233/1
CHEMISTRY
Paper 1
Mock Exams
March/April, 2015
2 hours

MOKASA JOINT EVALUATION EXAMINATION
Kenya Certificate of Secondary Education
Mock Examination – March/April 2015
Form 4
Chemistry Paper 1
Time: 2 Hours

INSTRUCTION TO CANDIDATES:

1. Answer ALL the questions in the spaces provided.
2. Mathematical tables and silent electronic calculators may be used.
3. All working must be clearly shown where necessary.

<table>
<thead>
<tr>
<th>Question</th>
<th>Maximum Score</th>
<th>Candidate’s Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-27</td>
<td>80</td>
<td></td>
</tr>
</tbody>
</table>
1. The diagram below shows parts of a Bunsen burner.

![Bunsen Burner Diagram]

a) Name the parts labelled (½ mark)
 A ...
 B ...

b) Give one use of the part labelled B (1 mark)
 ..

2. Hydrated copper (II) sulphate exists as blue crystals while anhydrous copper (II) sulphate is a white powder. Describe a laboratory experiment that can be used to show that the action of heat on hydrated copper (II) sulphate is a reversible reaction (2 marks)

3. A piece of burning magnesium ribbon was placed in a gas jar full of Nitrogen gas. The product Q formed was then reacted with water.
 a) Write the chemical formula for the product Q (1 mark)

 b) Write the equation for the reaction between product Q and water (1 mark)

 c) Using dot (•) and cross (x) diagrams to represent electrons, draw the structure to show bonding in nitrogen molecule (1 mark)
4. (i) What are isotopes (1 mark)
 ..
 ..

(ii) Element Y (not the actual symbol of the element) has two isotopes with mass number 6 and 7. If the relative atomic mass of Y is 6.94, determine the percentage abundance of each isotope (2 marks)
 ..
 ..

5. Given zinc oxide, dilute nitric (V) acid and sodium carbonate solution. Briefly describe how you can prepare zinc carbonate (3 marks)
 ..
 ..
 ..

6. The elements shown in the table below (not actual symbols) belong to a certain family of metals in the periodic table. Study the information and answer the questions that follow.

<table>
<thead>
<tr>
<th>Element</th>
<th>Atomic size (nm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>S</td>
<td>0.160</td>
</tr>
<tr>
<td>T</td>
<td>0.180</td>
</tr>
<tr>
<td>V</td>
<td>0.930</td>
</tr>
</tbody>
</table>

(i) Define the term ionization energy (1 mark)
 ..

(ii) Which element is likely to have the highest ionization energy. Explain (2 marks)
 ..
 ..

7. A certain mass of copper (II) carbonate was strongly heated.
 a) Write a balanced chemical equation for the reaction (1 mark)
 ..
 ..
 b) Given that 300cm³ of carbon(IV) oxide gas was collected at s.t.p. and this represents 83% yield, determine the mass of copper (II) carbonate heated. (molar gas volume = 22.4dm³, Cu=64, O=16, C=12) (3 marks)
 ..
 ..
8. (i) Give the IUPAC names for the following organic compounds

a) \[\text{H} - \text{C} - \text{C} - \text{C} \equiv \text{C} - \text{C} - \text{H} \] (1 mark)

b) \[\text{CH}_3 \text{CH}_2 \text{CH}_2 \text{C} - \text{OH} \] (1 mark)

c) \[\text{CH}_3 \text{CH}_2 \text{C} - \text{O} - \text{CH}_2\text{CH}_2\text{CH}_3 \] (1 mark)

(ii) A polymer has the following structure

A sample of this polymer is found to have a molecular mass of 2184. Determine the number of monomers of the polymer. \((C = 12, H = 1) \) (3 marks)

9. During an experiment, chlorine was bubbled into a solution of sodium bromide in a beaker

a) State and explain one observation made (2 marks)

b) Write an ionic equation for the reaction that took place in the beaker (1 mark)
10. Hardness of water may be removed by either boiling or addition of chemicals.
 a) Write down an equation to show how boiling removes hardness of water (1 mark)
 ..
 ..
 ...
 b) Name two chemicals that are used to remove hardness of water (2 marks)
 ...
 ...

11. i) Define solubility (1 mark)
 ..
 ...

 ii) 115g of a saturated solution at 65°C is found to contain 65g of potassium nitrate. Calculate the solubility of potassium nitrate at 65°C. (2 marks)
 ..
 ...
 ...

