} \times 2.808 ~]{\longrightarrow 1}$
$7.892 g$
$=35.6 \mathrm{~g} / 100 \mathrm{~g}$ of $\mathrm{H}_{2} \mathrm{O} \downharpoonleft 1$
20. Add $100 \mathrm{~cm}^{3}$ of $2 M \sqrt{ }$ potassium hydroxide or 200 cm 3 of $1 M$ potassium hydroxide to the acid. Heat the solution until it is saturated and cool to obtain crystals. Dry the crystals between filter papers
21. (a) 139 g of solution contains 39 g solute $\therefore 90 \mathrm{~kg}$ of solution contains $\frac{39 \times 90}{139}=25.25 \mathrm{~g}$
Mass of solvent $=90-25=64.75 \mathrm{~g}$
(b) $80^{\circ} \mathrm{C}$
22. (a) Calcium hydrogen carbonate/Magnesium hydrogen carbonate;
(b) Water boils off and is condensed leaving the salt;
(c) Provides minerals used to strengthen bones
23. (a) Delivery tube should not dip into solution

- Thistle funnel should did into the solution
- Gas jar was no water/little water in trough (1 each max 2)
(b) Oxygen

24. a) acidity water with Nitric add aqueous lead nitrate or

- silver nitrate formation of white precipitates shows presence penalize fully for uric acid $1 \frac{1}{2} m k \quad$ of chloride ions
b) provide essentials minerals e.g. Ca^{2+} ions

25. a) I- $\mathrm{Cu}(\mathrm{OH})_{2}$ or copper (II)hydroxide $\sqrt{ } 1$
b) $\left[\mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{4}\right]^{2+} \sqrt{ } 1$
c) Hyarogen sulphide or $\mathrm{H}_{2} \mathrm{Sg} \sqrt{ } 1$
26. i)this is the maximum mass of a salt that will dissolve in 100 g of water at a given temperature $\sqrt{ } 1$
ii) 15 g dissolve in $25 \mathrm{~cm}^{3}$ water
$x g$ dissolve in $(\underline{15 x 100}) g \sqrt{ } 1$
25
$=60 g / 100 g \sqrt{ } 1$
27. (a) Diagrammatical presentation on how to prepare an aqueous solution of hydrogen chloride gas

Mocks Topical Analysis
eeducationgroup.com
28. Mass of saturated soln. $=42.4-26.2=16.2$

Mass of dry solid $Y=30.4-26.2=4.2 g / 12.0$
Solubility of $Y=\frac{4.2 \times 100}{12.0}$
35 g per 100 g of water
(b) - Used is fractional crystallization of salt mixture.
29.
(a) 24-19 = 5g of substance K will be produced

Reason: Solubility decreases with increase in temperature
(b) Gaseous state
30. Deep red solution will be formed. Equilibrium shifts to the right/forward reaction is favoured since Fe^{3+} ions favours foryard reaction.
31. a) They became a white powder
b) Efflorescency
32. a) calcium hydrogen carbonate/ magnesium hydrogen carbonate
b) $\mathrm{Ca}\left(\mathrm{LHCO}_{3}\right)_{2(a q)}+\mathrm{Na}_{2} \mathrm{CO}_{3(a q)}$ \qquad $\mathrm{CaCO}_{3(g)}+2 \mathrm{NaHCO}_{3(a q)}$

$$
\mathrm{Mg}\left(\mathrm{HCO}_{3}\right)_{2(a q)}+\mathrm{Na}_{2} \mathrm{CO}_{3(a q)} \ldots \quad \mathrm{CaCO}_{3(g)}+2 \mathrm{NaHCO}_{3(a)}
$$

c) Contains Ca2+ ions needed to harden teeth and bones
33. $\mathrm{HCl} g$ in water ionizes to produce H^{+}aq and Cl^{-}aq
$\mathrm{HCl}_{(\mathrm{g})}$ in methylbenzene remain as moles hence no \boldsymbol{H}^{+}ion
34. (i) Weak acid $\sqrt{ } 1$
(ii) Has few free H^{+}(Hydrogen) ions
35. (i) The reaction is too exothermic that alot of heat is produced causing ignition of hydrogen in presence of oxygen
(ii) $\mathrm{K}_{(s)}+\mathrm{H}_{2} \mathrm{O}_{(g)} \longrightarrow \mathrm{KOH}_{(a q)}+\mathrm{H}_{2(g)}$ $\mathrm{H}_{2(\mathrm{~g})}+\mathrm{O}_{2(\mathrm{~g})} \longrightarrow \mathrm{H}_{2} \mathrm{O}_{(\mathrm{g})}$
36. (i) Sample 1 and 2
(ii) Sample凤 contained ions that caused temporary hardness therefore required large (volume of soap solution before boiling, but after boiling the temporary hardness was removed, hence requiring very little volume ($1 / 2 \mathrm{mk}$) of soap solution to lather.
37.- KOH has higher pH value than ammonia

- KOH is a stronger base; dissociates fully $1 / 2$
- Ammonia solution is a weak base; dissociates partiayly ${ }^{1 / 2}$

Energy changes in chemical and physical processes

$$
\text { 1. (a) } \begin{aligned}
\nabla H & =\frac{120 \times 4.2 \times 4.5}{1000} \\
& =+2.268 \mathrm{KJ}
\end{aligned}
$$

($1 / 2 m k$)
($1 / 2 m k$)
(b) \quad RFM of $\mathrm{KNO}_{3}=39+14+48=101$
$6 \mathrm{~g} \longrightarrow 2.268 \mathrm{KJ}$
$\begin{aligned} 101 g \longrightarrow & \frac{101 \times 2.268}{6} \checkmark & & (1 / 2 \mathrm{mk}) \\ = & +38.178 \mathrm{KJ} \mathrm{mol}-1 & \checkmark & (1 / 2 \mathrm{mk}\end{aligned}$
2. (i) Heat evolved when one mole of a substance is completely burnt in oxygen
(ii) RFM of $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}=46$

Molar mass $=246 \mathrm{~g}$
Heating value $=\frac{1370 \mathrm{KJ}}{46 \mathrm{~g} \quad \checkmark}$

$$
=29.78 K \mathrm{~K} / \mathrm{g} \text { (with units) }
$$

3. $\mathrm{Ca}(q)+\mathrm{C}(q)+3 / 2 \mathrm{O} 2(\mathrm{~g})$
4. a) $\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{O}_{(\mathrm{l})}+3 \mathrm{O}_{(\mathrm{g})}$ \qquad $2 \mathrm{CO}_{2(\mathrm{~g})}+3 \mathrm{H}_{2} \mathrm{O}$

$$
\begin{aligned}
& \text { b) } \mathbf{D H}=M C D T \\
& \underline{200} X 4.2 X 32.5=-27.3 \mathrm{Kj} \\
& 1000 \\
& 0.92 \mathrm{~g} \mathrm{C}_{2} \mathrm{H}_{6} \mathrm{O} \\
& \text { - 27.3Kj } \\
& 46 \mathrm{~g} \\
& \text { ? } \\
& \overline{\text { 46g } X 27.3} \mathrm{Kj}=-1365 \mathrm{Kj} \\
& \mathrm{DHC} \mathrm{C}_{2} \mathrm{HSO}_{4}=-1365 \mathrm{Kj} \mathrm{~mol}
\end{aligned}
$$

5. i) U,V,Y,Z All the 4 or nay 3 exclusively correct penalize $1 / 2$ mk if wrong answer ii) $Y Z$ is/are included any 2 correct $1 / 2 m k$
6.

(a) $611-389=+222 \mathrm{KJ}$
(b) $H=+222-(611-100) \quad \checkmark 1 / 2$

$$
=-289 \mathrm{Kn}
$$

(c) Exothermic reaction $\quad \checkmark 1 / 2$

$$
\begin{aligned}
& \Delta H f+\Delta H_{3}=\Delta H_{l}+\Delta H_{2} \\
& \begin{aligned}
\therefore \Delta H f & =\Delta H_{l}+\Delta H_{2}-\Delta H_{3} \sqrt{ } / 2 \\
& =-393 \times 2+-286 \times 3+1386 \sqrt{ } / \\
& =-786-858+1386 \\
& =-1644+1386 \sqrt{ } / 2 \\
\Delta H f & =-258 \mathrm{KJmol}^{-1} \sqrt{ } / 2
\end{aligned}
\end{aligned}
$$

8. a) i) the yield of NH_{3} would be lowered $\sqrt{1} 1 / 2$ any supply of heat makes NH_{3} to decompose to
N_{2} and H_{2}
ii)the yield of NH_{3} would be increased
b)a catalyst accelerate the rates of both forward and reverse reactions equally $\sqrt{ } 1 / 2$. Equilibrium position is not affected by a catalyst $\sqrt{1 / 2}$
c)

9. a) Breaking of ' $C=C$ ' $=+610 ~ K J$

Breaking of ' $\mathrm{Br}-\mathrm{Br}$ ' $=+\underset{803}{ }+\underline{193}$
Formation of $2 \mathrm{C}-\mathrm{Br}=-\mathbf{5 6 0}$
Formation of c-c +243 Kj

$$
-346
$$

$$
-103 K J \sqrt{ }
$$

b) Addition reaction/ halogenation $\sqrt{ }$
10. H H

$$
\begin{aligned}
& \mathrm{C}=\mathrm{C}+\mathrm{H}-\mathrm{H} \\
& \mathrm{H} \boldsymbol{H} \quad \mathrm{H}-\mathrm{C}-\mathrm{C}-\mathrm{H} \\
& \mathrm{H}
\end{aligned}
$$

Bond breaking

$$
\begin{aligned}
& 4 C-H-4 x 410=1640 \\
& C=C-1 x 610=610 \\
& H-H-1 x 436=\frac{436}{2686} \\
& H=2686-2805 \\
&=-119 \mathrm{Kj} / \mathrm{Mol}
\end{aligned}
$$

11. (i) Graph
labeling -*TZM*
plotting - *TZM*
scale - *TZM*
line - *TZM*
total 5 mks
(ii) Shown on the graph -*TZM*
(iii) Heat change $=$ MCT

$$
\begin{aligned}
& =\frac{50}{100} \times 4.2 \times 10.2 \\
= & 2.142 \mathrm{~kJ}
\end{aligned}
$$

(iv) RFM of $\mathrm{KNO}_{3}=39+14+48$

$$
=101
$$

$$
H=2.142 \times \frac{101}{20.2}=-10.71 \mathrm{Kjmol}^{-1}
$$

12.

$M C T=\frac{100}{1000} \times 4.2 \times 6=2.52 \mathrm{Kj}$
Moles of $\mathrm{NH}_{4} \mathrm{NO}_{3}=\frac{1.6}{80}=0.02$ moles
If 0.02 mol 2.52 Kj

1 mol \qquad $\frac{1 X 2.52}{0.02}=+126 \mathrm{KJ} / \mathrm{mol}$
13.
a) $2 \mathrm{NaHCO}_{3(\mathrm{~g})}$ \qquad $\mathrm{Na}_{2} \mathrm{CO}_{3(g)}+\mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})}+\mathrm{CO}_{2(\mathrm{~g})}$
b) i) $2 L_{(g)}+D_{2(g)}$ \qquad $2 L D_{(g)}$
ii) Amphoteric oxide
iii) Element H has a giant atomic structure with strong covalent bonds throughout its structure while D has simple molecular structure with weak Vander wall forces ($\mathbf{2} \mathbf{m}$)
iv) - Used in advertising signs (Advertisements)

- Used in florescent tubes
(Any two correct use)
v) C has a smaller atomic radius than B because it has stronger nuclear charge// more number of protons which attract the outer energy level electrons more firmly (2 mks)
vi) $4 L_{(s)}+O_{2(g)} \quad 2 L_{2} O_{(g)}$

Moles of $L=\frac{11.5}{23}=0.5$ moles
Moles of O2 $=\frac{0.5}{4}=0.125$ moles
Volume of $O_{2}=0.125 \mathrm{~mol} \mathrm{X} 24=3 \mathrm{dm}^{3}$
$4 L_{(s)}+O_{2(g)} \quad 2 L_{2} O_{(s)}$
If $4 \times 23 g$ \qquad $24 \mathrm{dm}^{3}$
11.5 g of L \qquad 11.5×2 4×23
14.
(a) Drawn on the graph $\quad \begin{aligned} & \boldsymbol{A}=1 / 2 \boldsymbol{m} \boldsymbol{k} \\ & \boldsymbol{S}=1 / 2 \boldsymbol{m} \boldsymbol{k} \\ & \boldsymbol{P}=1 / 2 \boldsymbol{m} \boldsymbol{k} \\ & \boldsymbol{C}=1 / 2 \boldsymbol{m} \boldsymbol{k}\end{aligned}$
b) $32.5^{\circ} \mathrm{C} \pm 1 \quad$ Read from the student's correctly plotted graph.
c) $20^{\circ} \mathrm{C} \pm 0.5 \quad$ Line is extrapolated downwards from the student's correct graph.
d) It is end point/ complete neutralization.
e) The reaction is exothermic hence as reaction proceeded more heat was produced.
f) Reaction was complete hence solution lost heat through radiation to the surrounding.
g) $10.2 \mathrm{~cm}^{3} \pm 0.1$. Read from the student's correct graph.
h) Moles $=\frac{M \times V}{1000}$

$$
\begin{aligned}
& =\left(\frac{10.2 \times 4}{1000}\right)^{\sqrt{1} / 2}=0.0408 \text { moles } \sqrt{ } 1 / 2 \\
\text { i) Moles } & =\left(\frac{M \times V}{1000}\right)^{1}
\end{aligned}
$$

$$
=\frac{2 \times 20}{1000} \sqrt{ } 1 / 2 \quad=0.04 \text { moles } \sqrt{ } 1 / 2
$$

j) HBr	$: \mathrm{NaOH}$	
0.0408	$:$	0.04
$\frac{0.0408}{0.04}$	$:$	$\underline{0.04}$
1	$:$	1
$\mathrm{HBr}_{(a q)}$	$+\mathrm{NaOH} \longrightarrow \mathrm{NaBr}_{(a q)}+\mathrm{H}_{2} \mathrm{O}(l)$	

$$
\text { k) } \begin{aligned}
\Delta H & =M C \Delta t \\
& =\frac{-30.2 g \times 4.2 J \times 16.3}{g^{0} c} \\
& =-2067.49 J \sqrt{ } 1 / 2
\end{aligned}
$$

Ans. in (h) = -2067.49 J.

$$
\begin{aligned}
\therefore 1 \text { Mole }=\frac{1 \times 2067.49 J}{\text { Ans in "h" } \sqrt{1 / 2}} & \text { e.g. } \frac{1 \times 2067.49}{0.0408} \\
=- \text { Ans. } & \text { e.g } 50673.82 \mathrm{~J} \mathrm{~mol}^{-1} \\
& \text { Or } 50.67382 \mathrm{KJ} \mathrm{~mol}^{-1} \sqrt{ } 1 / 2
\end{aligned}
$$

15. a)(ii) Max. temperature attained: $\mathbf{2 9}^{\circ} \boldsymbol{c}$
(iii) Temperature change o the reaction $=(29-115)^{\circ} \mathrm{c}$

$$
=14^{0} c
$$

Mass of NaOH used $=(114.35-108.15) g$

$$
=6.2 \mathrm{~g}
$$

$$
\begin{aligned}
& \text { R.F.M of } \mathrm{NaOH}=40 \mathrm{~g} \\
& \text { Moles of } \mathrm{NaOH} \text { used }=\left[\frac{6.2}{40}\right] \text { moles } \\
&=0.155 \mathrm{moles}
\end{aligned}
$$

(v) Heat released = Mass X Specific X Temperature Heat capacity change

$$
\begin{aligned}
& \text { Mass of water used }=(108.15-8) g \\
& =100.15 \mathrm{~g} \\
& \therefore \text { Heat released }\left\{\frac{100.15}{1000} \times 4.18 \times 14\right] \mathrm{kj} \\
& =100.15 \mathrm{kj} \\
& 0.155 \text { moles } \mathrm{NaOH} \longrightarrow 5.861 \mathrm{kj} \\
& 1 \text { mole } \mathrm{NaOH} \\
& =-37.8 \text { kjmol }^{-1}
\end{aligned}
$$

(b) i) ΔH_{3} and ΔH_{4}
ii) Condensation
iii) $\Delta H=\Delta H_{1}+\Delta H_{2}+\Delta H_{3}+\Delta H_{4}$
iv) Exothermic.
16. I-a-Latent heat of fusion is the heat change that occurs when one mole of a solid substance
changes into liquid at constant temperature.

- Latent heat of vapourization is the heat change that occurs when one mole of liquid substance changes into gas at constant temperature.
$b-B C$ - The liquid loses heat as it cools hence decrease in kinetic energy of the particles
- CD - The liquid changes to solid as temperature remains constant at freezing point.
II. (i) Scale - *TZM*

Plot- *TZM*
Line
(ii) Should be shown on the graph - if not shown penalize ($1 / 2 \mathrm{mk}$)
(iii) Heat change $=m \times x \times \Delta T$

Where $m=\left(\right.$ vol. of acid $\left(20 \mathrm{~cm}^{3}\right)+$ volume of bas in (b) above) $x 1 \mathrm{~g} / \mathrm{cm}^{3}$
ΔT-as read form the graph
(iv) moles of acid

Moles of base $=\underline{0.5 \times x} 1000$
Mole ratio acid: Base = 1:1
Moles of acid \longrightarrow heat change in (iii)above
1mole $\longrightarrow \quad$?
Molar heat change $=\frac{1 x \text { heat in (iii) }}{\text { Moles of acid }}$
17. $Q=40000 \times 60 \times 60=144000000 c$

Mass of $A l=\underline{144000000 \times 27} \vee 1$
3×96500
$=13.43 \mathrm{~kg} \quad \checkmark 1$
18. (a) (i) Contains methane which is a fuel or contains methane which can burn
(ii) Pass a known volume of biogas through Sodium hydroxide (Potassium hydroxide) solution
to absorb Carbon (IV) Oxide. Measurt the volume of remaining gas
$\%=\frac{\text { Volume of methane }}{\text { Volume of Biogas }} \times 100$
Volume of Biogas
19. a) No effect - Reaction is not accompanied by volume changes/similar volumes of reactants and products
20. a) - carbon IV Oxide;

- Sulphur IV Oxide;
- Lead;
(b) Availed low sulphur diesel/ availed unleaded petrol

21. (a) Heat change that occurs when one mole of hydrogen combines with one mole of hydroxide ions. //Heat evolved when one mole of water s formed during reaction of H^{+}and OH^{-}ions
(b) HCl produces a higher temperature rise than oxalic acid;

HCl is a stronger acid than oxalic acid;
22.

Mocks Topical Analysis
eeducationgroup.com

$$
\begin{array}{lc}
=-242--286 & \checkmark 1 / 2 \\
=-242+286 & \checkmark 1
\end{array}
$$

$$
=+44 \mathrm{KJ} / \mathrm{mol} \checkmark 1 \quad \text { (No units of sign }=1 / 2 \mathrm{mk})
$$

23. (a) Chemical substance that burns to produce useful amount of heat.
(b) (i) Its cheap
(ii) Its readily available (1/2mk)
(iii) It burns slowly ($1 / 2 m k)$
(iv) Does not produce poisonous gas. (1/2mk)
24. a) Metallic beaker would make most of the heat be lost to the environment
b) - Thermometer reading increased

- The reaction is exothermic

25. a) A substance that produce heat energy when burnt
b) 1. Availability
26. ease of transport
27. a) 1 mole Fe (56) required \qquad $15.4+354$ $=396.5 K j$

$$
10,000(10 \mathrm{~kg}) \frac{10,000 \mathrm{~g}}{56 \mathrm{~g}} \times 369.5 \mathrm{Kj}
$$

b) $\begin{aligned} & =6596.285 K j \\ \frac{-68 K j}{2} & =-34 K j \quad \sqrt{ } 1 / 2\end{aligned}$
27. a) $\Delta H_{1}-$ Lattice energy $\sqrt{ } 1$
$\Delta H_{2}-H y d r o g e n ~ e n e r g y ~ \sqrt{ } 1$
b) $\Delta H_{3}=\Delta H_{2}+\Delta H_{1} \checkmark 1$

Reaction rates and reversible reactions

1. colour changes from red to blue
$\mathrm{H}_{3} \mathrm{O}^{+}$ions and $L^{-}(a q)$ ions which form red solution.
2. (a) ΔH_{4} - latent heat offusion
(b) ΔH_{3} - is negative particles lose hat/process is exothermic/heat is given out (any) \checkmark
3. a) $\mathrm{H}-\mathrm{H}(\mathrm{g})+\mathrm{Cl}-\mathrm{Cl}(\mathrm{g}) \longrightarrow 2 \mathrm{H}-\mathrm{Cl}$

Bonds broken bonds formed
$/ \mathrm{H}-\mathrm{H}=435 \mathrm{KJ}$
/ $\mathrm{Cl}-\mathrm{Cl}=240 \mathrm{KJ}$.
$2 \mathrm{H}-\mathrm{Cl}=430 \times 2$
$=860 \mathrm{KJ}$.
Total $=675 \mathrm{KJ}$.

4.

- Graph should be less steథpares(beosing lower reaction rate since HCl is less concentrated. $\sqrt{1 / 2}$ b) Graph flattens out at BC showing that all the magnesium has been used up, hence, no reaction is taking place $\sqrt{1 / 2}$ and there is therefore no evolution of hydrogen gas. $\sqrt{1 / 2}$ The volume of the gas, therefore, remains constant. $V^{1 / 2}$

5. a) Pale yellow liquid is observed. $\sqrt{\sqrt{l}}$ Backward reaction is favoured since $\sqrt{\sqrt{1 / 2}}$ it is exothermic. Dinitrogen tetra oxide liquefies ${ }^{\sqrt{1 / 2}}$ at very low temperature to pale yellow liquid.
b) Pressure increase, and favours backward reaction $\sqrt{1 / 2}^{1 / 2}$ which is at lower pressure; hence equilibrium shifts to the right. ${ }^{1 / 2}$
6.

a) $\mathrm{Mg}(\mathrm{s})+2 \mathrm{HCl}(\mathrm{aq}) \longrightarrow \mathrm{MgCl}_{2}(\mathrm{aq})+\mathrm{H}_{2}(\mathrm{~g}) \sqrt{ } 1$
b)

c) (i) Showing on the graph. $\sqrt{1 / 2} \mathrm{X}$ Answer $\sqrt{1 / 2}$
(ii) Showing on the graph. $\sqrt{1 / 2}$
d) i) The rate of reaction increases. $\sqrt{ } 1$

The surface area of particles has been increased $\sqrt{1} 1 / 2$ thus increasing the area $\sqrt{11 / 2}$ of contact of the reacting particles.
ii) The rate of reaction increases. $\sqrt{ } 1$

Increase in temperature results in crease in the kinetic energy of the particles. This makes the particles move faster and collide more frequently with sufficient energy to cause more effective collision per given time. $\sqrt{ } 1$
7. I a) Drawn on graph paper

$$
\begin{aligned}
& A=1 / 2 m k \\
& \quad \begin{array}{l}
S=1 / 2 m k \\
P=1 m k \\
C
\end{array}=1 m k
\end{aligned}
$$

b) Rate of evolution of hydrogen gas increases with increase in length of magnesium ribbon.
c) Read from the student's graph. 1 mk-showing on graph

1 mk -for answer.
d) Shown on the graph paper.

II a)(i) Curve I Reason: F increases as E decreases.
(ii) Equilibrium is achieved.
8.

$$
\begin{aligned}
& Q=40000 \times 60 \times 60=144000000 c \\
& \text { Mass of } A l= \frac{144000000 \times 27}{3 \times 96500} \quad \checkmark 1 \\
&=13.43 \mathrm{~kg} \quad \checkmark 1
\end{aligned}
$$

9. a) Hydrochloric acid is a weaker oxidizing agent which cannot oxidize copper to form

Nitrogen (VI) Oxide gas
b) It increases $\sqrt{ } 1$ mark

Molecules/ particles acquire the necessary activation energy// Kinetic energy. This increases the frequency of collisions hence the rate of reaction $\sqrt{1} / 2$ mark
c) Graph -Scale 1 mark with axis well labeled

- Plotting + all points correct 1 mark

5 correct points $\quad 1 / 2$ mark
Less than 5 points 0 mark
Correct smooth curve 1 mark
TOTAL 3 marks
d) i) $360 \mathrm{~cm}^{3}$ Read correct value from graph +.05
ii) $40 \mathrm{~cm}^{3}=$ Value from graph +.05

Read where it levels off
10. (a) $\frac{260-85}{2}=\frac{175}{2}=87.5 \mathrm{~cm}_{3} / \mathrm{mn}$;
(b) $4 \frac{1 / 2}{} \mathrm{~min}$;
(c) Zinc was used up / $\mathrm{H}_{2} \mathrm{SO} 4$ used up;

Mocks Topical Analysis eeducationgroup.com
11. (a) Platinum / Platinum Rhodium
(b) Pressure -9atm ($1 / 2 \mathrm{mk}$)

Temp-700 ${ }^{\circ} \mathrm{C}-900^{\circ} \mathrm{C} \quad(1 / 2 \mathrm{mk})$
(c) Reaction is exothermic
12. (a) (i) Will increase;
(ii) Decrease;
13.

- Dissolve solid ${ }^{\sqrt{1 / 2}} \mathrm{YSO}_{4}$ to obtain ${\sqrt{ }{ }^{1 / 2} \mathrm{YSO}_{4} \text { in solution, }}_{\text {D }}$
- Dissolve ${ }^{\sqrt{1 / 2}} X\left(\mathrm{NO}_{3}\right)_{2}$ in water to obtain $\sqrt{1 / 2} \mathrm{X}\left(\mathrm{NO}_{3}\right)_{2}$ solution.
- Mix the two above solutions
- Filter to obtain XSO_{4} solid residue, rinse with water and dry by heating $\sqrt{\sqrt{1 / 2}}$
- under asbestos pad.

14. $R_{(s)}+S^{2+}{ }_{(a q)} \longrightarrow R^{2+}{ }_{(a q)}+S_{(s)} \sqrt{1}(1 \mathrm{mk})$
E.m.f $=0.47-(-2.04)$

$$
=-0.47+2.04
$$

$$
=1.57 \mathrm{~V} \sqrt{ } 1
$$

15.

(a) - Water level rises. $\sqrt{1}$

Grey Iron wool changes to brown. $\sqrt{ } 1$
(b) - Oiling and greasing. $\sqrt{ } 1$

- Painting.

16. (a) L is more ionized $\sqrt{ } 1$ than K hence reacts faster $\sqrt{ } 1$ producing higher volume of a gas. Or L is a stronger acid therefore ionized faster than K a weaker aciぬ
(b) Increasing the temeprature $\sqrt{ } 1$ using zinc powder/increasing the concentration of agid.
17. Energy of reaction $=$ Bond breakage + Bond formation. $\sqrt{ } 1$

Bond formation = Energy of reaction-Bond Breakage
$=-287-931 \sqrt{ } 1$
$=-1218 \mathrm{~K}$ Joules per mole. $\sqrt{ } 1$

18. -No effect on the position of the equilibrium

- RXM is neither endothermic nor exothermic hence not affected by changes in temperature enthalpy is zero.

19. (a)

20. a)the minimum energy required by the reaction particles to cause a successful collision to form product
b)i)

NB. I) Sketch curve should be to the left and both flatten not at the same final volume ii)curve is stop to the left due to the size of particles of ground compound x is reduced, $\sqrt{1} 1 / 2$ increasing surface area $\sqrt{1} / 2$ of the particles thus increasing area of contact of At equilibrium there will be very little of T that has reacted. $\sqrt{ } 1$ At equilibrium there will be a lot of T and very little V produced hence equilibrium lies to the left or forms the reactants $\sqrt{1}$
23. $-\mathrm{CB}_{2}$

- Ionic bond

24. - Intensity of red-brown fumes increases.

- High temperature vapourizes liquid nitrogen tetra-oxide to form nitrogen (IV) oxide that is red-brown.

25. a) Curve 1
b) After sometime, the rate of formation of CaCL_{2} or rate of depletion of CaCO_{3} become to low that cant be evaluated
26. a) Equilibrium shifts o the left, more CO_{2} formed
(Increase in pressure favors reaction producing fewer molecules)
b) Equilibrium shifts to the left, more $\mathrm{CO}_{2(\mathrm{~g})}$ formed
27. The solution turns yellow. Equilibrium shifts to the left when NaOH is added, the OH^{-}ions react with H^{+}ions forcing more of $\mathrm{cr}^{2} \mathrm{O}^{72-}$ and $\mathrm{H}_{2} \mathrm{O}$ to react forming more
H^{+}and crO42-ions the reaction particles causing higher rate of reaction and twice shorter time $\sqrt{1 / 2}$
28. (i) B ; The acid had higher concentration (1/2mk)
(ii) The rate of reaction is initially high $\quad(1 / 2 m k)$ because of high concentration of the reactant but decreases ($1 / 2 \mathrm{mk}$) steadily as the concentration also decreases.
29. Yellow/brown colour of bromine water $\quad(1 / 2 \mathrm{mk})$ fades or becomes colourless because sodium hydroxide solution provides OH^{-}ions which reacts with \boldsymbol{H}^{+}ions to form water (1/2mk) shifts the equilibrium to the right

Electrochemistry

1. i) Carbon - carbon/ platinum - carbon
ii) - The concentration of magnesium sulphate increase

- Hydrogen and oxygen given off at the electrodes reduce the water content

2. $\mathrm{Cu}^{2+}+2 \mathrm{c}-$ \qquad $\mathrm{Cu}_{(s)}$

Mass $=$

$$
\begin{aligned}
1.48= & \frac{63.5 \times I \times 2.5 \times 60}{2 \times 96500} \\
I & =\frac{1.48 \times 2 \times 96500}{63.5 \times 2.5 \times 60} \\
& =29.988 \mathrm{~A}
\end{aligned}
$$

3. a) Anode is electrode A
B is cathode
b) $2 \mathrm{H}^{+}{ }_{(a q)}+2 e-$ \qquad $\mathrm{H}_{2(\mathrm{~g})}$
c) The acid becomes more
4. i) $200 \times 58 \times 60 C$ \qquad $64.8 g \sqrt{ } 1 / 2$
9500C \qquad $27 g \sqrt{ } 1 / 2$

$$
\frac{27 \times 200 \times 58 \times 60}{64.8 \times 96500} \sqrt{1 / 2}=+3 \sqrt{1 / 2}
$$

ii) $\mathbf{4 0 H - (g)}$ \qquad $2 \boldsymbol{H}_{2} \boldsymbol{O}_{(L)}+\boldsymbol{O}^{2}{ }_{(g)}+4 \boldsymbol{e}^{-} \sqrt{1 / 2}$

$$
4 \times 96500
$$

\qquad 22.4 dm $^{3} \sqrt{1 / 2}$
$200 \times 58 \times 60 \times 22.4$
$4 X 96500$ C

$$
=40.39 \mathrm{dm}^{3} \quad \sqrt{ } 1 / 2
$$

5.

a) $\mathbf{M g}_{(s)}+$ Pb $^{2+}{ }_{(\text {aq })}$ \qquad $\mathbf{M g}^{2+}{ }_{(a q)}+$ Pb $_{(s)}$
b) $0.13-(-0.76)$
$=+0.53 \mathrm{~V}$
6.
(a) $2 F=10 \Rightarrow 2 F-10=0 ; 2 F=10 \quad \therefore F \mp+5$ $F=+5($ penalize -5$)$
(b) Group ${ }^{W} 1$
7. Aluminium has a higher electrical conductivity than sodium. ${ }^{\sqrt{ } /}$ Aluminium has three delocalized ${ }^{1 / 2}$ electrons in its metallic structure while sodium has only one delocalized electron in its structure. $\sqrt{1 / 2}$
8. $\quad Q=I t \sqrt{1 / 2}$

$$
\begin{aligned}
& =3 \times 50 \times 60{ }^{\sqrt{ } 1 / 2} \\
& =9000 \mathrm{C} \sqrt{1 / 2}
\end{aligned}
$$

1 mole of Zn is liberated by a charge of 2 f .
i.e $96500 \times 2 x \longrightarrow 65 g$ of Zn

9000C

$=\frac{65 \times 9000}{96500 \times 2}{ }^{\sqrt{ } / 2}=12.124 \mathrm{~g} \mathrm{Zn} \sqrt{1 / 2}$
9. a) Q is sulphur (IV) oxide $\mathrm{SO}_{2}(\mathrm{~g}), \sqrt{ } /$
b)

- Impure copper is the while pure copper is cathode. During electrolysis impure copper is purified and pure copper deposited on the cathode as shown in the half electrode reaction below; CATHODE EOUATION:

```
Cu}\mp@subsup{}{}{2+}+2e\longrightarrowCH(s)\sqrt{}{}/1/
```

- The cathode is therefore removed and replaced after an interval.

10. a) i) the yield of NH_{3} would be lowered $\sqrt{1} 1 / 2$ any supply of heat makes NH_{3} to decompose to N_{2} and H_{2} ii)the yield of NH_{3} would be increased
b)a catalyst accelerate the rates of both forward and reverse reactions equally $\sqrt{112}$. Equilibrium position is not affected by a catalyst $\sqrt{1} 1 / 2$
c)

11. a) $T \sqrt{ }$
b) $Z_{S}+2 G^{+} \longrightarrow 2 G_{(S)}+Z_{(a q)}{ }^{2+} \sqrt{l}$
c) E^{θ} cell $=E-E$

$$
\begin{aligned}
& =0.08-(-2.38) \sqrt{ } 1 \\
& =+3.18
\end{aligned}
$$

12. Mass of due to $C=\frac{12}{44} \times 4.2=1.145 \sqrt{ } 1 / 2$

Mass of due to $H=\underline{2} X 1.71=1.889 \sqrt{ } 1 / 2$
18
Moles of $C=\frac{1.145}{12}=0.095 \sqrt{ } 1 / 2$
Moles of $H=\frac{0.1889}{1}=0.1889 \sqrt{ } 1 / 2$
Moles ratio c: r
0.095: 0.1889 $\sqrt{1 / 2}$

1: 2
E.F $=\mathrm{CH}_{2} \sqrt{1 / 2}$ (accept alternative method)
13. 96,500 coulombs

$$
\begin{aligned}
& \underset{144,750, \%}{ } \xrightarrow{1 \text { faraday } \longrightarrow} \\
& \frac{144,750}{96,000} \text { faraday } \sqrt{1} 1 / 2 \\
& =1.5 \text { faradays } \sqrt{ } 11 / 2
\end{aligned}
$$

Copper (II) ions $=2$ faradays (penalize $1 / 2 m k$ for missing/wrong units)

$$
\begin{aligned}
& 2 \text { faradays yield }=64 \mathrm{~g} \text { of copper } \\
& 1.5 \text { faradays yield }=? \\
& =\frac{1.5}{2} \times 64 g \sqrt{1 / 2} \\
& =48 \mathrm{~g} \text { of copper was obtained } \sqrt{1} 1 / 2
\end{aligned}
$$

14. Physical difference:-
$\mathrm{Na}_{2} \mathrm{O}_{2}$ - yellow while $\mathrm{Na}_{2} \mathrm{O}$ is white
Chemical difference:-
$\mathrm{N}_{2} \mathrm{O}_{2}$ reacts with water to form NaOH and O_{2} while ${ }^{\checkmark 1}$
$\mathrm{Na}_{2} \mathrm{O}$ reacts with water to form NaOH only $\checkmark 1$
15. (a) $\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}$
(b)
(c) $\mathrm{Mg}_{(\mathrm{s})} / \mathrm{Mg}^{2+}{ }_{(a q)} / / \mathrm{Pb}^{2+}{ }_{(a q)} / \mathrm{Pb}_{(\mathrm{s})}$
16. (a) MnO_{4} is reduced;

Oxidation number of Mn is reduced from +7 to +2
(b) $5 \mathrm{Fe}^{2+}{ }_{(g)} \longrightarrow 5 \mathrm{Fe}^{3+}{ }_{(a q)}+5 e_{-}$;
17.

$$
\begin{aligned}
& \text { i) } 2 \mathrm{Cr}_{(S)} \\
& 2 \mathrm{Cr}^{3+}{ }_{(a q)}+6 e \\
& 3 \mathrm{Fe}^{2+}(a q)+6 e \\
& 3 \boldsymbol{F e}_{(g)} \\
& 2 \mathrm{Cr}_{(\mathrm{g})}+3 \mathrm{Fe}^{2+}{ }_{(a q)} 2 \mathrm{Cr}^{3+}{ }_{(a q)}+3 \mathrm{Fe}_{(\mathrm{g})} \sqrt{ } \\
& \text { ii) } 0.30=-0.44-E^{\phi_{R}} \\
& \boldsymbol{E}^{\phi_{R}}=-0.44-0.30 \\
& =-0.74 \mathrm{~V} \sqrt{ }
\end{aligned}
$$

18. (a) - Filtration of air/electrostatic precipitation/purification

- Passing through sodium hydroxide/potassium hydroxide to absorb Carbon (IV) oxide gas
- Cool to remove water vapour as ice
-Cool remaining air to liquid by repeated compression and expansion of liquid ain
- Fractional distillation of liquid air- Nitrogen collected at $-196^{\circ} \mathbb{C}_{1}$
(b) (i) Nitrogen (II) Oxide
(ii) Oxidation

OR - Oxidation number of N_{2} in NH_{3} increases from -3 to 0 . Oxidation number of reducing agent increases or oxidation number of Cu in CuO decreases from +2 to 0 hence is a reducing agent
(iii) $\mathrm{NH}_{4} \mathrm{NO}_{3} \mathrm{~N}_{2} \mathrm{O}+2 \mathrm{H}_{2} \mathrm{O}$
(iv) Fertilizer/expose
(c) (i) \boldsymbol{G} or \boldsymbol{G}
(ii) $\mathrm{E}^{2+}(a q)+2 \mathrm{OH}^{-}(a q) \longrightarrow \mathrm{E}(\mathrm{OH})_{2(s)}$

It has the highest potential OR highest reduction potential $\sqrt{ } 1$ mark
ii) G and N or $G_{2(g)} / / N_{(g)} \quad \sqrt{ } 1$ mark
iii)

20. a) (i) Cathode -steel

Anode - Carbon / graphite
(ii) To lower the melting P^{+}hence reducing cost of heating the salt.
(iii) To prevent the two products from recombining.
(iv) Cathode

$$
N a^{+}(l)+e^{-} \longrightarrow N a_{(I)}
$$

Anode

$$
2 \mathrm{Cl}_{(l)} \longrightarrow \mathrm{Cl}_{(g)}+2 \mathrm{e}-
$$

(v) less dense than electrolyte/ has low density
b) (i) quantity $=6.42 \times 1060=3852$
(ii) 3852c province 2.74
$2 X 96000$ " $\frac{(2 X 96000) \times 2.74}{3852}$ $=136.58$
21. .a) i) $\boldsymbol{H}^{+}(a q)+e^{-} \rightleftharpoons 1 / 2 \boldsymbol{H}_{2}$
ii) E cell $=0.76+0.54=+1.3$ volts
iii) I. Fe^{3+}
II. Zn
IV. Fe^{3+} ion
$2 \mathrm{Fe}^{3+}+2 \boldsymbol{e}^{-} \longrightarrow 2 \mathrm{Fe}^{2+} \boldsymbol{E}^{0}=+0.77$
$2 I \longrightarrow \quad I_{2 g}+2 e E^{0}=-0.54$
Mocks Topical Analysis eeducationgroup.com
$2 \boldsymbol{F e}_{(\mathrm{aq})}^{3+}+2 I_{(\mathrm{aq})} \longrightarrow 2 \mathrm{Fe}_{(\mathrm{aq})}^{2+}+\boldsymbol{I}_{2} \mathrm{E}^{0}=+0.23$
22. a) i) Chlorine Has a higher reduction potential
ii) $+1.36 \quad 2.36=+3.72$
b) i) Pand S
ii)
iii) $+1.50-0.44++1.94$
c) $Q=4 X a 6 X 60=3840 C$
1.17 g \qquad 3840
$59 g$ \qquad $\underline{59 \times 3840}=192981.261 \mathrm{C}$ 1.174

If 96,500c \qquad $\frac{192981.261 X 1}{96500}$
Charge of $X=+2$ Formula $\mathrm{X}\left(\mathrm{NO}_{3}\right)_{2}$
23.
(a) B-Copper metal

C-Chlorine gas
D-Ammmonia gas
$E-$ Zinc
(b) (i) $\mathrm{Cu}^{2+}{ }_{(a q)}+2 e^{-} \longrightarrow \mathrm{Cu}_{(s)}$
(ii) $\mathrm{CuSO}_{4}+\mathrm{Zn}_{(s)} \longrightarrow \mathrm{ZNSO}_{4}+\mathrm{Cu}_{(s)}$
$\mathrm{Cu}^{2+}+\mathrm{Zn}_{(s)} \longrightarrow \quad \mathrm{Cu}_{(s)}+\mathbf{Z n}^{2+}{ }_{(a q)}$
(c) - Water treatment
-Manufacture of hydrochloric acid
(d) Tetra mine copper (II) ions
24. (a) (i) $E^{\theta}=1.13 V$
(ii) T_{2} because it's standard electrode potential is zero. i.e. point of reference.
(iii)