12. The equation for the reversible reaction of Bismuth (III) chloride in water is
 \[\text{BiCl}_3(\text{s}) + \text{H}_2\text{O}(\text{l}) \rightleftharpoons \text{BiOCl}(\text{s}) + 2\text{H}^+_{(\text{aq})} + 2\text{Cl}^-_{(\text{aq})} \]
 a) State Le chatelier’s principle (1 mark)
 ..
 ...

 b) What would be the effect of adding NaOH pellets to the equilibrium mixture. Explain. (2 marks)
 ..
 ...

13. In the equation, below identify the reagent that acts as an acid in the forward reaction. Give a reason.
 \[\text{NH}_4^+_{(\text{aq})} + \text{H}_2\text{O}(\text{l}) \rightleftharpoons \text{NH}_3(\text{aq}) + \text{H}_3\text{O}^+_{(\text{aq})} \]
 (2 marks)
 ..
 ...

14. In preparation of oxygen gas, a student used hydrogen peroxide and added a black solid and collected the gas over water.
 a) What is the name of the black solid and what is its function (1 mark)
 ..
 ...

 b) During collection of the gas, why should the first bubbles be allowed to escape (1 mark)
 ..
c) Give one main advantage of collecting a gas over water. (1 mark)

15. Explain the following observation, a one molar solution of nitric (III) acid (1M HNO₃) has a pH of 2 whereas a one molar solution of chloric(I) acid (1M HOCl) pH of 4. (2 marks)

16. a) Study the set-up below and use it to answer the questions that follow.

![Diagram]

a) Identify substance R (1 mark)

b) State the function of concentrated sodium hydroxide solution (1 mark)

c) State the property of carbon (II) oxide gas demonstrated in the above set-up (1 mark)

d) Write a balanced chemical equation for the reaction occurring in tube M. (1 mark)
17. 200 cm3 of oxygen diffused through a porous plug in 60 seconds. How long will it take 300 cm3 of sulphur (IV) oxide to diffuse through the same plug? (S = 32, O = 16) (3 marks)

18. Study the diagram below and answer the questions.

(i) Identify gas Y (1 mark)

(ii) State and explain two observations made in the combustion tube. (2 mark)

(iii) Write a chemical equation for the reaction between lead (II) oxide and gas Y (1 mark)

19. i) State Hess’s law. (1 mark)

(ii) The figure below shows an energy cycle diagram.

\[\Delta H_1 = -187.8 \text{kJmol}^{-1} \]

\[\Delta H_2 = -285.8 \text{kJmol}^{-1} \]

\[\Delta H_3 \]

\[\text{H}_2\text{O}_2(l) + \frac{1}{2}\text{O}_2(g) \]
a) Give the name of the enthalpy change ΔH_1
...
...

b) Determine the value of ΔH_3
...
...

20. The table below shows the pH values of some solutions.

<table>
<thead>
<tr>
<th>Solutions</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>pH values</td>
<td>13.0</td>
<td>7.0</td>
<td>2.0</td>
<td>6.5</td>
</tr>
</tbody>
</table>

a) Which solution reacts vigorously with magnesium metal? Explain.
...
...

b) Which solution is likely to be that of lemon juice?
...
...

c) Which solution is likely to produce green colour with the universal indicator.
...
...

21. The diagram below shows a set-up that was used to prepare and collect a sample of nitric (V) acid in the laboratory.
heat

\[\text{heat} \]

a) Give a reason why it is possible to separate nitric acid from the sulphuric (VI) acid in the setup (1 mark)

b) Name another substance that can be used instead of potassium nitrate (1 mark)

c) Give one use of nitric (V) acid (1 mark)

22. The flow chart below shows some processes involved in the industrial extraction of zinc metal.

```
Air
Ore
   Unit I
      SO₂
Coke
   Unit II
      Gases
      Zinc metal
```

a) Name one ore from which Zinc is extracted (1 mark)

b) Write the equation of the reaction taking place in unit II (1 mark)

c) Name two uses of Zinc metal (1 mark)

23. Thorium \(^{232}_{90}Th \) undergoes two consecutive alpha decays followed by two consecutive beta decays to form the nuclide \(^x_{y}R \). Identify the values of \(x \) and \(y \). (2 marks)
24. Below is part of the flow diagram of the contact process

![Flow diagram of the contact process]

a) Identify
 (i) Liquid P

b) Write the equation for the reaction taking place in chamber R

25. a) Define the term oxidation state

b) Calculate the oxidation states of manganese and chromium in:
 (i) \(\text{MnO}_2 \)
 (ii) \(\text{CrO}_4^{–4} \)

26. When hydrogen sulphide gas is bubbled through a solution of iron (III) chlorides, a green solution and a yellow solid are formed. Explain the observations
27. During purification of copper by Electrolysis, 1.48g of copper were deposited when a current was passed through copper (II) sulphate solution for 2½ hours. Calculate the amount of current that was passed (3 marks)

(Cu = 63.5, IF = 96500C)
INSTRUCTIONS TO CANDIDATES

- Write your name, admission number, date and school in the spaces provided.
- Answer all the questions in the spaces provided.
- All working must be clearly shown where necessary.
- Scientific calculators may be used.