(iv) $E . m . f=+1.23-0.76=1.99 \mathrm{~V}$
(b) (i) x-Oxygen
y-Hydrogen
(ii) $\mathbf{4 O H}_{(a q)} \longrightarrow \mathbf{2 H} \mathbf{H}_{2} \mathrm{O}+\mathrm{O}_{2}+4 e$

Mocks Topical Analysis eeducationgroup.com
(iii) Reduction takes place at electrode Y. H^{+}ions gain electrons to form hydrogen gas.
(iv) Platinium / graphite/ Nickel because it is inert.
25. (i) $\mathrm{Zn}^{2+}{ }_{(a q)}+2 \mathrm{OH}_{(a q)}^{-} \mathrm{Zn}(\mathrm{OH})_{2(s)}$

$$
\mathrm{Zn}(\mathrm{OH})_{2(s)}+4 \mathrm{NH}_{3(a q)} \longrightarrow\left(\mathrm{Zn}\left(\mathrm{NH}_{3}\right) 4\right)^{2+}(a q)+2 \mathrm{OH}_{-(a q)}^{-}
$$

(ii) The mixture consists of a soluble compound and an insoluble compound.
(iii) Evolution brown fumes of NO_{2} gas
(iv) $\mathrm{CO}_{3}{ }^{2-}$ - Because its reaction with HNO_{3} produces CO_{2} gas or $2 \mathrm{H}_{(a q)}^{+}+\mathrm{CO}_{32-(a q)} \mathrm{H}_{2} \mathrm{O}_{())}$ $+\mathrm{CO}_{2(\mathrm{~g})}$
(v) $\boldsymbol{P b}^{2+}$ ion
(vi) Lead (ii) Carbonate

Zinc (II) Nitrate
$27 Q=40000 \times 60 \times 60=144000000 c$
Mass of $A l=\frac{144000000 \times 27}{3 \times 96500} \checkmark 1$
$=13.43 \mathrm{~kg} \quad \checkmark 1$
28. a) Strip of copper metal dissolved forming blue solution. $\sqrt{1 / 2}$
b) Copper displaces ions $\sqrt{\sqrt{2} / 2}$ of Q from solution since copper is more electropositive $\sqrt{\sqrt{1 / 2}}$ than Q.
c) E.m.f of cell $=(0.80-0.34) V^{1 / 2}$

$$
=0.46 \mathrm{~V} \sqrt{1 / 2}
$$

29 (a) (i) Carbon (IV) Oxide gas evolved was lost to the atmosphere (ii) Concentration of reactants higher between O and R

Reaction rate faster
(iii) Grinding the marble chips
(iv) Calcium sulphate
(v) Plaster of Paris
(b) (i) Hydrogen ions discharged;

It takes less energy than calcium ions
(ii) $2 \mathrm{Cl}_{(a q)} \longrightarrow \mathrm{Cl}_{2(\mathrm{~g})}+2 e$
(iii) $Q=1 t=4 \times 160 \times 60 \quad(1 / 2 m k)$
$=14400 \mathrm{C}$
$2 \times 96500 \mathrm{C}=2 \times 35.5(1 / 2 m k)$
$14400 C=\underline{14400 \times 2 \times 35.5}$
$2 \times 95600 \quad=5.297 \mathrm{~g} \quad(1 / 2 \mathrm{mk})$
Mocks Topical Analysis eeducationgroup.com
30. a) the bulb light $\sqrt{ } 1 / 2$

Hydrogen chloride gas ionized in water to give H^{+}and cl-(aq) that are responsible for conduction of electric current $\sqrt{ } 1$
b) $2 \mathrm{H}^{+}(\mathrm{aq})+\underset{\mathrm{z}}{ } \mathrm{e}^{-} \longrightarrow \quad \mathrm{H}_{2}(\mathrm{~g}) \sqrt{ } 1$
31. $Q=$ it

$$
\begin{array}{lcc}
\quad I F=69500 C & 2 F & 206 \mathrm{~g} \text { of } \mathrm{Pb} \\
=40 x(5 \times 60) & \frac{1200 \times 1}{96500} & F=\frac{0.01243}{2 F} \times 206 \\
=1200 \mathrm{C} & =0.01245 \mathrm{~F} & =1.280 \mathrm{~g}
\end{array}
$$

b) $\quad I \quad K_{(s)} \quad K^{2+}{ }_{(a q)}+2 e^{-}$
$N a+2 e$ \qquad $N_{(g)}$

II 1. Salt bridge
2. Complete the circuit

Balance the ions in each half cell
III
IV E cell $=E$ Red $-E$ oxd

$$
=+1.16-(-0.17)=+1.33 \mathrm{~V}
$$

32. (a) (i) Zinc sulphate / Zinc chloride / Zinc nitrate solution
(ii) Copper
(iii) $\mathbf{Z n}_{(s)}+\mathbf{C u}^{2+}{ }_{(a q)} \mathbf{Z n}^{2+}{ }_{(a q)}+\mathbf{C u}_{(s)}$
(iv) $E=0.34+0.76$
$=1.0 \mathrm{~V}$
(b) (i)Concentrated sodium chloride solution
(ii) $2 \mathrm{Cl}_{(\mathrm{laq})} \longrightarrow \mathrm{Cl}_{2(\mathrm{~g})}+2 e$
$\mathrm{Na}^{+}(\mathrm{aq})+\boldsymbol{e} \mathrm{N}_{(\mathrm{I})}$
(iii) Sodium amalgam is flown into water. It reacts forming sodium hydroxide solution
33. Quantity of electricity $=(40,000 \times 60 \times 60)$ Coulumbus $\sqrt{1} 1 / 2$ mark
$3 \times 96,500$ Coulumbus produce 27 g of Al

$$
\begin{array}{cc}
\therefore \frac{40,000 \times 60 \times 60 \times 27}{} \mathrm{Kg} & \sqrt{1} 1 / 2 \text { mark } \\
3 \times 96,500 \times 1000 & \sqrt{1} 1 / 2 \text { mark } \\
=13.43 \mathrm{Kg} & \sqrt{1} / 2 \text { mark } \\
\text { Subtract } 1 / 2 \text { mark if units missing or wrong } \\
\text { [Total } 12 \text { marks] }
\end{array}
$$

34. i) Increased yield of NO/ $\sqrt{ } 1$ mark Equilibrium shifts to the right // favours the forward reaction// reduced pressure favours forward reaction// increased volume number of molecules
ii) It will not affect the yield // remains the same Catalyst do not affect position of Equilibrium
35. a) R
b) T
c) i) $T_{(g)}$ and $S_{(g)}$
ii) Half cell one $T(s)-2 e_{-} \quad T 2+$

Half cell two
$S 2+(a q)+2 e$ \qquad $S(s)$

Mocks Topical Analysis eeducationgroup.com

OR: $T(s)$ \qquad $T 2+_{(a q)}+2 e-$
iii) $T_{(s)}$ \qquad $T^{2+}{ }_{(a q)}+2 e, E=+0.74 \mathrm{~V}$
iv) From $T(s) / T 2+$ half cell to $S 2+/ S(s)$ half cell through conducting wires
d) i) $Q=I t$

$$
\begin{aligned}
& =2.5 \times(15 \times 60) \\
& =2250 C
\end{aligned}
$$

ii) RAM $=$ mass x valency $x 96500$

$$
\begin{aligned}
& \quad \frac{\square}{=} \frac{0.74 \times 2 \times 96500}{2250} \\
& =142820 / 2250 \\
& =63.476
\end{aligned}
$$

36. a) R
b) T
c) i) $T_{(g)}$ and $S_{(g)}$
ii) \(\begin{array}{ll}Half cell one

T(s)-2 e_{-}\end{array} \quad T 2+\quad\)| Half cell two |
| :--- |
| |
| $2 R: T(a q)+2 e$ | $S 2+(a q)+2 e$ \qquad $S(s)$ OR: $T(s) _T 2+(a q)+2 e-$

iii) $\boldsymbol{T}_{(s)}$ \qquad $T^{2+}(a q)+2 e, \quad E=+0.74 V$
iv) $\operatorname{From} T(s) / T 2+$ half cell to $S 2+/ S(s)$ half cell through conducting wires
d) i) $Q=I t$

$$
\begin{aligned}
& =2.5 \times(15 \times 60) \\
& =2250 \mathrm{C}
\end{aligned}
$$

ii) $R A M=\underline{\text { mass } x \text { valency } x 96500}$

$$
\begin{aligned}
& \quad \frac{Q}{=0.74 \times 2 \times 96500} \\
& 220 \\
& =142820 / 2250 \\
& =63.476
\end{aligned}
$$

37. $\mathrm{NH}^{+}{ }_{4} \sqrt{ }$ 1, proton donor $\sqrt{ }$
38. a) - Bubbles of colourless gas at the anode $\sqrt{1} 1 / 2$

- Brown deposits at the cathode $\sqrt{1} 1 / 2$
- Blue color of the solution fades

Any $2 ½$ mark each

b) The Ph decreases

Removal of OH - ions leaves an excess of H^{+}hence the solution becomes more acidic $\sqrt{ }$
39. a) Anode. Copper anode dissolves
b) $Q=0.5 \times 60 \times 64.3=1929 \mathrm{C}$
0.64 g of Cu \qquad 1929 C
$\therefore 63.5$ of Cu

$$
63.5 \times 1929 \sqrt{ } 1 / 2
$$

0.64
$=191393 C \sqrt{1} 1 / 2$
40. The grey-black solid changes to purple gas iodine sublimes at low temperature due to weak Van der walls forces
41. (a) The mass of substance liberated during electrolysis is directly proportional to the quantity of electricity passed
(b) Quantity of electricity $=2 \times 2 \times 36000=14400 c(1 / 2 m k)$

Volume of gas evolved $=\underline{14400 \times 22.4}=1.671 \mathrm{dm}^{3}$

$$
2 \times 96500 \quad(11 / 2 m k)
$$

42. (a) $\mathrm{OH}^{-} \sqrt{1} \quad(1 \mathrm{mk})$
43. (i) ZnS - No mark if the letters are joined
(ii) SO_{2} produced as a by-product is used in contact process to obtain $\mathrm{H}_{2} \mathrm{SO}_{4}$. This acid is used in making fertilizers e.g. ammonium sulphate
$\checkmark 1$
44. (i) CaO is basic and $\mathrm{P}_{4} \mathrm{O}_{10}$ is acidic
(ii) Let the ON of P be x

$$
\begin{aligned}
& 4 x+(-2 x 10)=0 \\
& \frac{4 x}{4}=\frac{+20}{4} \\
& x=+5
\end{aligned}
$$

(iii) Used as a fertilizer
$\checkmark 1$
$\checkmark 1$
45. Platinum electrode is used, H_{2} is bubbled over the pt electrode immersed in $1 M \mathrm{H}+$ i.e 1 M HCl . The electrode is coated with finely -divided platinum catalyst
(b)electrochemical cell

46. $+0.76+0.34=1.0$ Volts
($1 / 2 \mathrm{mk}$)
47. (a)-Red- Phosphorous

- White - Phosphorous
(b) Phosphorous is insoluble in water because its non-polar while water is polar.

It cannot be stored in oil because oil is non-polar it will dissolve the phosphorous.
48. (a) $2 X_{(s)}+3 W(a q) \longrightarrow 2 X^{3+}(a q)+3 W_{(s)}$
(b) $E^{\theta}\left(X / X^{3+}{ }_{(a q)}+-0.44=0.3 \sqrt{V}\right.$
$E^{\theta}\left(X_{(s)} / X^{3+}{ }_{(a q)}=+0.74 \mathrm{~V} \checkmark\right.$
$E^{\theta}\left(X^{3+}(a q) / X_{(s)}=-0.74 V \checkmark\right.$
$\checkmark 1 / 2$

Salt bridge
49. Electrode - E_{1} is the anode

Dilute electrolyte - OH- ions are discharged.

$$
4 \mathrm{OH}_{(a q)}^{-} \longrightarrow 2 \mathrm{H}_{2} \mathrm{O}_{(e)}+\mathrm{O}_{2(g)}+4 e^{-}
$$

Oxygen gas is produced.
Discharge of hydroxyl ion increases the concentration of sodium chloride.
Chloride, Cl- are then discharged.
Chloride, Cl-, are then discharged
Chloride gas is produce

$$
2 \mathrm{Cl}_{(a q)}^{-} \longrightarrow \mathrm{Cl}_{2(g)}+2 e^{-}
$$

50.

a) $\mathrm{ClO}_{3^{-}}(=) \mathrm{Cl}+3(-2)=-1(=) \mathrm{Cl}-6=-1, \mathrm{Cl}=+5$

b) $\quad \mathrm{NO}_{-2}(=) \underset{+3}{\mathrm{~N}+2(-2)=-1(=)} \underset{+5}{\mathrm{~V}-4=-1(=)}=N+3$
$\mathrm{NO}_{2}^{-}+\mathrm{H}_{2} \mathrm{O}_{(l)} \longrightarrow \mathrm{NO}_{3(a q)}^{-}+2 \mathrm{H}^{+}(a q)+2 e^{-}$
51.

Half Cell $E^{\theta / / V}$		$E^{\theta / / V}$ using iron ref-electrode
$\boldsymbol{A l} \boldsymbol{l}_{(s)} / \boldsymbol{A l}{ }^{3+}(a q)$	-1.66	-1.22
$\boldsymbol{Z} \boldsymbol{w}_{(s)} / \boldsymbol{Z n}^{2+}{ }_{(a q)}$	-0.76	+0.32
$\boldsymbol{F e}{ }_{(s)} / \mathbf{F e}{ }^{2+}{ }_{(a q)}$	- 0.44	0.00
$\mathbf{N i} i_{(s)} / \mathbf{N i}{ }^{2+}(a q)$	-0.25	+0.19

52. $\theta=1.5 \times 60 \times 15=1350$

$$
\begin{aligned}
& \mathrm{J}^{3+}{ }_{(a q)}+3 \mathrm{e}^{-} \longrightarrow \mathrm{J}_{(s)} \\
& 3 F=3 X 96500=289500 \mathrm{C} \\
& \text { 289500C deposit } \quad=52 g \text { of } J_{(s)} \\
& =1350 \text { C deposit }=1350 \times 52 \\
& 289500=0.22425 g
\end{aligned}
$$

53. Tin (Sn) its oxidation potential is +0.144 V . It is the least likely to combine/ react with elements of weather

5. Metals

1. a) chlorine gas would react with steel anode
b) Hood and $\frac{1 t}{11} \mathrm{feh}$ gauze prevent chlorine sodium, from anode and cathode from mixing and reacting.

Na

- \quad Sodium metal is less dense, floats on motten brine where it is siphoned out.
c) -To Whom It May Concern: melt the ore, rock salt
- For electrolysis of the molten ore

2. a) $\mathrm{SO}_{2(g)}$ is produced as a by-product, this mixes with rain water producing acid rain which may corrode buildings and affect plants $\sqrt{ } 1 / 2$
$\mathrm{SO}_{2(g)}$ is poisonous when inhaled $\sqrt{1} / 2$
b) $\quad-\mathrm{H}_{2} \mathrm{SO}_{4}$ manufacture - to make use of $\mathrm{SO}_{2(\mathrm{~g})}$

- Manufacture of dry cells - make use of zinc
- Production of iron sheets which are galvanized using zinc (Any one with an explanation)
c) Low density, does not corrode easily, duchle, malleable (Any 2 each 1 12 mark)

3. Aluminium is lighter/low density. (any)

It is a good conductor of electricity
4. Stage 1 - oxidation; Coke is oxidized to CO

Stage 2 - Reduction: zinc is reduced to Zinc meral/ 2
Mocks Topical Analysis eeducationgroup.com
5. a) Q is sulphur (IV) oxide $\mathrm{SO}_{2}(g) . \sqrt{ } /$
b)

- Impure copper is the while pure copper is cathode. During electrolysis impure copper is purified and pure copper deposited on the cathode as shown in the half electrode reaction below; CATHODE EOUATION:

$$
\mathrm{Cu}^{2+}+2 e \longrightarrow \mathrm{Cu}(\mathrm{~s})^{\sqrt{1 / 2}}
$$

- The cathode is therefore removed and replaced after an interval.

6. (i) I-I-I-tetrachloromethane /Tetrachloromethane
(ii) Chloric (I) acid
7. Oxide of W has simple molecular structure while that of \boldsymbol{Z} has giant ionic structure
8. (a) Froth floatation. $\sqrt{ } 1$
(b) $\mathrm{PbCO}_{3(s)} \longrightarrow b O_{(s)}+\mathrm{CO}_{2(g)}$

9. a) bauxite $\sqrt{ }$
b) Copper pyrites $\sqrt{ }$
10. i)
ii) I It's uneconomic// Expensivel/ a lot of energy is required to produce this high temperature II Addition of cryolite $\sqrt{1} 1 / 2$ mark
iii) The melting point is below 800 C $\sqrt{1} 1 / 2$ mark
11. (a) (i) Bauxite
(ii) Iron (III) Oxide ${ }_{1}$

Silica (anyone)
(b)(i) On the diagram
(ii) It is expensive /a lot of energy will be used 1
(iii) The ore is dissolved in cryolite $\left(\right.$ NaAlF $\left._{6}\right) \vee 1$
12. (i) Bauxite $-\mathrm{Al}_{2} \mathrm{O}_{3 .} \mathrm{H}_{2} \mathrm{O}$
(ii) Iron II oxide

- Silica
(iii) Being ionic, it is only an electrolyte in its molten state. Heating helps to melt it.
(iv) (a) - The two rods represent the anode.
- Cathode is the inner lining of the wall.
(b) As an impurity, lowering the melting point of aluminium oxide.
(c) Anode $2 \mathrm{O}_{2}$-(l) $\mathrm{O}_{2(\mathrm{~g})}+4 e^{-}$

Cathode $\mathrm{Al}^{3+}+3 e^{-} \mathrm{Al}_{()}$
d) - manufacture of household utensils

- making cables for electricity transmission
- making foils used as wrappers
- extraction of some metals e.g. manganese
- Making aeroplane parts

Describe how you would establish the presence of copper in the ore
(a) CuFes_{2}
(b) Froth floatation
(c) $2 \mathrm{CuFeS}_{(\mathrm{s})}+4 \mathrm{O}_{2(\mathrm{~g})}+\mathrm{Cu}_{2} \mathrm{~S}+2 \mathrm{FeO}_{(\mathrm{s})}+3 \mathrm{SO}_{2(\mathrm{~g})}$
(d) Silica is added which reacts with iron (II) Oxide to form iron (II) silicate which forms part of slag or SiO_{2} is added
(e) Anode $\mathrm{Cu}_{(s)} \longrightarrow \mathrm{Cu}^{2}{ }_{+(a q)}+2 e^{-}$

Cathode $\mathrm{Cu}^{2+}{ }_{(a q)}+2 e-\mathrm{Cu}_{(s)}$

(g) - Add HNO_{3} to the ore

- Filter and place small portion of the filtrate into a test tube

Add $\mathrm{NH}_{4} \mathrm{OH}$ until in excess - deep blue solution confirms the presence of $\mathrm{Cu}^{2+}{ }^{\text {ions }}$
14. (a) (i) Gas Q-Carbon (II) Oxide
(ii) Liquid R-dilute sulphuric acid
(iii) Residue S-excess Zinc metal
(b) Zinc blende
(c) (i) To increase percentage of Zinc in the ore
(ii) The ore is crushed, mixed with water and oil and then air is blown into the mixture.
(d) (i) $2 \mathrm{ZnS}_{(s)}+3 \mathrm{O}_{2(g)} \longrightarrow \mathrm{ZnO}_{(s)}+2 \mathrm{SO}_{2(g)}$
(ii) $\mathrm{Zn}_{(s)}+\mathrm{H}_{2} \mathrm{SO}_{4(a q)} \longrightarrow \mathrm{ZnSO}_{4(a q)}+\mathrm{H}_{2(g)}$
(e) (i) - Lead (II) sulphate //Pbs

- Silica //silicon (IV) oxide// SiO2
(ii) Lead (II) sulphide
$2 \mathrm{PbS}_{(s)}+3 \mathrm{O}_{2(g)} \mathbf{2 P b O _ { (s) }}+\mathbf{2 \mathrm { SO } _ { 2 (g) }}$
(f) (i) $\underline{45} \times 250000$

Mocks Topical Analysis
$=112,500 \mathrm{~g}$ of ZnS
(ii) Rmm of $\mathrm{ZnS}=(65.4+32)-97.4 g$