FOR EXAMINERS’ USE ONLY

<table>
<thead>
<tr>
<th>Questions</th>
<th>Maximum Score</th>
<th>Candidate’s Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>13</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>11</td>
<td></td>
</tr>
<tr>
<td>TOTAL</td>
<td>80</td>
<td></td>
</tr>
</tbody>
</table>

This paper consists of 13 printed pages. Candidates are advised to check and to make sure all pages are as indicated and no question is missing.
1. A. In an experiment to determine the percentage of oxygen in air, the apparatus below were set up. Study the set up and the information provided to answer the questions that follow.

A 500 cm³ measuring cylinder K was filled with water and assembled for gas collection. Copper turnings were heated red hot and water was slowly passed into 500 cm³ flask H until it reached the 500 cm³ mark. A colourless gas was collected in K.

(i) What was the purpose of passing water into flask H? (1 mark)

(ii) What observations were made in the tube I? (1 mark)

(iii) Name one of the gases that is likely to be found in J. (1 mark)

(iv) What was the volume of the gas collected in the measuring cylinder at the end of the experiment? (1 mark)

(v) Calculate the percentage of oxygen in air using the above results. (2 marks)
B. Study the diagram below and answer the questions that follow.

(a) Give one observation made in the combustion tube after some time. (1 mark)

(b) Write an equation for the formation of the colourless liquid Y. (1 mark)

(c) What was the aim of the above experiment as demonstrated in the combustion tube? Explain. (2 marks)

2. Use the information below to answer the questions that follow. The letters are not the actual symbols of the elements.

<table>
<thead>
<tr>
<th>Element</th>
<th>Atomic No.</th>
<th>M.P°C</th>
<th>B.P°C</th>
<th>Ionic radius (nm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>P</td>
<td>11</td>
<td>98</td>
<td>890</td>
<td>0.095</td>
</tr>
<tr>
<td>Q</td>
<td>12</td>
<td>650</td>
<td>1110</td>
<td>0.065</td>
</tr>
<tr>
<td>R</td>
<td>13</td>
<td>660</td>
<td>2470</td>
<td>0.050</td>
</tr>
<tr>
<td>S</td>
<td>14</td>
<td>1410</td>
<td>2360</td>
<td>0.041</td>
</tr>
<tr>
<td>T</td>
<td>15</td>
<td>44.2 & 590</td>
<td>280</td>
<td>0.034</td>
</tr>
<tr>
<td>U</td>
<td>16</td>
<td>113 & 119</td>
<td>445</td>
<td>0.184</td>
</tr>
<tr>
<td>V</td>
<td>17</td>
<td>-101</td>
<td>-35</td>
<td>0.181</td>
</tr>
<tr>
<td>W</td>
<td>18</td>
<td>-189</td>
<td>-186</td>
<td>-</td>
</tr>
</tbody>
</table>
(a) (i) Write the electronic configuration of the atoms represented by letters T and W. (1 mark)

(ii) State the nature of the oxides of the elements represented by Q and U. (2 marks)

(b) Why does the elements represented by the letters T and U have two values of melting points? (1 mark)

(c) Explain the following observations in terms of structure and bonding.

(i) There is an increase in boiling point from P to R. (2 marks)

(ii) Element S has a high boiling point. (2 marks)

(iii) There is a decrease in boiling points from U to W. (2 marks)

(d) (i) Compare the atomic radius of U and V. (1 mark)
(ii) Why is there no ionic radius for W reported in the table? (1 mark)

3. (a) The solubilities of potassium nitrate and potassium bromide at different temperatures was determined. The following data was obtained.

<table>
<thead>
<tr>
<th>Temperature °C</th>
<th>0</th>
<th>10</th>
<th>20</th>
<th>30</th>
<th>40</th>
<th>50</th>
<th>60</th>
<th>70</th>
<th>80</th>
</tr>
</thead>
<tbody>
<tr>
<td>Solubility g/100g H₂O</td>
<td>KNO₃</td>
<td>5</td>
<td>15</td>
<td>26</td>
<td>43</td>
<td>61</td>
<td>83</td>
<td>105</td>
<td>135</td>
</tr>
<tr>
<td></td>
<td>KBₗ</td>
<td>50</td>
<td>55</td>
<td>60</td>
<td>65</td>
<td>70</td>
<td>77</td>
<td>85</td>
<td>90</td>
</tr>
</tbody>
</table>

(i) Draw solubility curves for both salts on the same axis. (3 marks)
(ii) What was the solubility of each salt at 65°C? (1 mark)

(iii) 100g of a saturated solution of potassium nitrate at 70°C was cooled to 20°C. What mass of the crystals will be crystallized? (2 marks)

(b) Study the flow chart below and answer the questions that follow.

(i) Write an equation for the formation of solid A and gas B. (1 mark)

(ii) Name;
Solution C - .. (1 mark)
Solid D - .. (1 mark)

(c) Write the formula of the complex ion in solution E. (1 mark)
4. Study the flow chart below and answer the questions that follow.

(a) Name substance.

X - ..
Q - ..
R - ..

(b) Write down an equation for the reaction represented by step III.

...

(c) What are the conditions and reagent required for steps?

(i) I

Reagent - ..
Condition - ..

(3 marks)

(1 mark)

(2 marks)
(ii) IV
Reagent - ..
Condition - ..

(b) Name the process represented by:
I - ..
II - ..
IV - ..
V - ..

5. I. Study the scheme below and answer the questions that follow.

(a) Identify substances.
A - ..
B - ..
D - ..

(b) State the catalyst necessary for;
Step I - ..
Step II - ..

(c) Write an equation for the reaction taking place in step II. (1 mark)
..
(d) Write two balanced chemical equations for the reaction between chlorine gas and:

(i) Hot and concentrated sodium hydroxide.
………

(ii) Dilute and cold sodium hydroxide.
………

II. The diagram below shows an experiment in which the Lead (II) nitrate crystals are heated.

(a) Name:

(i) Liquid P - ……………………………………………………………………………………

(ii) Gas Y - ……………………………………………………………………………………

(b) Write a balanced chemical equation for the decomposition of Lead (II) nitrate.
……

(c) Explain how you can distinguish between nitrogen (II) oxide and nitrogen (I) oxide.
……
……
……
6. I. Study the standard electrode potentials given below and answer the questions that follow.

\[
\begin{align*}
D^{2+}_{(aq)} + 2e^- &\leftrightarrow D_{(s)} \quad E^\theta = -2.92V \\
G^{2+}_{(aq)} + 2e^- &\leftrightarrow G_{(s)} \quad E^\theta = -2.36V \\
\frac{1}{2}J^{2+}_{(aq)} + e^- &\leftrightarrow J_{(s)} \quad E^\theta = 0.00V \\
M^{2+}_{(aq)} + 2e^- &\leftrightarrow M_{(s)} \quad E^\theta = +0.34V \\
\frac{1}{2}R^{2+}_{(aq)} + e^- &\leftrightarrow R_{(s)} \quad E^\theta = 2.87V
\end{align*}
\]

(a) Identify the strongest:
 (i) Reducing agent (1 mark)
 (ii) Oxidizing agent (1 mark)

(b) Calculate the e.m.f of a cell made of G and M. (2 marks)

(c) Write the cell representation for the above cell in (b). (1 mark)

(d) Draw a cell diagram for the cell in (b) above. (2 marks)

(e) Write the cell reaction for the drawn cell diagram in (d) above. (1 mark)
II. Electrolysis of aqueous solution of metal M resulted in the deposition of 1.07g of metal upon passage of a current of 1.32 amperes for 75 minutes.
(M = 52, 1F = 96500C)

(i) Calculate the quantity of electricity passed through the cell. (1 mark)

(ii) Calculate the charge on the metal ion. (3 marks)
7. Extraction of iron involves two main processes, smelting and refining. Below is the blast furnace which is used to smelt iron from its ore.

(a) (i) What does the word smelt mean? (1 mark)

(ii) Name the reducing agent in the process. (1 mark)

(iii) What is the role of the hot air blast in the process? (2 marks)
Write equations for the reactions that take place at the region marked A, B and C.

A - ..

B - ..

C - ..

What is the purpose of limestone in the extraction process?

..

Write equations to show how impurities are removed from the ore.

..

..