From the equation
The mole ration of Zn of $\mathrm{ZnS}: \mathrm{SO}_{2}=1: 1$
97.4 g of $\mathrm{ZnS}=24 \mathrm{dm}^{3}$ of SO_{2} at r.t.p
$112,500 \mathrm{~g}$ of $\mathrm{ZnS}=\frac{112,500}{97.4} \times 24$
$=27,720.73920 \mathrm{dm}^{3}$ of SO_{2}
15. a) i) Zinc Blende (Penalize for formula only) ii) Lead II Sulphide
b) It is concentrated by froth floatation where the ore is crushed or ground, a detergent added and the mixture agitated. Zinc sulphide floats and is collected
c) $2 \mathrm{ZnS}_{(g)}+3 \mathrm{O}_{2(g)} \quad 2 \mathrm{ZnO}_{(g)}+2 \mathrm{SO}_{2(g)}$
d) Zinc oxide is reduced by both carbon and carbon (ii) Oxide to zinc vapour. Lead (ii) Oxide is also reduced by both carbon and carbon (ii) Oxide to lead liquid

Accept equations
e) $W=$ Sulphur (vi) Oxide $/ / \mathrm{SO}_{3(g)}$
$M=$ Conc. Sulphuric (Vi) acid // $\mathrm{H}_{2} \mathrm{SO}_{4(L)}$
f) $\mathrm{H}_{2} \mathrm{~S}_{2} \mathrm{O}_{7(L)}+\mathrm{H}_{2} \mathrm{o}_{(L)}$ \qquad $2 \mathrm{H}_{2} \mathrm{SO}_{4(L)}$
g) The process is highly exothermic and heat produced boils the acid leading to acid mist which cannot be condensed easily because it is highly unstable
h) The sulphur (iv) Oxide dissolves in water to form acid rain which corrodes buildings and affects aquatic life
16. (a) Purification and concentration.
(b) (i) Bauxite
(ii) Iron (III) Oxide Silicon (IV) Oxide
(c) On diagram
(d) Lowers the melting point of the ore from $2015^{\circ} \mathrm{c}-\mathbf{9 0 0}^{\circ} \mathrm{c}$.
17. $Q=I t=3 \times 10 \times 60=1800$

$$
3 F=3 x 96500 c=27 g
$$

$$
\therefore 1800 c=\frac{1800 \times 27}{3 \times 96500}
$$

$$
=\underline{0.16788 \mathrm{~g}}
$$

18. a) Zinc blende
b) i)

Mocks Topical Analysis

$$
\begin{aligned}
& \mathrm{ZnO}_{(g)}+\boldsymbol{C}_{(s)} \\
& \mathrm{Zn}_{(\mathrm{g})}+\mathrm{CO}_{(\mathrm{g})} \\
& \mathrm{ZnO}_{(\mathrm{g})}+\mathrm{CO}_{(\mathrm{g})} \ldots \mathrm{Zn}_{(\mathrm{g})}+\mathrm{CO}_{2(\mathrm{~g})} \\
& \mathrm{PbO}_{(\mathrm{g})}+\mathrm{C}_{(\mathrm{s})} \longrightarrow \mathrm{Pb}_{(\mathrm{L})}+\mathrm{CO}_{(\mathrm{g})} \\
& \mathrm{PbO}_{(s)}+\mathrm{CO}_{\longrightarrow} \mathrm{Pb}_{(\mathrm{L})}+\mathrm{CO}_{2(g)}
\end{aligned}
$$

I- carbon IV oxide
II - Dil sulphuric acid
III - unreacted zinc
ii) To reduce zinc oxide to zinc metal
iii) Silica
iv)

I $2 \mathrm{ZnS}+30 \ldots 2 \mathrm{ZnO}(\mathrm{s})+2502(\mathrm{~g})$
II $2 \mathrm{ZnO}(q)+C(g) \ldots 2 \mathrm{Zn}(q)+\mathrm{CO} 2(g)$
v) $\mathrm{Zn}(\mathrm{g})+\mathrm{H} 2 \mathrm{SO}(\mathrm{aq})$ \qquad $\mathrm{ZnSO} 4(\mathrm{aq})+\mathrm{H} 2(\mathrm{~g})$
vi) $45 / 100 \times 250=112.5 \times 1000=112500 \mathrm{~g}$
$=112.5 \mathrm{Kg}$
vii) - Used to make brass

- Used to make electrodes in dry cells
- Galvanize iron sheets

19. a) i) - Effervescence, a colorless gas is produced

- Grey solid dissolves, a colorless solution is formed
ii) Nitric acid is a strong oxidizing agent. It will oxidize the hydrogen gas formed to form water instead

$$
\begin{aligned}
& \text { iii) } I \mathrm{Zn}_{(g)}+2 \mathrm{HCl}_{(a q)} \frac{}{\mathrm{ZnCl}_{2(a q)}+\mathrm{H}_{2(g)}} \\
& \text { II Moles of } \mathrm{Zn}=\overline{0.5 g}=0.007692 \\
& \text { Moles of HCL }=0.007692 \times 2=0.015384 \\
& 3 \text { moles of HCl has } 1000 \mathrm{~cm}^{3} \\
& 0.015384 \text { moles has } \frac{0.015384 \times 1000 \mathrm{~cm}^{3}}{3} \\
&=5.182 \mathrm{~cm}^{3}
\end{aligned}
$$

20. (a) $\quad P$-Chlorine ($1 / 2$)

Q-Sodium (1/2)
(b) Prevent reaction between sodium and chlorine
(c) $\mathrm{Na}^{+}{ }_{(\text {l) }} \xrightarrow{+e^{-}} \quad \mathrm{Na}($ ()
21. (a)
B.E $\checkmark 1 / 2$
(b)

S.S $\checkmark 1 / 2$
(c)
22. a) zinc blende $\sqrt{1 / 2}$

Calcium $\sqrt{11 / 2}$
b) $2 \mathrm{ZnS}_{(s)}+\mathrm{SO}_{2(g)} \longrightarrow 2 \mathrm{ZnO}_{(\mathrm{s})}+2 \mathrm{SO}_{2}(\mathrm{~g}) \sqrt{ } 1$ (penalize $1 / 2$ if states are missing)
$\mathrm{ZnCO}_{3}(\mathrm{~s}) \longrightarrow \mathrm{ZnO}_{(s)}+\mathrm{CO}_{2(g) \vee} 1$ (penalize $\frac{1 / 2}{}$ if states are missing)
23. a) Iron III hydroxide

Mocks Topical Analysis
b) Concentrated sodium hydroxide is added at 4 atm pressure to the Bauxite at 160 C $\mathrm{AL}_{2} \mathrm{O}_{3}$ dissolves in the sodium hydroxide leaving the iron III oxide as a solid
24. a) i) The oxygen produced at the anode reacts with hot carbon to form carbon (iv) oxide hence corrodes it therefore needs replacement
ii) Graphite is inert and a poor conductor of heat hence helps to conserve heat
b) Aluminum has more number of valency electrons which are delocalized

Organic chemistry II (alkanoic acids and alkanols)

1. (i) Ethylbutanoate

2. a) $-\mathrm{CH}-\mathrm{CH}-\mathrm{CH}_{2}-\mathrm{CH}^{-} \mathrm{CH}_{2}-\mathrm{CH}-\mathrm{CH}_{2}-\mathrm{CH}$

b) Polypheny/ ethane

3. Plastics may contain chlorine or fluorine compounds apart from hydrogen and carbon when burnt, fluorine and chlorine compounds are released into the air destroying Ozone layer
4. $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{CO}_{3(\mathrm{~s})} \longrightarrow 2 \mathrm{NH}_{3(\mathrm{~g})}+\mathrm{CO}_{2(\mathrm{~g})}+\mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})}$
5. The first amount of soap precipitates $\mathrm{Ca}^{2+}{ }_{(a q)}$ and $\mathrm{Mg}^{2+}{ }_{(a q)}$ ions and soften water.

Then additional soap dissolves oil from the fabric.
6. a)

b) $0.00005 \mathrm{~mol} . ~ P=0.515 \mathrm{~g}$ of monomer.
$=1.0$ mole of poly mer $=\frac{1 X 0.515}{0.0005}=10300 \mathrm{~g}$
$R F M\left(C_{4} H_{9} \mathrm{ND}_{2}\right) n=48+9+32=103$
$=\left(\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{NO}_{2}\right)=10300$
$103 n=10300$
$\therefore n=100$ molecules
7. Agent \boldsymbol{A} - magnesium salt formed is soluble hence doesn't form scum
8. (a) Styrene/Phenylethene

(b)Addition polymerization
(c) - can be made into different shapes easily

- are cheaper
- are not corroded by acids, alkalis or air
- are stronger and long lasting
- are water-proof

Any 1 correct
9. - Add water to the mixture and shake where ethanol dissolves in water while pentane is immiscible.
*MAT

- Transfer the mixture in a separating funnel and allow it to settle when pentane floats on top of water-ethanol mixture.
*MAT
- Turn on the tap to collect water-ethanol mixture while pentane remains in the separating funnel.
- Separate ethanol from water by fractional distillation based on the differences in boiling points.

10. (a) Is 100% ethanol/is pure ethanol without water in it
(b) $30^{\circ} \mathrm{C}$ and yeast
(ii) $R=\Delta \underline{v}$
Δt
$=\frac{43-40.5}{180-150}$
$=\frac{25}{30}$
$=0.0833 \mathrm{~cm}^{3} / \mathrm{s}$
(ii) 57seconds
(iv) $\mathbf{2 H}_{2} \mathrm{O}_{2(l)} \xrightarrow{\mathrm{MnO}_{2}} \mathbf{2 \boldsymbol { H } _ { 2 }} \boldsymbol{O}_{(l)}+\boldsymbol{O}_{2(g)}$
(b) (i) To oxidize H_{2} produced to water
(ii) Z
(iii) $Q=1 t$
$=0.1 \times 30 \times 60$
$=180 \mathrm{C}$
$96500 c=1 F$
$180 c c=\underline{180 \times 1}$
$=0.001865 \mathrm{~F}$
$\mathrm{Zn}_{(s)} \xrightarrow[2 \mathrm{~F}=65 \mathrm{~g}]{ } \mathrm{Zn}^{2+}(a q)+2 e-$
$0.001865 F=\underline{0.001865 \times 65}$
$=0.0606 \mathrm{~g}$ of Zn was consumed
11. (a) (i) Ethylethanoate.
(ii) 2-bromobut-l-ene
(b) (i) $\mathrm{P}-\mathrm{CH}_{3} \mathrm{COOCH}_{2} \mathrm{CH}_{3}$ $\mathrm{S}-\mathrm{CH}_{3} \mathrm{CHONa}$
(ii) I. Step I-Type - dehydration.

Reagent - Concentrated sulphur acid.
II. Step II- Type - Oxidation

Reagent - acidified potassium magnate VII/ Potassium dichromate (VI)
III. Step III- Type - Hydrogenation

Reagent-Hydrogen
(iii) \boldsymbol{R} - Soda lime
(iv)

Tetrechloromethane
(v) I-U-Polythene/Polyethene

Mocks Topical Analysis eeducationgroup.com

$$
\begin{aligned}
I I-28 n & =42000 \\
n & =\frac{42000}{28}=1500
\end{aligned}
$$

(c) - It is unsaturated.
13. a) - The length of the chain

- Intermolecular forces
- Cross linking of the molecules (Any two correct = 2 marks)
b) Sodium propoxide
c) \quad i) $I-T$ is ethane

II - K is polypropene
ii) has a sweet smell
iii) Neutralization
iv) - Used to make ropes $\sqrt{ } 1$ mark

- Used to make crates of bottles
- Used as surface for all weather football and hockey pitches (Any correct use)
v) $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{3}+\mathrm{SO}_{2}$ \qquad $3 \mathrm{CO}_{2}+4 \mathrm{H}_{2} \mathrm{O}$
(N.B ignore state symbols)
vi) React a small sample of each of the two substances with sodium carbonate separately. Bubbles// efferrescence are observed with $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COOH}$ and no reaction with $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH}$

$$
\begin{aligned}
& \text { vii) } \text { RMM of monomer }=42 \sqrt{ } 1 / 2 \\
& 42 n=12600 \\
& N=\frac{12600}{42}=300 \sqrt{ } 1 / 2
\end{aligned}
$$

14.

a) i) Propene $\sqrt{ } 1$
ii) $2 \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COOH}+\mathrm{Na}_{2} \mathrm{CO}_{3} \sqrt{1 / 2} \longrightarrow \xrightarrow{\longrightarrow} \mathbf{C O}_{2} \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COONa}$
b) Making packing materials $\sqrt{ } 1$
c) $\mathrm{KMnO}_{4} \sqrt{1 / 2} / \mathrm{K}_{2} \mathrm{CrO}_{7}$

$42 n \sqrt{ } \quad=4200$
$n \quad=4200 / 42$
$=100 \sqrt{ }$
e) Esterification $\sqrt{ } 1$
f) Conversion of oils to fats. $\sqrt{ } 1$
g) Propane burns with a clear falme $\sqrt{ } 1$ while propyne burns with a sooty
flame $\sqrt{ } 1$ because propyne has a higher $\sqrt{ } 1 C: H$ ration than propane.
h) $\mathrm{C}_{2} \mathrm{H}_{4}(\mathrm{~g})+3 \mathrm{O}_{2}(\mathrm{~g}) \longrightarrow 2 \mathrm{CO}_{2}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \sqrt{1}$ 1 Vol. 3 vol
1 Vol. $=1000 \mathrm{~cm}^{3} \sqrt{1 / 2}$

$$
\begin{aligned}
& \text { Vol of } O_{2} \text { required }=3 \times 1000 \mathrm{~cm}^{3}=3000 \mathrm{~cm}^{3} \sqrt{1 / 2} \\
& \text { Vof of air requited }=\underline{100} \times 3000 \mathrm{~cm}^{3} \\
& =15,000 \mathrm{~cm}^{3} \sqrt{1 / 2}
\end{aligned}
$$

15. (a) (i) $Q-\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COOH}$ (accept name (propanoic acid) $R-\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COOH}$ (Propanoicapid) P-Hydrogen
(ii) Step I Esterification ${ }^{\checkmark} 1$ Step 4-Oxidation $\checkmark 1$
(iii)

(iv) Condition-180-250 $\quad \checkmark 1 / 2$
reagent - Conc. $\mathrm{H}_{2} \mathrm{SO}_{4} \checkmark \frac{1 / 2}{}$

16. (a) (i) M: Ethan-1, 2- diol

L: Ethano $\xrightarrow[\text { ic acid }]{ }$
(ii) Polymerisation

Hydrogenation
(iii) Concentrated sulphuric acid

Ethanoic acid
a) i) Butan-1-01// 1- Butanol// n-Butanol
ii) Propanoic acid
iii) Ethylethanoate
18. i) Step I: Hydrogen

Step II: Hydrogen chloride gas// HCL
Step III: Sodium hydroxide/ NaOH/ Sodalime
ii) $\mathbf{2 C} \mathbf{C}_{2} \mathrm{H}_{2(\mathrm{~g})}+5 \mathrm{O}_{2(\mathrm{~g})}$ \qquad $4 \mathrm{CO}_{2(\mathrm{~g})}+2 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{g})}$
iii) Environmental pollutant

It is not biodegradable/ Not decomposed by bacterial
19.

ii) $6.95 \mathrm{~g}=6.95 / 278=0.025$

$$
\begin{aligned}
\therefore \quad 0.05 \text { moles in } 250 \mathrm{~cm}^{3}=0.025 & \times 1000 / 250=0.1 \\
\text { Concentration } & =6.95 / 278 \times 1000 / 250=0.1
\end{aligned}
$$

20. i) Step I: Hydrogen

Step II: Hydrogen chloride gas// HCL
Step III: Sodium hydroxide/ $\mathrm{NaOH} /$ Sodalime
ii) $2 \mathrm{C}_{2} \mathrm{H}_{2(\mathrm{~g})}+5 \mathrm{O}_{2(\mathrm{~g})}$ \qquad $4 \mathrm{CO}_{2(\mathrm{~g})}+2 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{g})}$

iii) Environmental pollutant

It is not biodegradable/ Not decomposed by bacterial
21. i) Butan-2-Ol $\sqrt{1 / 2}$
ii) 4-methylhex-2-ene $\sqrt{ }$
iii) Propyl ethnoate $\sqrt{ }$
22. a) Soap less detergent $\sqrt{ }$
b) Non- biodegradable resulting in pollution $\sqrt{ }$
23. a)
b) Addition
24. (a) A-Sodium ethanoate

B-Acidified KMnO_{4} or $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$
(b) Oxidation
25. (a) $\mathrm{NH}_{3(g)}+\mathrm{HNO}_{3(a q)} \longrightarrow \mathrm{NH}^{2} \mathrm{NO} O_{3(s)}$
(b) 17 kg ammonia $\equiv 80 \mathrm{~kg} \mathrm{NH}_{4} \mathrm{NO}_{3}(1 / 2)$
$\therefore 5.3 \mathrm{~kg} \equiv \frac{80 \times 5.3}{17}=24.94 \mathrm{Kg} \quad(11 / 2 \mathrm{~kg})$
26. (a) A reaction between an ethanol and alkanoic acid to form ester;
27.

(ii) Ethylpentanoate. $\sqrt{ } /$
28. i) ethylethanoate $\sqrt{1 / 2}$

$$
\mathrm{CH}_{3}-\mathrm{H}_{2} \mathrm{C}-\mathrm{O}-\mathrm{C}-\mathrm{CH}_{3} \sqrt{ } 1 / 2
$$

ii) step 2: oxidation $\sqrt{1 / 2}$
step 4: esterification $\sqrt{1} / 2$
iii) sodium hydroxide, or $\mathrm{NaOH} \sqrt{ } 1$
29. a) Hydrogen. $\sqrt{ } /$
b) (i) A No effervescence takes place. $\sqrt{1 / 2}$
(ii)B There is effervescence $\sqrt{ } \sqrt{1 / 2}$ and the gas produced turns lime water into white precipitate. $\sqrt{ } / 1 / 2$
30. a) $\boldsymbol{Y} \sqrt{\sqrt{ }}$
b) Z and $W^{\sqrt{ }}$ have same atomic number but different mass number. ${ }^{\sqrt{ }}$
31. (a) Insulators
(b) Are non-conductor since they lack delocalised electrons
32.
(a)

Soapless detergent
(b) Non-biodegradable
33.
(a) No. of half-lifes $(n)=\frac{120}{20}=6$

$$
\begin{array}{r}
Y \times(1 / 2)^{6}=3.5 \quad{ }^{20} \quad 1 / 2 \\
\boldsymbol{Y}=3.5 \times 2^{6} \quad \checkmark 1 / 2 \\
Y=224 g \quad \checkmark 1 / 2
\end{array}
$$

(all steps for equation)

(b) - To study the rate of absorption of fertilizer by plants using radioactive pholsphorous

- Tracing chemical and physiological processes such as photo\$ynthesis
- Sterilizing equipment
(lny one)

34. (i) Polypropene
(ii) $\left(\mathrm{H}_{2} \mathrm{C}=\mathrm{CH}-\mathrm{CH}_{3}\right)_{n}=4956$
$(12 \times 3)+(6 x 1)=36+6=42$ (molecular mass of 1 unit)
no. of units $=42 n=495$
$42 n=4956$

$$
\begin{aligned}
\frac{42 n}{42} & =\frac{4956}{42} \\
n & =118 \quad \checkmark 1
\end{aligned}
$$

35. i) RCOONa a Soapy detergent
$R \mathrm{CH}_{2} \mathrm{OSO}_{3} \mathrm{Na}^{+}$soap less detergent
ii) $\mathrm{RCH}_{2} \mathrm{OSO}_{3} \mathrm{Na}^{+}$does not form scum. Its calcium and magnesium salts are soluble
iii) Chlorine bleaches by oxidation
SO_{2} bleaches by reduction
36. (a) Polyphenylethene
(b)

Radioactivity

1. $u=234 \sqrt{ }$

$$
V=91 \sqrt{ }
$$

2. (a) Nuclear fusion is a process whereby smaller nuclei combine to form a larger one at high temperatures;
Nuclear fission is whereby a large nuclide splits to form smaller one when hit by a neutron
(b)

3. (a) Is an atom or atomic nucleus characterized by its atomic number and mass number
(b) $\frac{14}{2}=7 \quad \checkmark 1 \quad$ from the graph
\therefore half-life is 10days
(c) Destroys physical properties of metals e.g. lower tensile strength $\checkmark 1$
4. a) nuclear reactions involve the nucleus of an atom but chemical reactions involved valence elections

- Nuclear reactions are independent of external factors but chemical reactions depend on external factors
- In nuclear reactions new elements are formed but no new elements are formed in chemical reactions (any one of them
b) i)step I-Alpha $\sqrt{1 / 2}$

II- Beta $\sqrt{1 / 2}$
ii) $Z=234 \sqrt{ } 1 / 2$
$A=92 \sqrt{ } 1 / 2$
$1^{s t} t^{1 / 2} \quad 2^{\text {nd }} \boldsymbol{t}^{1 / 2}$
II. $100 \% \longrightarrow 50 \% \longrightarrow 25 \%$
$2 t 1 / 2=48$ hours $t^{1 / 2}=$?

$$
t^{1 / 2}=\frac{48}{2}=24 \text { hours }
$$

6. a) Hydrogen. $\sqrt{ } /$
b) (i) A No effervescence takes place. $\sqrt{1 / 2}^{1 / 2}$
(ii)B There is effervescence $\sqrt{\sqrt{2} / 2}$ and the gas produced turns lime water into white precipitate. $\sqrt{ } / 1 / 2$
7. (a) 8 (protons number same as atomic number)
(b) $27-13=14$
8. (a) No. of half-lifes $(n)=\frac{120}{20}=6$

$$
\begin{aligned}
& \boldsymbol{Y} \boldsymbol{x}(1 / 2)^{6}=3.5 \\
& \boldsymbol{Y}=3.5 \times \boldsymbol{x}^{6} \quad \checkmark 1 / 2 \\
& \boldsymbol{Y}=224 g \quad \checkmark 1 / 2
\end{aligned}
$$

(all steps for equation)

(b) - To study the rate of absorption of fertilizer by plants using radioactive pholsphorous

- Tracing chemical and physiological processes such as photosynthesis
- Sterilizing equlipment (lny one)

9. a) $14 \quad Y$ \qquad $14 Z+0$ 6 7 -1
b) carbon dating
10. - Gramma rays are used to sterilize surgical equipment

- Detection and treatment of goiter

11. i) $U, V, Y, Z \quad$ All the 4 or nay 3 exclusively correct penalize $1 / 2 m$ if wrong answer ii) $\boldsymbol{Y Z} \quad$ is/are included any 2 correct $1 / 2 \mathrm{mk}$
12. No. of $t / 1 / 2=\frac{90}{15}=6$

Remaining Fraction $=(1 / 2)^{6}=1 / 64$
Mass left $={ }^{1}{ }_{64}$ X $2=0.03125 g$
13. a) -1 C
b) 100-50-25-12.5
$3 t 1 / 2=15.6$
$T 1 / 2=\frac{15.6}{3}$
$=5.2$ years

KAKAMEGA CENTRAL DISTRICT

QUESTION 1 .