..
INSTRUCTIONS TO CANDIDATES:

(a) Write your name and index number in the spaces provided.
(b) Sign and write the date of examination in the spaces provided
(c) Answer ALL the questions in the spaces provided in the question paper
(d) You are NOT allowed to start working with the apparatus for the first 15 minutes of the 2 ¼ hours allowed for this paper. This time is to enable you to read the question paper and make sure you have all the chemicals and apparatus you may need.
(e) All working MUST be clearly shown where necessary.
(f) Mathematical tables and electronic calculators may be used.
(g) Candidates should check the questions to ascertain that all pages are printed as indicated and that no questions are missing.

For Examiner’s Use Only:

<table>
<thead>
<tr>
<th>Question</th>
<th>Maximum score</th>
<th>Candidates score</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>22</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>Total score</td>
<td>40</td>
<td></td>
</tr>
</tbody>
</table>
1. You are provided with:

- A monobasic acid HA, solution J.

- Sodium carbonate solution, solution Q, containing 1.325g in 250cm3 of solution.

- Solution R, containing 15.75g of M(OH)$_2$.8H$_2$O per litre.

- Screened methyl orange indicator.

You are required to:

- Standardize solution J.

- Determine the relative atomic mass of element M in M(OH)$_2$.8H$_2$O.

Procedure 1

Fill the burette with solution J. Pipette 25cm3 of solution Q into a clean 250ml conical flask and add 2 – 3 drops of screened methyl orange indicator. Titrate this solution with the solution in the burette and record your results in table 1 below. Repeat this procedure and complete the table. Retain solution J in the burette for use in procedure II.

Table 1

<table>
<thead>
<tr>
<th>Titre</th>
<th>I</th>
<th>II</th>
<th>III</th>
</tr>
</thead>
<tbody>
<tr>
<td>Final burette reading (cm3)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Initial burette reading (cm3)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Volume of J used (cm3)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(4 marks)

a) Calculate the average volume of solution J used. (1 mark)
b) Determine the concentration of solution Q in moles per litre (Na=23, C=12, O=16) (1 mark)

(c) (i) Determine the number of moles of the monobasic acid solution, HA, that are in the averaged value calculated in (b) above. (1 mark)

(ii) Determine the concentration of solution J in moles per litre. (1 mark)

Procedure 2

- Using a 25cm3 measuring cylinder, transfer 25cm3 of solution R into a clean 250ml conical flask. Using a 100ml measuring cylinder, transfer 75cm3 of solution Q into the flask with solution R. Boil the mixture for about 5 minutes. After cooling filter into a conical flask and transfer the filtrate into a clean 100ml measuring cylinder and add distilled water to make exactly 100cm3 of solution. Label this solution as solution S.

Pipette 25cm3 of solution S into a conical flask and titrate it with solution J using 2 drops of screened methyl orange indicator. Record your results in table 2 below. Repeat this to complete the table.
Table 2

<table>
<thead>
<tr>
<th>Titre</th>
<th>I</th>
<th>II</th>
<th>III</th>
</tr>
</thead>
<tbody>
<tr>
<td>Final burette reading (cm³)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Initial burette reading (cm³)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Volume of J used (cm³)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(4 marks)

d) Calculate the average volume of solution J used. (1 mark)

……
……
……

(e) Determine the number of moles of:

(i) The monobasic acid, HA, in the average volume. (1 mark)

……
……
……

(ii) Sodium carbonate in 25cm³ of solution S. (1 mark)

……
……
……

(iii) Sodium carbonate in 75cm³ of solution S. (1 mark)

……
……
……

……
……
……
iv) Sodium carbonate in the original 75cm^3 of solution S. (1 mark)

v) Sodium carbonate that reacted with solution R. (1 mark)

vi) $\text{M(OH)}_2 \cdot 8\text{H}_2\text{O}$ in 25cm^3 of solution R. (1 mark)

(1 mole of $\text{M(OH)}_2 \cdot 8\text{H}_2\text{O}$ reacts with one mole of sodium carbonate)

f) Determine

(i) the concentration of solution R in moles per litre. (1 mark)

(ii) the relative formula mass of $\text{M(OH)}_2 \cdot 8\text{H}_2\text{O}$. (1 mark)
(iii) the relative atomic mass of M (O=16.0, H=1.0)

2. You are provided with:
Solid P, 2.0 g of a dibasic acid H_2X.

You are required to determine the molar heat of solution of solid P.