Table 1.

Titre number	I	II	III
Final burrette reading $\left(\mathrm{cm}^{3}\right)$	22.0	44.1	26.9
Initial burrette reading $\left(\mathrm{cm}^{3}\right)$	0.0		
Vol. of soln. K used cm^{3}	22.0	22.1	21.9

$C T$	$=1$
$O P$	$=1$
$\boldsymbol{A C}$	$=1$
$P A$	$=1$
$F A$	$=1$
5	

(a) $\frac{22.0+22.1+21.9}{3}=22.0 \mathrm{~cm}^{3}$

Marking points

Complete table (CT) \qquad
The table should be completed.
Penalize the following errors if any occurs.

- Arithmetic error in subtraction.
- - Values recorded beyond 50 cm 3
- - Inversion of table
- Penalize $1 ⁄ 2 m k$ only on any one of these errors.

Decimal point (d.p) $1 m k$
All values to be recorded to 1d.p or
All values to be recorded to $2 d p$ second decimal value being 0 or 5 only
Award 0-mark if whole numbers used or 2dp are used.
Accuracy mark (AC)...
Consider any one candidates' titre if within $\pm 0.10 \mathrm{~cm}^{3}$ of school value award 1 mk .
If it is ± 0.11 to 0.20 award $1 / 2$ mk. If beyond 0.20 award $1 m k$
Averaging principle (.A)....
Three titres to be averaged if within $\pm 0.1 \mathrm{~cm}^{3}$ to one another.
Two titres can only be arranged if they are consistent.
N/B-If a student averages two titres when three are consistent award 0mk.
Final answer (F. A).....
If averaged titre is within 0.0 to $0.10 \mathrm{~cm}^{3}$ of S. V award 1 mk
0.11 to $0.2 \mathrm{~cm}^{3}$ of s.v award $1 / 2 m k$

If beyond $0.20 \mathrm{~cm}^{3}$ award 0 mk .
Summary
Complete table (CT) $=1 m k$
Correct use of decimals(dp) $=1 m k$
Accuracy (AC) $=1 m k$
Averaging ($P A$) $=1 m k$
Final answer (FA) = 1mk)
$5 m k s$
N/B - school vale (SV) teacher to perform practical to obtain school value.

Calculations

(b) $100 \mathrm{~cm}^{3}$ has 0.02 moles

$$
22.0 \mathrm{~cm}^{3} \text { has } \frac{22 \times 0.022}{1000} \quad 11 / 2 m k
$$

$$
=0.00044 m o l e s \quad 1 / 2 m k
$$

(c) (i) mole ratio $\mathrm{MnO}_{4}: \mathrm{Fe}^{2+}=1: 5$
$1 \mathrm{~mole} \mathrm{MnO}_{4}=5 \mathrm{~mol} \mathrm{Fe}{ }^{2+} \quad 1 / 2 \mathrm{mk}$

$$
\begin{aligned}
& =\frac{0.00044 \times 5}{1} \\
& =0.0022 \mathrm{~mol} \quad 1 / 2 \mathrm{mk}
\end{aligned}
$$

(ii) $25 \mathrm{~cm}^{3}$ has 0.00022 mol

$$
\begin{gathered}
1000 \mathrm{~cm}^{3} \text { has }=\frac{1000 \times 0.00022}{25} \\
=0.088 \mathrm{moldm}{ }^{-3}
\end{gathered}
$$

(d) (i) RFM of soln has 8.5 g

$$
\begin{aligned}
1000 \mathrm{~cm}^{3} \text { soln } & =\frac{1000 \times 0.85}{250} \quad 1 / 2 m k \\
& =34 \mathrm{gdm}^{-3}
\end{aligned} \quad 1 / 2 m k
$$

$\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4} . \mathrm{FeSO4} . \mathrm{nH}_{2} \mathrm{O}=386.4$
$2(14+1 x 4)+32+16 x 4+56+32+16 x 4+n(1 x 2+16)=386.4$
$36+32+64+56+32+64+18 n=386.4$
$284+18 n=386.4$
$28 n=386.4-284 \quad 1 / 2 m k$
$n=\frac{102.4}{18}$
$18 \quad 1 / 2 m k$
$N=5.6 \approx 6 \quad 1 / 2 m k$
ii) $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4 .} \mathrm{FeSO}_{4 .} 6 \mathrm{H}_{2} \mathrm{O}$
(iii) R.F.M of $J=$ conc. in gdm^{-3}

Molarity
$=\frac{3.4 \mathrm{gdm}^{-3}}{0.0088 \mathrm{~mol}}{ }^{1 / 2 m k}$
$=386.4 \quad 1 / 2 m k$

Question 2

Table II
Marking points
Complete table (T) \qquad
Award 1.2 mk for each correct to up to 3 s.f otherwise award 0

Experiment	Time (sec)	$1 /$ time
1		
2		
3		
4		
5		

$\boldsymbol{C T}=2^{1 / 2}$
DP $=1 / 2$
$A C=1 / 2$
$\frac{T r=1 / 2}{4}$
Decimal point (dp) \qquad
All values of time (t to be whole number or to 1d.p or 2d.p consistently otherwise award 0mk.
Accuracy (AC)
$1 / 2 \boldsymbol{m} \boldsymbol{k}$
Consider time for experiment only if 3 sec of school value (SV) award $1 / 2 m k$ if beyond $0 m k$.

Trend (Tr)............... $1 / 2 m k$
Values of t to be increasing if otherwise 0 mk
Summary

Complete table	$C T$	$=21 / 2$	
Decimal point	$\boldsymbol{D P}$	$=1 / 2$	
Accuracy	$\boldsymbol{A c}$	$=1 / 2$	
Trend	$\boldsymbol{T r}$	$=1 / 2$	

(a) Graph

Labeled axes with correct units $\quad=1 / 2 \boldsymbol{m k}$
Scale to cover $1 / 2$ or more of space $\quad=1 / 2$
Plotting done correctly
Straight line through 3 point
$=1$
$=1$
$3 m k s$
(b) Straight line graph

Increase in concentration; there are more collisions leading to increase in rate of reaction
(c) To read correct value of $1 /$ t from graph
$T=1 / t \quad 1 / 2 m k=a n s .1 / 2 m k$
Question 3

	Observation	Inference
(a) (i)	Dissolves colourless solution $1 / 2 \mathrm{mk}$	Coloured ions absent, polar substance $1 / 2 \mathrm{mk}$
(ii)	White ppt forms $1 / 2$ mk soluble in excess $1 / 2 \boldsymbol{m k}$	$\boldsymbol{A l}^{3+}$, Pb $^{2+}, \boldsymbol{Z n}^{2+}$ present 3 ions $1 m k$ 2 ions $1 / 2 m k$ 1 ion 0mk
(iii)	No white forms $1 / 2 \mathrm{mk}$ Insoluble in excess $1 / 2 m k$	Al^{3+} or Pb^{2+} present $1 / 2$ each if Zn^{2+} absent $1 / 2 \mathrm{mk}$
(iv)	No white ppt forms 1mk	Pb^{2+} absent pr Al^{3+} present 1 for any
(v)	White ppt forms 1mk	$\begin{aligned} & \hline \mathrm{Cl}-, \mathrm{SO}^{2-}, \mathrm{SO}^{2-3}, \mathrm{SO}^{2-3} \\ & 4 \text { ions } 1 \mathrm{mk} \\ & 3 \text { ions } 1 / 2 \mathrm{mk} \\ & 2 \text { or } 1 \text { ion } 0 \mathrm{mk} \\ & \hline \end{aligned}$
(b) (i)	Melts, $1 / 2$ mk Burns with non-smoky flame $1 / 2$ mk	Saturated compounds $1 / 2 m k$ $\bar{C}=\mathrm{C}_{\chi}^{\prime} \text { or }{ }^{-} \mathrm{C} \equiv \mathrm{C}^{-}$ Absent $1 / 2 m k$
(ii)	Dissolves colour solution $1 / 2 \mathrm{mk}$	Polar organic compound $1 / 2 \mathrm{mk}$
(iii)	Solution has pH=4 or $51 / 2 \mathrm{mk}$	Weak acid -COOH present 1/2mk
(iv)	Effervescence evoled $1 / 2 \mathrm{mk}$	-COOH present $1 / 2 \mathrm{mk}$
(v)	Decolourization occurs 112 mk	-COOH present 1/2 mk

N/B - Penalize for any contradictory ion $\quad 1 / 2 \mathrm{mk}$
2. (a)Working out average

Penalties
Wrong arithmetic penalize ($-1 / 2 \mathrm{mk}$)
Correct answer but no working shown (-1/2 mk)

- Value rounded up to 1 d.p ($-1 / 2 \mathrm{mk}$)
- Accept rounding off of answer to 2d.p
(b) moles $\mathrm{Na}_{2} \mathrm{CO}_{3}=0.05 \times \underline{25}=0.00125 \quad(1 / 2 \mathrm{mk})$

$$
\text { Moles } H X=2 x 0.00125=0.0025 \quad(1 / 2 m k)
$$

$$
\text { Molarity of } H X=0.0025 \times 1000
$$

Titre volume (Av.)
\qquad

Table 2 and averaging
(c)To be marked as in table 1 bove $5 m k s$
(d) (i) moles $B=$ molarity of HX above x titre volume B

Moles $C=$ moles B
Molarity of $C=\frac{\text { moles } C \times 1000}{25}$
(ii) Molarity in d(i) $\times 56 g$
(c) Grams KOH in 250 ml solution
$=$ ans. In d(ii) $\div 4$.
Mass KCl in $2.1 \mathrm{~g}=2.1$ - ans. In d(ii) 4
$\% K C l=\frac{2.1-x}{21} X 100$
2. (a) $T A B L E$

Constant temperature upto 1 1/2 min
Then temperature rises slowly to a maximum.
Then remains constant
Lastly it drops slightly
(b) (i) Graph - scale $1 m k$ ($1 / 2$ for each axis)

Plot 1mk (for all correct)
For more than $1 / 2$
Correct ($1 / 2 \mathrm{mk}$)
Curve 1mk
(ii) Read from graph
(c) Quantity of heat $=40 \times 4.2 \times$ temperature change

$$
1000
$$

$$
=\ldots . . \boldsymbol{K} \boldsymbol{J}
$$

(d) (i) $\mathrm{Cu}^{2+}+\mathrm{Zn}_{(s)} \mathrm{Zn}^{2+}{ }_{(a q)}+C u_{(s)}$
(ii) Moles $C u^{2+}=\frac{0.2 \times 40}{1000}=0.8$

$$
=0.008 \mathrm{moles}
$$

(iii Ans. in c x 1
0.008
(iv) Some heat is lost into the environment by conduction and convection Question 3.
I
(a)- Jelly solid changes to white solid (1/2)

Gas evolved that puts off burning splint (1/2)
P is deliquesent ($1 / 2$
(b) (i) White ppt insoluble $1 m k$
Mg^{2+} or Ca^{2+} may be present $1 / 2$
(ii) White ppt formed $1 / 2$

Ca $^{2+}$ present
(iii) No white ppt

Absence of $\mathrm{SO}^{2-}{ }_{4}$ or $\mathrm{SO}^{2-}{ }_{3}(1 / 2$
(c) (i) Effervescence occurs/ bubbles (1) and hissing sound Presence of $\mathrm{CO}^{2-3}{ }^{1 / 2}$
(ii) White ppt insoluble in excess $1 / 2$ $\mathbf{M g}^{2+}$ or Ca^{2+} present ${ }^{1 / 2}$

II
(a) Burns with yellow lame $1 / 2$

Inflammable substance or organic
(b) (i) pH is 5-6

Weak acid (H^{+}ions in)
(ii) Effervescence

- \boldsymbol{H}^{+}ions in \boldsymbol{Q}

MIGORI -NYATIKE DISRTICT

1. (a)

Table 1

Piece of Magnesium added	1	2	3	4	5	6
Length of Magnesium added (cm)	2	4	6	8	10	12
Time taken $\boldsymbol{t}($ second $)$	150	190	225	295	430	500
Reciprocal of time $\underline{\boldsymbol{1}}$ ($\left.\boldsymbol{S}^{-}\right)$	0.00667	0.00526	0.00444	0.0033	0.00233	0.002

(ii) $\underline{1}=0.00510 \sqrt{1 / 2} \quad$ From the graph and must be shown. Showing. $\sqrt{11 / 2}$
t
$t=\frac{1}{0.005} 10 \quad \sqrt{1 / 2} \quad 196.5$ seconds. $\sqrt{1 / 2}$
(iii) $\mathrm{Mg}_{(s)}+\mathrm{H}_{2} \mathrm{SO}_{4(a q)} \longrightarrow \mathrm{MgSO}_{4(\mathrm{~s})}+\mathrm{H}_{2(g)} \sqrt{1 / 2}$
$1: 1 \quad$ With correct physical state.
(iv) Moles of $M g=\frac{0.12}{24} \sqrt{1 / 2}=0.005$ moles $\sqrt{1 / 2}$
$\underline{1 m k}$
Moles of $\mathrm{H}_{2} \mathrm{SO}_{4}$ used $=0.005$ moles $\quad(1: 1)$
(v) Increase in length of M of ribbon results in decrease in $\binom{\underline{1}}{\boldsymbol{t}}_{\sqrt{1 / 2}}$

This is done to gradual decrease in the concentration of the acid. $\sqrt{1} 1 / 2$ \qquad
Table II

(c) (i) $T_{1}+T_{2}+T_{3} \sqrt{1 / 2}=C . A \sqrt{1 / 2} \quad 1$ fall are consistent

3
OR
i.e $\frac{15.3+15.2+15.2}{3} \sqrt{1 / 2}=15.233 \mathrm{~cm}^{3} \sqrt{1 / 2}$
(ii) Moles of sodium hydroxide $=\frac{15.233}{1000} \times 0.5=0.007617$
i.e. Ans in $\frac{c(i) x 0.5}{1000} \sqrt{1 / 2}=$ C.A. $\sqrt{1 / 2} \quad \overline{\underline{1 m k}}$
(d) (i) Ans in $\frac{c(\text { ii) }}{2} \sqrt{ } 112=$ C.A. $\sqrt{1 / 2}$ i.e. $0.007617=0.003809$ moles $\underline{\underline{1 m k}}$
(ii) Ans. in d (i) $x 4=C . A$.
i.e $0.003809 \times 4=0.015236$ moles. 1 mk
(e) Ans in b (iv) + Ans. d (ii) $\sqrt{11 / 2}=C . A$
$0.005+$ Ans. $d($ ii) $=C . A$
i.e. $0.005+0.015235=\underline{0.020236}$ moles. $\quad \underline{1 m k}$
(f) Ans. in $\underline{5 \times 1000} \mathrm{~cm}^{3}=C . A$.
$50 \mathrm{~cm}^{3}$
i.e. $\underline{0.020236 \times 1000}=\underline{\underline{0.40472 ~ M}}$

50
2.

3.
(c) (i)

(i)	Observations	Inferences	
	Effervescence /bubbles /fizzing. $\sqrt{1 / 2}$	Presence of $\mathrm{H}^{+} / \mathrm{H}_{3} \mathrm{O}^{+}$- $\mathrm{COOO} . \sqrt{1 / 2}$	
	(1/2mk)		$\frac{(1 / 2 m k)}{1 m k}$
(ii)	Observations	Inferences	
	Orange colour remains the same / persists i.e does not change green. $\sqrt{1 / 2}$ ($1 / 2 \mathrm{mk}$)	Absence of R-OH. $\sqrt{1 / 2}$	(1/2mk)
			$\underline{1 m k}$

(iii)

Observations	Inferences
KMnO_{4} decolourized i.e changes from purple to colourless $\sqrt{ } 1$	$C=C_{\underset{O r}{\prime}}^{\prime} \text { or }-C \equiv C-$

(1 mk)

NYAMIRA DISTRICT

1. (a)

Time (min)	0	$1 / 2$	1	$1^{1 / 2}$	2	$2^{1 / 2}$	3	$3^{1 / 2}$	4
Temperature $\left({ }^{\circ} \mathrm{C}\right)$	19.0	19.0	19.0	19.0	X	16.0	15.0	15.0	15.0

C.T $=1$
$\begin{array}{lll}\text { Complete } & \mathbf{- 1 m k} & \begin{array}{l}\mathrm{I} k=1 \\ \\ \\ -\quad 8 \text { readings - } \mathbf{1 m k} \text { - penalize }-1 / 2 \text { of space not filled }\end{array} \begin{array}{l}\mathrm{D} . \mathrm{C}=1 \\ \mathrm{~A}=\mathrm{C}=1 \\ \mathrm{Tr}=1\end{array}\end{array}$

- $1 / 2$ for unrealistic values $T 100$ or 40
- $\quad 1 / 2$ all constant $t=0$ to $t=4$
- $\quad 1 / 2$ if $T(T(21 / 2)$

Decimal place - 1mk

- Accept whole number or to 1d.p of 0.5 or 0.0

Accuracy - 1mkS.V ± 2 units
Trend
$-1 m k$
Award $1 / 2-$ where $t=0-\boldsymbol{t}-1 \frac{1}{2} \min =$ all constant
$\boldsymbol{t}=1 / 2-\boldsymbol{t} 1 / 2 \boldsymbol{m i n}-$ constant
Award $1 / 2-t-21 / 2$ to 4min-show a drop
(b) Graph

Ans - $1 / 2$ - both axis correctly labelled
Scale $=1 / 2$ - use more than $3 / 4$ big squares in both axis
Plotting-1
Labeling-1

$$
3 \mathrm{~m} k s
$$

Penalize $1 / 2$ inverted and scale to accommodate all plots
Plotting -all 8 points award 1mk

- 6pts \& 7 award
$-\leq 5$ award $0 m k$
Labelling - Award $1 / 2$ for two straight lines.
(b) (i) $T=$ correct reading

$$
\text { (ii) Heat of solution }=\text { MCDT } \begin{aligned}
& =50 g \times 4.2 \mathrm{Jg}-1 \mathrm{~K}-1 \times 4.5 \mathrm{~K} \\
& =-50 \times 4.2 \times 45 \mathrm{~J} \\
& =
\end{aligned}
$$

ΔH soln $=$?
$0.0238 \mathrm{moles}=\frac{-50 \times 4.2 \times 4 \mathrm{JKJ}}{1000}$
1mole=?
$=-50 \times 4.2 \times 4.5 \mathrm{KJ} / \mathrm{mol}^{-}$
1000×0.0238
$=-A n s$
Penalized if $\Delta H-\operatorname{sign}$ is + and not $-v e(t o t a l ~ 3 m k s)$
TABLE 2

Titre	I	II	III
Final burette reading	24.4	24.5	24.3
Initial burette reading	0.0	0.0	0.0
Volume of solution \boldsymbol{H} used $\left(\mathrm{cm}^{3}\right)$	24.4	24.5	24.3

Conditions:- A complete table ...
3 consistent titrations $1 m s$

$$
\begin{aligned}
& \text { C.T }=1 \\
& \text { D.C }=1 \\
& \text { AC }=1 \\
& \text { PA }=1 \\
& \frac{\text { GFA }=1}{\mathbf{5 m k s}}
\end{aligned}
$$

Penalty:

(i) Penalize $1 / 2 m k$ for inverted table.
(ii) Penalize $1 / 2 m k$ to unrealistic titre values e.g. volume cm3 unless explained.
(iii) Penalize $1 / 2 m k$ for wrong arithmetic.

B- Use of decimals 1 mk
(Tied to $1^{\text {st }}$ and $2^{\text {nd }}$ rows)
Conditions
(i) Accept 1 decimal place / point if used consistently.
(ii) Accept 2 decimal points, however the $2^{\text {nd }}$ decimal point must be either 0.0 or 5 .

Penalty

(i) Penalize fully if decimals are not used consistently
(C) Accuracy1mk
(i) Conditions (i) If any of the volume used is within $\pm 0.1 \mathrm{~cm}^{3}$ of the school value (S.V)...
(ii) If there is one value within $\pm 0.2 \mathrm{~cm}^{3}$ of the school value (S.V)... (1/2mk)
(D) Principles of averaging..... 1 mk

Conditions
(i) If 3 titrations done are consistent and averaged....
(ii) If 3 titrations done and 2 are consistent and averaged 1 mk
(iii) If 2 titrations done and are consistent and averaged.... 1 mk
(iv) If titration done ... $1 m k$
(v) If 3 titrations done and are inconsistent and averaged 0 mk
(vi) If 2 consistent titrations averaged... 0 mk
(vii) If 3titrations are done and are consistent but are averaged 0 mk
(E) Final answer1mk

Conditions

(i) If the answer of the titre value is within $\pm 0.1 \mathrm{~cm}^{3}$ of the school value (S.V) award....1mk
(ii) If the answer of the titre value is within $\pm 0.2 \mathrm{~cm}^{3}$ of the school value $. . . .1 / 2 m k$
(iii) If the answer is not within $\pm 0.2 \mathrm{~cm}^{3}$ of the school value (S.V) award.... 0 mk
(e) Average volume of solution H used
$\underline{24.5+24.4+24.3}=24.4 \quad{ }^{1 / 2}$
3
$\checkmark 1 / 2$
II. $\underline{24.4 \times 0.04}=0.000976 \checkmark 1 / 2$

1000
$\checkmark^{1 / 2} \quad{ }^{1 / 2}$
III. $5 / 2 \times 0.000976=0.00244$ (penalize $1 / 2$ for wrong units)
IV.

$$
\begin{aligned}
& \frac{3}{\frac{250}{25} \times 0.00244} \checkmark 1 / 2 \\
& =\underline{3} \\
& \underline{0.0244} \\
& =123 \text { (no units) penalize for units }
\end{aligned}
$$

(f) $\quad 123-90=33 \checkmark 1 / 2$
$16+(2 x 1)=18 x=33$
$x=33 / 18=1.833$
$\boldsymbol{x}=\mathbf{2}_{\sqrt{ } 1 / 2}$
2. (a) (i)

Observation	Inference
- Solid dissolves, yellowish solution.	- Soluble compound.
- Colourless fumes/vapour are	
produced.	- Mix with water is exothermal heat is - boduced. (1 mk)

(ii)

Observation	Inference
- Blue litmus turns red.	- Presence of $\mathrm{H}^{+} / \mathrm{H}_{3} \mathrm{O}$ in the solution.
- No effect on litmus paper.	- Solution is acid (1 mk)

(iii)

Observation	Inference
- White ppt. soluble in excess. $(1 \mathrm{mk})$	$-\boldsymbol{P b}^{2+,} \boldsymbol{Z n}^{2+}, \boldsymbol{P b}^{3+}$ present. (1 mk)

(iv)

Observation	Inference
- White ppt. persisted insoluble in excess	$-\boldsymbol{A l}^{3+}$ or Pb $^{2+}$ probably present

(v)

Observation	Inference

Mocks Topical Analysis
eeducationgroup.com

- Mixture remains colourless/ No yellow	
ppt. seen. (1 mk)	$-\mathrm{Pb}^{2+}$ absent (lglim).
$-\boldsymbol{A l}^{3+}$ present	

(vi)

Observation	Inference
- White ppt. seen. $\quad(1 \mathrm{mk})$	$-\mathrm{SO}_{4}{ }^{2-}, \mathrm{CO}_{3}{ }^{2-}, \mathrm{SO}_{3}{ }^{2-}$ absent
	$-\mathrm{Cl}-$ is present $($ probably present)

(B(b)

Observation	Inference
- Solid melts forming a colourless and ignites /burns with Smoky/sooty flame. (1 mk)	-Low compound organic compound/presence of (accept absence of saturated organic compound). (1 mk)

(c) (i)

Observation	Inference
- Dissolves in water forming colourless solution	- Solution compound /polar compound

(ii)

Observation	Inference
- Effervescence/ fizzling/bubbles of a colourless gas. - No effect on litmus paper.	Presence of $-\mathrm{COOH} / \mathrm{H}^{+} / \mathrm{H}_{3} \mathrm{O}^{+}$ions. Solution is acid. (1 mk)
Observation	
- The solution remained orange.	Inference

(iii)

Observation	Inference
Solution turns from purple to colourless solution is decolourised $\quad(1 \mathrm{mk})$	- Presence of of $-C \equiv C$ -

SOIK DISTRICT

1. TABLE I
a)Complete table penalize $1 / 2$ for inverted table and arithmetic errors
b) Use of decimal tied to the $1^{\text {st }}$ and $2^{\text {nd }}$ rows
c) Accuracy $\pm 0.2 \mathrm{~s} . \mathrm{v} \sqrt{ }_{1 / 2} \pm 0.1 \mathrm{sv} \sqrt{1}$
d) Principles of averaging as shown below
e) Final answer $\pm 0.2 \mathrm{~s} . v \pm 0.1 \mathrm{~s} . v \sqrt{1}$
a) $\underline{T}_{1}+T_{2}+T_{3} \sqrt{3} \underline{3}^{3 / 2}$
$=$ correct answer $\sqrt{1 / 2}$ (2d.place) (transferred to the table)
b)i) $\frac{5}{40} \quad \sqrt{3 / 2}^{3 / 2}$
$=0.125$ moles per litre
ii) $\mathrm{COOHCOOH}_{(a q)}+2 \mathrm{NaH}_{(a q)} \longrightarrow \mathrm{COONaCOONa}_{(a q)}+2 \mathrm{H}_{2} \mathrm{O}_{(l) V^{1 / 2}}$ balanced

OR
$\mathrm{C}_{2} \mathrm{H}_{2} \mathrm{O}_{4(a q)}+2 \mathrm{Na}_{2} \mathrm{O}_{4(a q)}+\mathrm{C}_{2} \mathrm{Na}_{2} \mathrm{O}_{4}(a q) \longrightarrow 2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$
iii) Moles of $\mathrm{NaOH}=\frac{25 X 0.125}{1000} \sqrt{ }$
$=0.003125$
Moles of $\mathrm{C}_{2} \mathrm{H}_{2} \mathrm{O}_{4}=\underline{0.003125 \mathrm{XI}}$

$$
=0.0015625
$$

Ans in (a) $\longrightarrow 0.00015625$
$\therefore 1000 \mathrm{~cm}^{3} \longrightarrow 1000 \times 0.0015625{ }^{1 / 2}$
Ans in (a)
$=$ Correct answer $\sqrt{1 / 2}$
V) $\mathrm{C}_{2} \mathrm{H}_{2} \mathrm{O}_{4} \mathrm{XH}_{2} \mathrm{O}=$ answer in (iv) $\sqrt{1 / 2}^{1 / 2}$

$$
\begin{aligned}
& 18 x=\text { Ans (iv) }-90 V^{1 / 2} \\
& x=\underline{\text { Ans }(i v)-90} \sqrt{1 / 2}^{18} \\
& 18 \\
& =\text { Correct answer } \sqrt{1 / 2} \text { (whole number) }
\end{aligned}
$$

2. Table 1

- $1 / 2$ mk each correct entry
- Penalize 1 mk if 1 d. place is not used consistently in the last row.
- Penalize $1 / 2$ mark for temperature below 400 c and 1000 c to a maximum of 1 mark.
- Penalize 1 mark if there is no trend.
(ii) Graph
- Labeling ($1 / 2$ mark) - Title, axes, correct units.
- Scale ($1 / 2$ mark) - more than on both axes.
- Plotting (1mark) - All points plotted correctly.
- Curve(1mark) - Smooth curve passing through at least 3 correctly plotted points.
(iii) $1 / 2$ mark
(a) 1 mark
$\left.\begin{array}{l}\text { (b) Imark } \\ \text { (c) } 1 \text { mark }\end{array}\right\}$ Read from candidates graph and credited only if within ± 0.1 the S.V
(a)

3.

(a)

Observations	Inferences
- Black residue $\sqrt{1 / 2}$ - Colourless solution as filtrate $\sqrt{1 / 2}$	X
(b) - Blue solution formed $\sqrt{1 / 2}$ - No effervescence $\sqrt{1 / 2}$	CU $^{2+}$ may be present $\sqrt{1 / 2}$ $\mathrm{HCO}_{3}^{-}, \mathrm{CO}_{3} \sqrt{1 / 2}$ absent the two
(c) - Blue ppt $\sqrt{1 / 2}^{1 / 2}$ - Insoluble in excess $V^{1 / 2}$	C ${ }^{\text {2+ }}$ may be present $\sqrt{1 / 2}$
(d) - Blue pptliz - Soluble to give a deep blue solution $\sqrt{132}$	C $\boldsymbol{U}^{\text {2+ }}$ Present
(e) - No white ppt $\sqrt{ } /$	$\mathrm{Ag}_{2}^{+} \mathrm{pb}^{2+}$ absent (for two) $\mathrm{CO}_{3} \mathrm{HCO}_{3}$
(f) - White ppt $\sqrt{1 / 3}$ /32 $^{\text {a }}$	$\mathrm{Cl}^{-}, \mathrm{SO}_{4}$ may be present $\sqrt{1}^{1}$

(g) - White ppt ${ }^{1 / 12}$	SO_{4} present ${ }^{\text {/ }}$ /2
$\begin{aligned} & \text { (h) - White ppt } \sqrt{1}^{1 / 3} \\ & \text { - Soluble in excess } \sqrt{1 / 2} \end{aligned}$	$\mathrm{Zn}^{2+} \quad$ Al ${ }^{++}$may be present
$\begin{aligned} & \text { (i) - White ppt }{ }^{1 / 1 / 2} \\ & \text { - Soluble in excess } \end{aligned}$	Zn ${ }^{2+}$ Present.

UGENYA - UGUNJA DISTRICT

Q.1.

a) Table 1

	I	II	III
Final burette reading $\left(\mathrm{cm}^{3}\right)$	20.0	40.0	20.0
Initial burette reading $\left(\mathrm{cm}^{3}\right)$	0.0	20.0	0.0
Volume of solution M used $\left(\mathrm{cm}^{3}\right)$	20.0	20.0	20.0

Complete table	$-1 m k$
Decimal	$-1 m k$
Accuracy	$-1 m k$
Principle of averaging - $1 m k$	
Final Answer	$-1 m k$

b) Average volume of solution M used $V_{1}=\frac{(20.0+20.0)}{2} \mathrm{~cm}^{3}$

$$
=20.0 \mathrm{~cm}^{3}
$$

c) $\frac{\text { Mass per litre }}{\text { Molar mass }}=\frac{23.5}{392} \sqrt{1 / 2}=0.0599 \sqrt{ } 1 / 2$
d) $\frac{25}{1000} \times \operatorname{Answer}(c)=\underline{25} \times 0.0599 \sqrt{1000}$

$$
=0.0014987 \sqrt{1 / 1 / 2}
$$

e) $20 \mathrm{~cm}^{3}$ of solution M contains \quad Answer in (d) $x 1$ moles of MnO_{4}^{-} 5

$$
\begin{aligned}
& =\frac{0.0014987}{5} \times 1 \sqrt{ } 1 / 2 \\
& =0.0002997 \text { moles. } \sqrt{1 / 2}
\end{aligned}
$$

$$
\begin{aligned}
\therefore 1000 \mathrm{~cm}^{3} \text { of solution } M \text { contains } & \frac{1000}{20} \times \frac{\operatorname{Answer} \text { in }(d)}{5} \\
& =\frac{1000}{20} \times 0.0002997 \sqrt{ } 1 / 2 \\
& =0.014985 \mathrm{moles} \sqrt{ } 1 / 2
\end{aligned}
$$

f) Table II

	I	II	III
Final burette reading $\left(\mathrm{cm}^{3}\right)$	19.4	38.8.	19.4
Initial burette reading $\left(\mathrm{cm}^{3}\right)$	0.0	19.4	0.0

Volume of solution M used (cm^{3})	19.4	19.4	19.4

Complete table	$-1 m k$
Decimal	$-1 m k$
Accuracy	$-1 m k$
Principle of averaging $-1 m k$	
Final Answer	$-1 m k$

g) Average volume of solution M used, $V_{2}=\frac{(19.4+19.4+19.4}{3} \mathrm{~cm}^{3}$

$$
=19.4 \mathrm{~cm}^{3}
$$

h) Average volume x Answer in (e)

$$
1000
$$

$19.4 \times 0.014985 \sqrt{ } 1 / 2=0.0002907 \sqrt{ } 1 / 2$
1000
i) 1 Mole of MnO_{4} reacts with 2.5 moles of S .
\therefore Moles of MnO_{4} in (h) reacts with $2.5 \times$ moles in (h) of S.
$\therefore 25 \mathrm{~cm}^{3}$ of S will contain $2.5 \times 0.0002907 \sqrt{ } 1=0.0007267 \sqrt{ } 1$
j) $1000 x$ Answer in (i)

25
$\frac{1000}{25} \times 0.0007267 \sqrt{1 / 2}=0.029068 M \sqrt{1 / 2}$
25
k) Answer in (j) $\Rightarrow 5.0 \mathrm{~g}$

1 Mole of $S=\underline{1 \times 5.0}$
Answer in (j)
$=\underline{1 \times 5.0}$
$0.029068 \sqrt{ } 1 / 2$
$=172.0 \mathrm{~g} \sqrt{1 / 2}$
$\mathrm{H}_{2} \mathrm{X} \bullet 2 \mathrm{H}_{2} \mathrm{O}=172.0$
$2(l)+X+2(18)=172.0 \sqrt{ } 1$
$X+38=172.0$
$X \quad=172.0-38 \sqrt{ } 1 / 2$
$=134.0 \sqrt{ } 1 / 2$
Q. 2.

Observations	Inferences
- Colourless vapour condenses on the cooler parts of the test tube	Hydrated salt / water crystallization $\sqrt{ } 1$ $/ \mathrm{OH}^{-}$

- Moist blue litmus paper remains blue and red litmus paper remains red.
- White powder.

Any $2=1 m k$
b) Observations

Inferences
Dissolve $\sqrt{1} / 2$ to form a
Soluble salt / substance / compound. $\sqrt{11 / 2}$
colorless $\sqrt{11 / 2}$ solution.

i)	Observations	Inferences
	White precipitate $\sqrt{ } 11 / 2$	$\mathrm{Ca}^{2+}, \mathrm{Mg}^{2+}, \mathrm{Ba}^{2+}$
	Insoluble $\sqrt{1}$ in excess	$\begin{gathered} 3=1 m k \\ 2=1 / 2 \quad 1=0 m k \end{gathered}$
ii)	Observations	Inferences
	White precipitate $\sqrt{ } 1$	$\begin{aligned} \mathrm{Ca}^{2+}, B a^{2+} \quad 2 & =1 \mathrm{mk} \\ 1 & =1 / 2 \mathrm{mk} \end{aligned}$
iii)	Observations	Inferences
	No white precipitate. $\sqrt{ } 1$	$\mathrm{SO}_{4}{ }^{2-} \sqrt{1}$ absent
iv)	Observations	Inferences
	White precipitate dissolves $\sqrt{1 / 2}$ on boiling and re-appears $\sqrt{1 / 2}$ on cooling	$\mathrm{Cl}^{-1} \sqrt{1}$

Q. 3 a) Observations	Inferences
Burns with yellow $\sqrt{ } 1$ smoky/ sooty flame	$C=C$ or $-C \equiv C$, Long chain
	organic compound, hydrocarbon with high $C: H$ ratio. Any $1=1$ mk

b) Observations \quad Inferences \begin{tabular}{l|l}
bissolves $\sqrt{ } 1$ to form a

| colourless solution. |
| :--- | \& Polar organic $\sqrt{ } 1$ compound / polar substance

\end{tabular}

i) Observations

Inferences
$\mathrm{KMnO}_{4} \sqrt{ } 1$ decolorized $/$ changes from purple to colourless.

$$
\begin{array}{ll}
C=C & -C \equiv C \\
2=1 m k & 1=1 / 2 m k
\end{array}
$$

ii) Observations
Methyl Orange turns $\sqrt{ } 1$ pink / red.
Inferences

Question 1.

Table 1
Distributed as follows:
(i) Complete table

Values must be ± 0.2 of each other
(ii) Decimal place

Values should be n 1d.p or 2d.p consistently used.
(iii) Accuracy

Compare the school value to any of the readings and award as follows:
If ± 0.1 award $1 m k$
± 0.2 award $1 / 2 \mathrm{mk}$
Outside 0.2 award Omk
(iv) Principle of averaging

- Award 1mk for consistent value only.
- Penalize $1 / 2 m k$ for rounding of the answer to 1d.p unless it divides exactly.
- In consistent values averaged award 0 mk
(v) Final answer value to the school to compare the average value to the school value:If ± 0.1 award $1 m k$
If ± 0.2 award $1 / 2 m k$
If outside award Omk

Calculations

(a) Titre $1+$ Titre II + Titre III $=$ Answer

3
(b) $\mathrm{NaOH}_{(a q)}+\mathrm{HCl}_{(a q)} \longrightarrow \mathrm{NaCl}_{(a q)}+\mathrm{H}_{2} \mathrm{O}_{(l)}$

Mole ratio 1:1
0.5M 0.5M
$\underline{25 \times 0.5}=0.0125$ moles 1000
(c) Mole ratio
$\mathrm{NaOH}: \mathrm{HCl}=1: 1$
\therefore Molarity of NaOH is $\mathbf{0 . 5 M}$
Table II
Marking should be done as in table 1.
Calculations
(a)) $\frac{\text { Titre } 1+\text { Titre II }+ \text { Titre III }}{3}=$ Answer
(b) $1000=0.5 \mathrm{moles}$
$100 \mathrm{~cm}^{3}=$?
$100 \times 5=0.05 \mathrm{moles}$
1000
$100 \mathrm{~cm}^{3}=0.05 \mathrm{moles}$
$\therefore 25 \mathrm{~cm}^{3}=$?
$\underline{25 \times 0.05}$
100
$=0.0125 \mathrm{moles}$
(c) mole ration 1:2
\therefore Moles of carbonate $=1 / 2 \times 0.0125=0.00625 m o l e s$
(d) 125

Question 2
Table III
Marks should be distributed as follows :
(i) Complete table

- Incomplete table with more than 5value $1 / 2 m k$
(ii) Decimal
- Accept whole numbers for time
$-1 / t$ must be decimals not fractions
(iii) Trend in time
- Accept reducing values for time
(iv) Trend in $1 /$ t
(b) The value given must shown on the graph
- Conversion of 318 K to ${ }^{\circ} \mathrm{C}$ is very important before reading form the graph.