PROCEDURE

Place 30cm3 of distilled water into a 100ml beaker. Measure the initial temperature of the water and record it in the table below. Add all the solid P at once and stir the mixture carefully with the thermometer until all the solid dissolves. Measure the final temperature reached and record it in table.

<table>
<thead>
<tr>
<th>Final temperature ($^\circ$C)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Initial temperature ($^\circ$C)</td>
<td></td>
</tr>
</tbody>
</table>

a) Determine the change in temperature, ΔT.

b) Calculate the:
 i) heat change when H_2X dissolves in water. (Assume the heat capacity of the solution is 4.2 Jg$^{-1}$°C$^{-1}$ and density is 1g/cm3)
 ii) number of moles of the acid that were used. (Relative formula mass of H_2X is 126)
 iii) molar heat of solution, ΔH, of the acid H_2X.

(1 mark)
3. You are provided with solid G. Place all solid G in a boiling tube. Add distilled water and shake. Divide the resulting solution into three portions.

<table>
<thead>
<tr>
<th>Inferences</th>
<th>Observations</th>
</tr>
</thead>
<tbody>
<tr>
<td>(½ mk)</td>
<td>(½ mk)</td>
</tr>
</tbody>
</table>

i) To the first portion add drops of 2M sodium hydroxide.

<table>
<thead>
<tr>
<th>Inferences</th>
<th>Observations</th>
</tr>
</thead>
<tbody>
<tr>
<td>(½ mk)</td>
<td>(½ mk)</td>
</tr>
</tbody>
</table>

ii) To the second portion dip a metallic spatula in the solution and burn it directly on a non-luminous flame.

<table>
<thead>
<tr>
<th>Inferences</th>
<th>Observations</th>
</tr>
</thead>
<tbody>
<tr>
<td>(½ mk)</td>
<td>(½ mk)</td>
</tr>
</tbody>
</table>
iii) To the third portion add three drops of barium nitrate solution followed by 2 cm³ of 2M hydrochloric acid.

<table>
<thead>
<tr>
<th>Inferences</th>
<th>Observations</th>
</tr>
</thead>
<tbody>
<tr>
<td>(½ mk)</td>
<td>(½ mk)</td>
</tr>
</tbody>
</table>

iv) To the fourth portion add three drops of acidified potassium dichromate (VI) solution.

<table>
<thead>
<tr>
<th>Inferences</th>
<th>Observations</th>
</tr>
</thead>
<tbody>
<tr>
<td>(½ mk)</td>
<td>(½ mk)</td>
</tr>
</tbody>
</table>

b) You are provided with solid F. Carry out the tests below and record your observations and inferences in the spaces provided.

(i) Using a metallic spatula, heat half of solid F in a non-luminous bunsen burner flame.

<table>
<thead>
<tr>
<th>Inferences</th>
<th>Observations</th>
</tr>
</thead>
<tbody>
<tr>
<td>(½ mk)</td>
<td>(½ mk)</td>
</tr>
</tbody>
</table>
(ii) Put a half spatula endful of solid F into a boiling tube. Add about 10cm3 of distilled water and shake.

<table>
<thead>
<tr>
<th>Inferences</th>
<th>Observations</th>
</tr>
</thead>
<tbody>
<tr>
<td>($\frac{1}{2}$ mk)</td>
<td>($\frac{1}{2}$ mk)</td>
</tr>
</tbody>
</table>

Divide the resulting solution from a(ii) above into two portions

(i) To the first portion, 2 - 3 drops of universal indicator and determine its pH.

<table>
<thead>
<tr>
<th>Inferences</th>
<th>Observations</th>
</tr>
</thead>
<tbody>
<tr>
<td>($\frac{1}{2}$ mk)</td>
<td>($\frac{1}{2}$ mk)</td>
</tr>
</tbody>
</table>

(ii) To the second portion, add two drop of acidified potassium Manganate (VII) solution and shake.

<table>
<thead>
<tr>
<th>Inferences</th>
<th>Observations</th>
</tr>
</thead>
<tbody>
<tr>
<td>($\frac{1}{2}$ mk)</td>
<td>($\frac{1}{2}$ mk)</td>
</tr>
</tbody>
</table>
(c) Put half spatula endful of solid F into a boiling tube and add 5 drops of ethanol followed by 2 drops of concentrated sulphuric (VI) acid. Warm the mixture.

<table>
<thead>
<tr>
<th>Inferences</th>
<th>Observations</th>
</tr>
</thead>
<tbody>
<tr>
<td>(½ mk)</td>
<td>(½ mk)</td>
</tr>
</tbody>
</table>