GRAPH

- Labeleling $1 / 2$ mk for both axes
- Scale $1 / 2 k$ (at least $3 / 4 \mathrm{pg}$)
- Plotting 1mk
- Shape 1mk (should be a curve)

Rate of reaction $1 / t$

(c) As the temperature is jacreased the time taken for the reaction to take place is reduced due to high collisibn of particles hence the rate of reaction will be high.
Rate of reaction is directly proportional to increase in temperature.
Question 3
Procedure 1

White precipitate	Ba $^{2+}{ }^{+}$Pb $^{2+}$ Ca $^{2+}$ present N/B (i) All 3 ions award 1mk (ii) Any 2 ions award $1 / 2 m k$ (iii) Only 1 ion given award 0mk
No white precipitate	$\mathrm{Ba}^{2+} \mathrm{Ca}^{2+}$ present (i) Award 1mk for 2 ions (ii) Award $1 / 2$ mk or any ion of the two given
Pink solution s formed	OH- ions present Reject- solution is basic or allealine or a base
Brick- red flame	Ca^{2+} confirmed N / B - Award 1mk if it appears in either (a) or (b) above otherwise give zero.

Procedure 2

(a) Effervescence of bubbles of gas	\boldsymbol{H}^{+}present $\mathrm{R}-$ COOH present
(b) Purple colour gets decolourized	$\underbrace{}_{\text {Present }}=\mathrm{C}$ or $-\mathrm{C} \equiv \mathrm{C}-$
(c) Fruity or sweet smell	$\mathrm{R}-$ COOH confirmed

MUMIAS DISTRICT

Distributed as follows:
i) Complete table (1 mk)

Values must be ± 0.2 of each other.
ii) Use of decimal (1 mk)

Values should be in 1d.p or 2d.p consistently used
iii) Accuracy (1 mk)

Compare the school value to nay of the readings and award as follows
$I F \pm 0.1$ award 1 mk
IF ± 0.2 award $1 / 2 m k$
Outside ± 0.2 award 0 mk
iv) Principle of averaging (1 mk)

- Award 1 mk for consistent values averaged
- Penalize $1 / 2$ mk for rounding off the answer to $1 d . p$ unless it divides exactly
- Inconsistent values averaged - award 0 mk
v) Final answer 1mk
- Compare the averaged value to the school value

If ± 0.1 award 1 mk
If ± 0.2 award $1 / 2$ mk
If outside \pm award 0 mk

CALCULATIONS

a) $\underline{\text { Titre } 1+\text { Titre II + Titre III }=\text { Answer }}$ 3
b) RFM of acid $=2+2912)+4(16)+2(2+16)$

$$
=126
$$

If 500 cm 3 contains 6.3 g
1000 cm 3 contains?
$6.3 \times 1000=12.6 \mathrm{dm} 3$
Concentration $=12.6 \mathrm{~g} / \mathrm{dm} 3$
Or 0.1 M
c) Molarity of solution C

Acid	$:$	Alkali
1	$:$	2

If 1000 cm 3 contains 0.1 moles 25 cm 3 contains?
$\frac{25 \times 0.1}{1000}=0.0025$ moles

From mole ratio: 25 cm 3 of alkali contains
$0.0025 \times 2=0.005$ moles
If 25 cm 3 alkali contains 0.005 moles
100 cm 3 alkali contains $\underline{0.005 x 1000}$ 25
$=0.2$ moles
Molarity $=0.2 \mathrm{M}$
Procedure 2
TABLE 2
Marking should be done as in table 1

CALCULATION
a) $\frac{\text { Titre I }+ \text { Titre II + Titre III }}{3}=$ answer
b) 25 cm 3 of NaOH contains 0.005 moles

Mole ration 1 : 1
Moles of acid $=0.005$ moles
If Titre in (a) of solution D contains 0.005 moles
1000 cm 3 of solution D contains:
$0.005 \times 1000=$ answer in moles
Titre in a
c) 10 cm 3 of A contains moles in (b) above 1000 cm 3 of A contains
$\frac{\text { Ans in b } \times 100}{10}=$ Answer
NB This answer should be close or equal to 4.0M
Question 2
TABLE 3 (5 mks)
Distributed as follows
i) Complete table (1 mk)

- Award 1 mk for completely filled table (at least 8 values)
ii) Use of decimals
(2 mks)
- Use of decimals for temperature readings award 1 mk
- Use of correct decimals for time readings award 1 mk

NB Penalize $1 / 2$ mk if i/t is given as fraction
iii) Trends

Trend for temperature $1 m k$ (i.e. should be decreasing)
Trend for time $1 \mathbf{m k}$ (should be increasing)

GRAPH

Should be distributed as follows:

- Labelling the axes $1 / 2$ mk for both axes
- Scale $1 / 2$ mk (at least $3 / 4$ pg)
- Plotting I mk
- Shape (accept a curve and award 1 mk)

Question 3
Test for solid K

	Observations	Inferences
a)	- colorless liquid condenses at the cooler parts of the test tube - Cracking sound produced	- Presence of hydrated substance - Contains water of crystallization
b)i)	- White precipitate soluble in excess	- Al3+, Zn2+ or Pb2+ ions present 3 stated 1 mk, 2 stated $1 / 2$ mk
ii)	No white precipitate formed	- Presence of AL3+ and Zn2+ - NB must have been correctly inferred in part $b(i)$
iii)	White precipitate formed	Presence of SO2-4 or CL-
Mocks Topical Analysis eeducationgroup.com		278

	Test for solid F	Award 1 mk for any 2 Award $1 / 2$ mk for any $110 n$ given
c)	Effervescence or bubbles produced	Presence of H+, $\mathrm{H} 3 \mathrm{O}+$, $\mathrm{R}-\mathrm{COOH}$
d)	Decolorises acidified KMnO4 or turns KMnO4 to colourless	Presence of reducing agent $\begin{aligned} & C=C-C=C- \\ & \text { Or ROH, SO3 } \end{aligned}$
e)	Fruity or sweet smell	R-COOH confirmed

KISUMU DISTRICT
1.

	1	2	3
Final burette reading $\left(\mathrm{cm}^{3}\right)$			
Initial burette reading $\left(\mathrm{cm}^{3}\right)$			
Vol. of sol. C used $\left(\mathrm{cm}^{3}\right)$	22.9	22.9	22.9

(i) $C . T$
(ii) D.P $\quad 1 / 2 m k$
(iii) $\mathrm{Ac} \quad 1 m k$
(iv) AV1mk
(v) $F \quad 1 / 2 m k$
(a) (i) Average volume of $B \quad$ (above
(ii) Moles of NaOH solution $C=\frac{25 \times 0.4}{1000}=0.01$
(iii) Moles of HCl solution B
$\mathrm{NaOH}+\mathrm{HCl} \longrightarrow \mathrm{H}_{2} \mathrm{O}+\mathrm{NaCl}$
Ratio base : acid = 1: 1
$\boldsymbol{H C l}=0.01$
(ii) Molarity of HCl
$=\underline{0.01 \times 1000=a n s,}(a(i v)$
Ans (a) (i)
Table 1
(b) (i) $\frac{1.2+12+12}{3}=12 \quad$ (above)
(c) (ii) Moles of NaOH solution C

Ans (b) (i) $x 0.4=a n s$ b(ii)
1000
iii) Calculate the number of moles of hydrochloric acid in $200 \mathrm{~cm}^{3}$ solution D
$\mathrm{NaOH}(a q)+\mathrm{HCl}_{(a q)} \longrightarrow \mathrm{NaCl}+\mathrm{H}_{2} \mathrm{O}$
Mole ratio Acid: base $=1: 1$
In 25.0 cm solution of $\mathrm{HCl}=\mathrm{Ans}$ b(ii)
Moles of hydrochloric acid solution B contained in $25.0 \mathrm{~cm}^{3}$ of B
$\underline{200 x}$ ans (ii) $=$ ans (iii)
25
iv) Moles o hydrochloric acid solution B contained in 25.0 cm 3 of $B=25 x$ ans $a(i v)$

1000
$=$ ans. (b) (iv)
v) Moles of HCl that reacted with Calcium Carbonate
$=$ ans (b) (iv) - ans (b)(iii) (1/2 mk)
Mocks Topical Analysis eeducationgroup.com

$$
\mathrm{CaCO}_{3}+2 \mathrm{HCl} \longrightarrow \mathrm{CaCl}_{2}+\mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O}
$$

Mole ratio Carbonate: acid $=2: 1 \quad 1 / 2 m k$
Mole of calcium carbonate $=\frac{\text { ans.(b)(iv) }- \text { ans. (b) (iii) }}{2} \quad(1 / 2 \mathrm{mk})$
(vi) $R M M=100 \mathrm{~g}$

Mass in mixture $=100 \boldsymbol{x}$ ans (b) (v) $1 / 2$

$$
=\text { ans. (b) (vi) (1/2mk) }
$$

vii) \% of calcium carbonate in the $2 g$ mixture $=\underline{\text { ans }(b)(v i)} \boldsymbol{x} 100 \quad 1 / 2$ 2
$=$ ans. (vii) $\quad 1 / 2$
2.

Volume of T added $\left(\mathrm{cm}^{3}\right)$	0	5	10	15	20	25	30	
Volume of $S+\boldsymbol{T}\left(\mathrm{cm}^{3}\right)$	20	25	30	35	40	45	50	
Temperature of mixture ($\left.{ }^{\circ} \mathrm{C}\right)$								


```
    c) (i) from graph 1/2
            (ii) Highest temp-lowest temp (from graph)
            (d) 50x{[ac(ii)] x 4.2 = ans. D
            (e) No. of moles of T used = c(i) x 1
                                    1000
            =ans. (e)
    (f) No. of moles used
    NaOH}+\textrm{HCl}\longrightarrow\textrm{NaCl}+\mp@subsup{\textrm{H}}{2}{}\textrm{O
    Mole ratio 1:1
    =ans(e)=ans (f)
    (g) and (f) moles liberate (and d) J
    (\frac{1 mole and (d) x 1}{\mathrm{ Ans (f) x 1000 }})
=-Ans (g) KJmole-1
```

3.

Observation	Inference
(a) Brown gas formed $1 / 2$ Blue litmus paper turns red/red litmus paper remains red	NO_{3}^{-}present ${ }^{1 / 2}$
(b) Partly dissolves/blue ppt do not dissolve $1 / 2$	Soluble and insoluble salt
(c) (i) Partly soluble in excess (ii) Yellow ppt	$\begin{aligned} & \boldsymbol{A l}^{3+} / \mathrm{Pb}^{2+} / \mathrm{Zn}^{2+} \\ & \mathrm{Pb}^{2+} \end{aligned}$
(d) (i) Effervescence (ii) Blue ppt, insoluble in excess	$\mathrm{CuO}_{3}{ }^{2-}$ suspected Cu $2+$ suspected
(e) Blue ppt, dissolves 1/2 Deep blue solutión	Cu2+ confirmed

RACHUONYO DISTRICT

1. a) Moles of Hcl present in $50 \mathrm{~cm}^{3}=\frac{50 \times 1}{1000}=0.05 \mathrm{moles}$
i) Complete table (1 mark)

- 3 titrations done-
- 2 titrations done
- 1 titration done

NB: Penalise $1 / 2$ mark to a max of $1 / 2$ mark for;

- inverted table
- wrong arithmetic
- burette readings beyond $50 \mathrm{~cm}_{3}$ except where explained
- Unrealistic (below 1 cm3)
ii) Use of decimals (1 mark)
- 1d.p or 2 d.p throughout
- for 2 d.p the $2^{\text {nd }}$ digit is either 0 or 5 otherwise penalize fully
iii) Accuracy (1 mark)
- Compare to teachers values. If any is within;
0.1 of teachers value
0.2 Of teachers value

Beyond 0.2 of teacher value
iv) Averaging

If 3 averaged within 0.2 of each other
If 2 averaged within 0.2 of each other
If 3 or 2 averaged but outside 0.2 of each other
v) final answer (1 mark)

Compare to teachers average title. If within;
0.1 of teachers value
0.2 of teachers value

Beyond 0.2 of teachers value
c) i) Volume of $\mathrm{NaOH}=\frac{\text { Title } \times 250}{25}$

$$
=\text { correct ans } 1 / 2
$$

ii) Moles of $\mathrm{NaOH}=\underline{\text { Ans c (i) } \times 0.1}$

$$
=\text { correct ans } 1 / 2
$$

d) $\mathrm{NaOH}(a q)+\mathrm{HCL}(a q) \longrightarrow \mathrm{NaCL}(a q)+\mathrm{H} 2 \mathrm{O}(\mathrm{s})$
e) $\mathrm{NaOH}: \mathrm{Hcl}=1: 1$

Moles of $\mathrm{HCL}=$ Moles Of $\mathrm{NaOH}=$ Ans in C (ii)
f) Moles of HCl that reached with $\mathrm{CO}_{3}{ }^{2}=0.05-\mathrm{Ans} \mathbb{C}, 1 / 2$ mark

Correct aswer $1 / 2$ mark
OR
Ans (a)-Ans (e) = correct Ans
g) i) $\mathrm{CO}_{3^{2-}}{ }_{(a q)}+2 \mathrm{H}+\mathrm{Aq} \quad \mathrm{Co}_{2}+\mathrm{H}_{2} \mathrm{Oi}$
ii) Moles of $\mathrm{CO}_{3}{ }^{2-}=\frac{\operatorname{Ans}(f)}{2}$

$$
=\text { correct Ans }
$$

iii) Molar mass $=\underline{1.5}=$ correct answer

Ansg (ii)
2.
a) Table 2
(6 marks)
i) Complete table
ii) Accuracy 2.0 c of the teachers $1^{\text {st }}$ value $1 / 2$
iii) Use of decimals

Accept to 1 d.p or whole number for temp reading for $1 / 2$
Award o mk if the $2^{\text {nd }}$ decimal point is not zero or 5. Reject 2 d.p
iv) Trend- Temperature readings to decrease continuously

Time to increase continuously
b) Graph
i) Labelled axes
(3 marks)
ii) Scale

NB Area occupied by the actual plots should be at least $1 / 2$ of the total big squares along the horizontal axis by at least $1 / 2$ of the total big squares along the vertical axis
iii) Plots
iv) Curve
c) From the graph
d) From the graph
e) The higher the temperature the higher the rate of reaction

3

Observation	Inferences
White powder $1 / 2$	$\boldsymbol{F e}^{2+}, \boldsymbol{F e}^{3+}$ and $\boldsymbol{C u}^{2+}$

b)

Observation	Inferences
	Mixture of soluble and insoluble salt

i)

Observation	Inferences
No white precipitate $1 / 2$	$\mathbf{Z n}^{2+}, \boldsymbol{A l}^{3+}, \boldsymbol{P b}^{2+}, \mathbf{M g}^{2+}, \boldsymbol{C a}^{2+}$

ii)

Observation	Inferences
Yellow flame	$\mathbf{N a}^{+} 1 / 2$ present

iii)

Observation	Inferences
White precipate	SO $_{4}{ }^{2-}$ present

c)

Observation	Inferences
- Effervescence/ hissing sound $1 / 2$	
- Colorless gas forms white precipitate with calcium hydroxide ${ }^{1 / 2}$	$\boldsymbol{C O}_{3}{ }^{2-}$ present $1 / 2$
- Solid dissolves to give colourless solution	

d)

Observation	Inferences
White precipitate $1 / 2$ soluble in excess	$\boldsymbol{P b}^{2+}, \mathbf{Z n}^{2+}$ or $\mathbf{A l}^{\mathbf{l}^{+}}$

ii)

Observation	Inferences
White precipitate insoluble in excess	$\boldsymbol{P b}^{2+}$ or $\boldsymbol{A l}^{3+}$

iii)

Observation	Inferences
Yellow precipitate	$\boldsymbol{P b}^{2+}$ present

KAKAMEGA NORTH DISTRICT
Procedure;
TABLE A;

Initial temp of CuSo4(c)	25.5
Final temp of CuSO4	31.0
Temp change $T(C)$	5.5

TABLE B;

Initial temp of CuSo4(c)	25.5
Final temp of CuSO 4	48.0
Temp change $\boldsymbol{T}(\mathrm{C})$	22.5

a) i) Exothermic// there is temperature rise heat energy is released to the environment ii) Moles of CuSO4(aq) $=0.2 \times 25 / 1000 \quad=0.005$
b) i) $\Delta H=25 \mathrm{gx}_{4} .2 \mathrm{Jg}^{-1} \mathrm{~K}^{-1} x 5.5 \mathrm{~K}(\mathrm{OR} \Delta \mathrm{T})$
c) i) Powdered metals have increased surface are many metal particles with come in contact
with HCL acid and react
ii) Grey// metallic grey
d) - Metal A dissolves in CuSO4(aq) solution and a green/ pale green solution is formed

- The blue colour of copper (II) sulphate solution fades/disappears. Brown solid
deposited
- Metal A displaces copper; from its solution implying that $A(q)$ is more reactive than $\boldsymbol{C u}_{(s)}$
e) i) $\Delta H=25 g x 4.2 \mathrm{Jg}^{-1} \mathrm{~K}^{-1} x \Delta T(22.5) K=2362 \mathrm{JJ}$

$$
\begin{aligned}
& \text { If } 0.5 g _\frac{2362.5 \mathrm{~J}}{\therefore 65 g} \frac{(65 \times 2362.5) \mathrm{J}}{0.5} \quad=307125 \mathrm{~J} \mathrm{~mol} \quad=307.125 \mathrm{KJmol}
\end{aligned}
$$

ii) B, A
\qquad Decreasing reactivity

B gave higher $\Delta T / /$ more heat energy was released when B reacted with CuSO4(aq)

Procedure;

Table of results

EXPERIMENT	I	II	III
Final Vol. of solution C (cm3)			
Initial Vol.of solution C (cm3)			
Vol.of solution C used (cm3)			

1. a) Volume of pipette $=25 \mathrm{~cm} 3$
b) Average volume of $C=\frac{38.5+38.5+38.5}{3}=\frac{115}{3}=38.5$
c) Moles of solution $C=0.1 x^{38.5 / 1000}=0.00385$
d) i) $\mathrm{HCL}_{(a q)}+\mathrm{MOH}_{(a q)}$ \qquad $M C L_{(a q)}+H_{2} O_{(L)}$

Penalize $1 / 2$ for wrong or missing s
ii) $\mathrm{H}_{(a q)}^{+}+\mathrm{OH}_{(a q)} \quad \mathrm{H}_{2} \mathrm{O}_{(\mathrm{L})}$
iii) $\boldsymbol{H C L}_{(a q)} \quad: \quad \mathbf{M O H}_{(a q)}$

Mocks Topical Analysis eeducationgroup.com

1	$:$	1
0.00385	$:$	0.00385

e) $\frac{M_{A} V_{A}}{M_{B} V_{B}} \quad=\underline{1}(M R) \quad$ where $A=H C L_{(a q)} \quad B=M O H_{(a q)}$

$$
\text { Therefore } M_{B}=\frac{0.1 \times 38.5 \times 1}{25 \times 1}=1.54
$$

ii) R.M.M $=\underline{\text { mass per litre }}=\frac{6.16}{0.154}=40$
iii) $\mathrm{MOH}=40$
$M+17=40$
$M=40-17=23$

Observation	Inference
a) White fine crystal solid	Absence of coloured salts e.g. $\mathrm{Cu}^{2+}, \mathrm{Fe}^{2+}$ or Fe^{3+} absent
b) E dissolved to form a colourless solution	E is a soluble salt
i) No observable change No ppt	Absence of insoluble hydroxides
ii) No observable change No ppt	Absence of ions that form isol. Ppt with $\mathrm{NH}_{3(a q)}$
iii) White ppt. insoluble in acid	SO4- ions present So $_{3}{ }^{2-}$ ions absent
iv) White ppt. insoluble in acid	Confirms the presence of $\mathrm{SO}_{4}{ }^{2-}$ ions
v) Nichrome wire burns with a yellow flame	Confirms the presence of Na^{+}ions

BUTERE DISTRICT

TABLE 1

1. Complete table

Penalties

- Unrealistic burette reading.
- Arithmetic error
- Inverted table.

N/B Penalize $1 / 2$ mk each to a max. of $1 / 2 m k$
2. Use of decimal.

- Consistent 1 d.pt. or 2 d.pt. -
- If 2 d.pt. the last digit must be zero or five.
- Otherwise award 0
- Accept the consistency of zero.

3. Accuracy

- Tied to the school value.
- Check any of the titre readings.
(i) If any of them is within ± 0.1 from S.V. award
(ii)If within ± 0.2 unit award $-(1 / 2 \mathrm{mk})$.
(iii) If outside ± 0.2 unit award zero.

4. Principle of Averaging.
(i) 3 consistent values average -
(ii) 2 consistent values averaged - ($1 / 2 \mathrm{mk}$)
(iii) Otherwise award 0.

Penalties
(i) Answer should be at least 2 d.p. unless divided exactly.
b) No. of moles $M_{2}=\underline{a n s(a) x 1} \sqrt{1000}$

Correct ans. $\sqrt{ } 1$
c) $2 \mathrm{H}^{+}(\mathrm{aq})+\mathrm{CO}_{3}{ }^{2-}(a q) \longrightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{l})+\mathrm{CO}_{2}(\mathrm{~g})$
(i) Balancing $=1 / 2 \boldsymbol{m k}$
(ii) States $($ correct $)=1 / 2 \boldsymbol{m k}$
d) Moles of base $=1 / 2 x$ ans. (b) $\sqrt{ } 1 \mathrm{mk}$

$$
=\text { correct answer } \checkmark 1 \mathrm{mk}
$$

e) Concentration $=$ answer in (d) $\times \frac{1000}{25} \quad \sqrt{ } \mathrm{mk}$ 25
$=$ Correct answer $\sqrt{ } 1 \mathrm{mk}$
f) Mass of $\mathrm{Na}_{2} \mathrm{CO}_{3}=106 \times \mathrm{ans}$. (e) $\checkmark 1 \mathrm{mk}$
$=$ Correct answer $\sqrt{ } 1 \mathrm{mk}$
g) Mass of $\mathrm{NaCl}=95$ - ans. (f) (1/2)
$\%$ of $\mathrm{NaCl}=\frac{95-\text { ans. (f) }}{95} \times 100$
= Correct answer $\sqrt{11 / 2}^{1 / 2}$
2. a) TABLE 2
(i) Complete table 1 mk
(ii) Accuracy to S.V. 1 mk
(iii) Decimal $1 m k$
(iv) Trend. $1 \mathbf{m k}$
b) Graph

Labeling - 1 mk
Plotting - 1 mk
Scale-1mk
Shape - 1 mk
c) (i) -Shown in graph
(1/2mk)

- Correct reading
($1 / 2 m k$)
(ii) ΔT shown in graph -
($1 / 2 m k$)
Correct answer from graph - (1/2 mk)

$$
\text { d) } \Delta H=M C \Delta T=(23+c(i) \times 4.2 \times c \text { (ii) } \checkmark 1 \mathrm{mk}
$$

Correct answer
e) Moles $=\frac{1 \times 23}{1000} \sqrt{1} 1 / 2^{100} \mathbf{0 . 0 2 3 \text { moles } \checkmark ^ { 1 / 2 }}$
f) Molar heat $=\underline{1 \times \text { ans. (d) } \sqrt{ } 1}$
ans. (e)
$=$ Correct answer. $\sqrt{ } 1$

	Observation	Inferences
a)	Colourless solution forms $\checkmark 1$	Soluble salt/ Absence of coloured ions $/ \mathrm{Fe}^{2+}, \mathrm{Fe}^{3+}, \mathrm{Cu}^{2+}$ absent $\sqrt{ } 1$
b)	White ppt $\sqrt{ } 1$ soluble $\sqrt{ } 1$ in excess	$\mathrm{Ba}^{2+}, \mathrm{Pb}^{2+}, \mathrm{Zn}^{2+}$, or Al^{3+} present. $\checkmark 1$
c)	White ppt. insoluble in excess. $\sqrt{ } 1$	$\mathrm{Ba}^{2+}, \mathrm{Pb}^{2+}$, or Al^{3} present. $\sqrt{ } 1$
d)	No white ppt. // no ppt. $\checkmark 1$	$\mathrm{SO}_{4}{ }^{2-}$ absent. $\sqrt{ } 1$

CALCULATIONS

b. (i) Moles of soltn $P=\underline{\text { average titre } x^{\imath} 0.2} \quad 1 / 2 \mathrm{mk}$

$$
=\text { correct Ans. } 1 / 2 m k
$$

b. (ii) $\mathrm{NaOH}_{(a q)}+\mathrm{HCL}_{(a q)} \longrightarrow \mathrm{NaCl}_{(a q)}+\mathrm{H}_{2} \mathrm{O}_{\text {(l) }}$

Mole ratio= NaOH: HCl is $1: 1^{\checkmark}$
$\begin{aligned} \therefore \text { Moles of } \mathrm{NaOH} \text { soln } S & =\frac{1}{1} x \text { Ans. } b(i)^{\checkmark} \quad 1 / 2 \mathrm{mk} \\ & =\text { corr. Ans. }\end{aligned}$
b. (iii) $\quad 25 \mathrm{~cm}^{3}$ soltn. $S=$ Moles in Ans. b(ii) $100 \mathrm{~cm}^{3}$ soltn. $S=$?

$$
\begin{aligned}
& =\frac{100}{25} x \text { Ans. b(ii) } 1 / 2 m k \\
& =\text { Correct Ans. } \quad 1 / 2 m k
\end{aligned}
$$

(c) $100 \mathrm{~cm}^{3} \longrightarrow$ soltn S Moles in Ans. b(iii) \checkmark
$200 \mathrm{~cm}^{3}$ Soltn $S \longrightarrow \frac{200}{100} x$ moles in Ans. b(iii) $1 / 2 m k$
\therefore moles in $25 \mathrm{~cm}^{3} \mathrm{NaOH}=\underline{\underline{200}} \mathbf{x}$ moles in Ans. b.(iii) $1 / 2 \mathrm{mk}$
$=2 x$ moles n Ans. b(iii)
$=$ Correct Ans. ${ }^{\checkmark} \quad 1 / 2 m k$
(f) Moles of R in $25 \mathrm{~cm}^{3}=$ Ans. (e)

Moles of R in $1000=$?

$$
\begin{aligned}
& =\frac{1000}{25} \times \text { Ans }(e) \quad 1 / 2 m k \\
& =\text { corr. Ans. }
\end{aligned}
$$

(g) (i) Molar mass of $\mathrm{H}_{2} \mathrm{SO}_{4}=\underline{49 \times 1}$

Moles in (f)
= Corr. Ans.
(g) (ii) Let R.A.M of A be equal to a

$$
\begin{aligned}
\therefore 2+a & =\text { Ans. } \quad g(i) \\
a & =\text { Ans. } g(i)-2 \\
& =\text { Corr. Ans. }
\end{aligned}
$$

2. (a) Table III.

- Distributed as follows:-

Complete table

- All columns filled $\quad 1 m k$
- Any 4 correctly filled $\quad 1 / 2 m k$
- Otherwise penalize fully

Accuracy.
Compare candidate's initial temperature with S. V; if with ± 0.2 units award $1 m k$, otherwise penalize fully.
Trend........................ $1 m k$
Award $1 m k$ for, increase then constant
(b) Award 4mks distributed as follows

Correct labelling............... $1 m k$
Correct plotting...............1mk
Curve/line.........................1mk
Appropriate scale............ $\frac{1 m k}{4 m k s}$
(c) (i) Award $1 m k$ for correct reading
(ii) Highest temperature-initial temp = corr.ans.
(d) Heat change $=M C \Delta T$

$$
\begin{equation*}
=\operatorname{corr} A n s(1 / 2 m k) \tag{1/2mk}
\end{equation*}
$$

(e) No. Vol. from highest temp change
(f) Moles used $=\underline{\text { vol. }}$ in (e) $\times 10$

1000
= Corr. Ans.
\therefore Moles in (f) produce \longrightarrow heat change (d)
I mole = ?
$=\frac{1 \times \text { Heat change in (d) }}{\text { Moles in }(f)}$
$=$ Correct answer $(1 / 2 m k)$
3. (a) Observations

Inferences

- Dissolyes $1 / 2 m k$ to form a colourless \quad - Absence of coloured ions e.g. $\mathrm{Cu}^{2+}, \mathrm{Fe}^{2+}, \mathrm{Fe}^{3+}$
Solution $1 / 2 m k$
i) To the first portion, add Nitric acid followed by Barium nitrate solution.

Observations

$$
1 / 2 \quad \checkmark 1 / 2
$$

White ppt, insoluble in nitric acid

Inferences
SO^{2-} ions present
4
ii) To the second portion, add Nitric acid, followed by lead(ii) Nitrate solution

Observations
Inferences
SO^{2-} confirmed
eeducationgqoup.com

White ppt, $1 / 2 \mathrm{mk}$ insoluble in nitric acid
$1 / 2 \mathrm{mk}$
iii) To the third portion, add a few drops until in excess

Observations
White $\mathrm{ppt}, 1 / 2 \mathrm{mk}$ soluble in excess $1 / 2 \mathrm{mk}$

Inferences

N/B - All three mentioned - 1mk Any two mentioned - $1 / 2 m k$ $\mathrm{Al}^{3+}, \mathrm{Pb}^{2+}$ or Zn^{2+} present Only 1 mentioned - Omk
iv) To the fourth portion, add a few drops until in excess

Observations
White \mathfrak{p} pt, $1 / 2 \mathrm{mk}$ soluble in excess $1 / 2 \mathrm{mk}$

Inferences
Zn^{2+} confirmed

TRANSNZOIA WEST DISTRICT

Q1. i) Complete table with 3 titrations done - 1 mark
ii) Incomplete table with 2 titrations done - $1 / 2$ mark
iii) Incomplete table with 1 titration done - 0 marks

Penalties

i) Wrong arithmetic
ii) Inverted table
iii) Unrealistic values

Penalize $1 / 2$ mark for each to maximum of $1 / 2$ mark

Decimals (1 mark)

Conditions
i) Accept either 1 or 2 decimal point constitently.
ii) If 2 decimal point used the $2^{\text {nd }}$ decimal point can only be 0 or 5

Accuracy 1 mark
Compare any litre values in the $3^{\text {rd }}$ row with the school value (sv)

Conditions

i) If within I 0.1 cm 3 of $S . V \quad 1$ mark
ii) If within I 0.2 of $S . V$
iii) Beyond I 0.2 of SV

1/2 mark
0 mark
N.B If there is wrong arithmetic in the table compare the $S V$ with the correct value and credit accordingly
d) Principle of averaging
1 mark
Values averaged must be shown and must be within I 0.2 cm 3 of each other

Conditions

i) 3 values averaged and consistent - 1 mark

Mocks Topical Analysis \quad eeducationgroup.com 289
ii) 3 values done and only 2 possible averaged 1 mark
iii) 2 titrations done and averaged

1 mark
iv) 2 titrations done inconsistent

1/2 mark
v) $\mathbf{3}$ titrations done and possible but only two averaged

0 mark
e) Final answer

1mark
NB Compare the $S V$
i) If within 10.1 of SV 1 mark
ii) If within I 0.2 of $S V$

1/2 mark
If beyond I 0.2 of SV 0 mark
If the candidate has averaged wrong values, pick the correct value if any, average and credit accordingly
B. $\quad \boldsymbol{H B}(a q)+\mathrm{NaOH}_{(a q)}$ \qquad $\mathrm{NaB}_{(a q)}+\mathrm{H}_{2} \mathrm{O}_{(\mathrm{L})}$

1 mark
C.
i) $\underline{0.2075 X \text { Volume }}=$ Moles

1 mark 1000
ii) Reacting ratio 1: 1
\therefore Moles of T $=$ answer in C (i) above
iii) Answer in b(ii) above $X \underline{1000}$

25
d) i) 1.62425 g \qquad 250 cm 3
$6.497 \mathrm{~g} / \mathrm{l}$ 1000 cm 3 $M=g / l$ Mm $\therefore m m=6.497$

Answer in b(ii) above
ii) $H B=$ answer in d(ii) -1

$$
B=
$$

Question 2.

1. $120 \mathrm{~cm}^{3}$ of solution R
2. $80 \mathrm{~cm}^{3}$ of solutions
3. $250 \mathrm{~cm}^{3}$ of tap water
4. 25 or 50 ml measuring cylinder
5. $100 \mathrm{~cm}^{3}$ glass beaker
6. $5 x 5 \mathrm{~cm}$ piece of white paper
7. Stop watch or clock

Q2. Table II

Experiment	1	2	3	4	5
Time for ribbon to disappear (sec)	12	18	22	32	96
i / t	0.083	0.0560	0.045	0.03125	0.0104

a) Table

Marking areas
i) Complete table

Penalties

- Penalize $1 / 2$ mark for each space not filled
- Reject fractions for $i \not / t$ and award a max of $1 \frac{1}{2}$ for table
- If fractions appear followed by an extra column of decimals, ignore the fractions and award accordingly
- Penalize $1 / 2$ mark each for wrong arithmetic in the value of i / t not within an error of +2 units in the $3^{\text {rd }}$ decimal place unless it divides exactly
- Accept reciprocals given to at least 3 decimal places otherwise penalize $1 / 2$ mark each for rounding off to the $2^{\text {nd }}$ decimal place to a max of 1 mark unless it divides exactly
- Penalize $1 / 2$ mark for every reading <5 and >120 seconds in the time row
- Penalize $1 / 2$ mark for each entry not in seconds
ii) Use of decimals
(Tied to the $4^{\text {th }}$ row only)
- Accept a whole numbers or decimals up to the $2^{\text {nd }}$ decimal place only used consistently, otherwise penalize fully
iii) Accuracy
(Tied up to the $4^{\text {th }}$ row only)
- Compare the candidates $1^{\text {st }}$ reading to the $S . V$ and if within +2 sec, award 1 mark, otherwise penalize fully
iv) Trend
(Tied to the $4^{\text {th }}$ row only)
- Award 1 mark if time is continuously increasing otherwise penalize fully
b) Graph
i) Labeling of both axes

Condition

- Penalize $1 / 2$ mark for wrong units used in any of the axis
- Penalize 1 12 mark for inverted axes
- Accept if units are not shown. Otherwise if shown they MUST be correct
- Both axes MUST be labeled
ii) Scale
- Area covered by the actual plots including the origin should be $2 / 3$ more of the squares provided in both axes
- The scale interval should be consistent
iii) Plotting
- Award 1 mark if 4 or 6 plots are correctly plotted
- Award $1 / 2$ mark if 2 or 3 plots are correctly plotted
- Accept plots even if the axes are inverted
- Accept rounding off the values of i/t to the $3^{\text {rrd }}$ decimal point when plotting
iv) Line
- Accept a straight line passing through at least 2 points correctly plotted and through the origin (0,0) for 1 mark or if extrapolated can pass through the origin
c) - Showing i / t on the graph
- Stating the correct reading of i / t at $36 \mathrm{~cm}^{3}$
- Applying the expression that time $=i / t$ correct reading

Correct answer

d) Rate decrease with decrease in concentration of hydrochloric acid or vice versa

OR
Rate and concentration are directly proportional
Condition

- Tied to the correct graph or trend in the table
- If volume is used in place of conc. Award $1 / 2$ mark

Mocks Topical Analysis eeducationgroup.com
3. a)

Observations	Inferences
a) White solid sublimes	Chloride of AL^{3+} or NH_{+4}
b) White solid dissolves to form a colourless solution that turns blue litmus red	AL ${ }^{3+}$ ions
i) No white ppt formed	$\mathrm{SO}_{4}{ }^{-2}$ or $\mathrm{SO}_{2}{ }^{-3}$
ii) A white ppt is formed which is insoluble in excess but dissolves on warming	CL present
iii) A colourless gas with a pungent smell and which turns moist red litmus blue is given off. A white ppt is formed which is soluble in excess NaOH	NH4+ present AL3+ present
A white ppt is formed which is insoluble in excess aqueous ammonia	AL3+ confirmed

b)

Observations	Inferences
i) Brown colour of bromine water is decolourized - Accept bromine water become colourless	
Effervescence/ bubbles/ fizzing sound	\boldsymbol{H}^{+}present -COOH present
Orange colour of potassium dichromate VI remain unchanged	OH present

iii) To the third portion add a few drops of acidified potassium dichromate (VI)

Q 1. Table 1 (5 mks)
a) Complete table (1 mk)

- Penalize $1 / 2$ mk for arithmetic error or unrealistic value to a maximum of $1 / 2$ marks
b) Use of decimal (1 mark)
- Candidates to use 1 d.p or 2 d.p throughout in $1^{\text {st }}$ and $2^{\text {nd }}$ rows
c) Accuracy (1 mark)
± 0.2 the $S . V \sqrt{1} / 2$ NB Any one value from the table
± 0.1 the $S . V \sqrt{ } 1$
d) Principles of averaging (1 mark)
$\frac{-I+I I+I I I}{3} \quad \sqrt{1} / 2$
- Correct answer $\sqrt{1} 1 / 2$
e) Final answer

Average of the candidate compared with school value (S.V)

$$
\begin{aligned}
& \pm 0.2 \sqrt{1} / 2 \\
& \pm 01 \sqrt{ } 1
\end{aligned}
$$

ii) Moles of $N=\underline{25 \times 0.1} \sqrt{1} 1 / 2$ 1000 $=0.0025 \sqrt{ } 1 / 2$
iii) $\mathrm{HCL}_{(a q)}+\mathrm{NaOH}(a q) \longrightarrow \mathrm{NaCL}_{(a q)}+\mathrm{H}_{2} \mathrm{O}_{(L)}$

Balanced $\sqrt{ } 1 / 2$
State symbols $\sqrt{1} 1 / 2$
iv) $\mathrm{HCL}: \mathrm{NaOH} \sqrt{ } 1$

1 : 1
Moles of $M=\frac{1 \times 0.0025}{1} \quad \sqrt{1} / 2$

$$
=0.0025 \sqrt{ } 1 / 2
$$

v) Average titre \qquad 0.0025
$1000 \mathrm{~cm}^{3} \longrightarrow$
$=1000 \times 0.0025 \sqrt{ } 1 / 2$ Average titre
$=$ Correct answer $\sqrt{1} 1 / 2$
vi) $\quad \frac{\operatorname{Answer}(V) \times 36.5}{1} \sqrt{1 / 2}$
$=$ Correct answer $\sqrt{1} 1 / 2$
Table II
a) As in table I
b) $\frac{\text { Answer in (v) } x \text { Titre }}{1000} \quad \sqrt{1 / 2}$ 1000
$=$ Correct answer $\sqrt{1} 1 / 2$
c) $2 \mathrm{HCL}_{(a q)}+\mathrm{Na}_{2} \mathrm{CO}_{3(a q)} \longrightarrow 2 \mathrm{NaCL}_{(a q)}+\mathrm{H}_{2} \mathrm{O}_{(q)}+\mathrm{CO}_{2(g)}$ Balanced $\sqrt{ } 1 / 2$
State symbol $\sqrt{ } 1 / 2$
d) $\mathrm{HCL}: \mathrm{Na}_{2} \mathrm{CO}_{3}$
$2: 1 \sqrt{ } 1$
$\underline{1 x \text { Answer in (b) } \sqrt{1 / 2}}$ 2
$=$ Correct answer $\sqrt{ } 1 / 2$
e) $\frac{1000 x \text { Answer in (d) } \sqrt{1} / 22}{25}$

$$
25
$$

$=$ Correct answer $\sqrt{ } 1 / 2$
f) $14.3 \mathrm{~g} /$ litre $\sqrt{ } 1$
g) $R+M=\frac{\text { Mass in } g / h}{\text { Molarity }}$

$\frac{\text { Molarity }}{=14.3}$| Answer in (e) |
| :--- |
| $=$ Correct answer $\sqrt{1} 1 / 2$ |$\quad \sqrt{1} 2$

h) Answer in (g) $=106+18 x \quad \sqrt{1 / 2}$

$$
\begin{aligned}
18 x & =\text { Answer in }(g)-106 \\
x & =\frac{\text { Answer in }(g)-106}{18} \sqrt{1} / 2 \\
& =\text { Correct answer } \sqrt{ } 1(\text { should be a whole number) }
\end{aligned}
$$

Q 2. Table

Each entry $1 / 2$ mark

- Penalize $1 / 2$ mark to a maximum of 1 mark for unrealistic values
- Penalize $1 ⁄ 2$ mark mixing decimal numbers and whole numbers
a) i) Labeling ($1 / 2$ mark)
ii) Scale ($1 / 2$ mark)
iii) Plotting (2 marks)
iv) Line/ curve (1 mark)
b) \quad i) $1 . x 5 \quad \sqrt{1} / 2$ 1000

```
    \(=0.005 \sqrt{1} 1 / 2\)
    c) \(\boldsymbol{P b}^{2+}\) : \(\boldsymbol{I}^{-}\)
        0.0025: \(0.005 \sqrt{ } 1\)
        \(1: 2 \sqrt{ } 1\)
    d) \(\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2(a q)}+2 \mathrm{KI}_{(a q)} \longrightarrow P b I_{(s)}+2 \mathrm{KNO}_{3(a q)}\)
    Balanced \(\sqrt{ } 1\)
    States symbol \(\sqrt{ } 1\)
    e) \(\boldsymbol{P b}^{2+}{ }_{(a q)}+2 \boldsymbol{I}(a q) \longrightarrow \boldsymbol{P b I}_{2(s)}\)
    Balance \(\sqrt{1} 1 / 2\)
    States \(\sqrt{1} 1 / 2\)
f) To make the setting of precipitate faster \(\sqrt{ } 1\)
```

