www.eeducationgroup.com	
NAME	INDEX NO
231/1	CANDIDATE'S SIGN
BIOLOGY	
PAPER 1	DATE
(THEORY)	
HILV/AUGUST 2015	

KIRINYAGA CENTRAL SUB-COUNTY JOINT EXAMINATION - 2015

Kenya Certificate of Secondary Education BIOLOGY PAPER 1 (THEORY)

TIME: 2 HOURS

TIME: 2 HOURS

INSTRUCTIONS TO CANDIDATES:

- 1. Write your Name, Index Number and School in the spaces provided above.
- 2. **Sign** and write the **date** of examination in the spaces provided above.
- 3. Answer all the questions in the spaces provided.
- 4. Answers must be written in the spaces provided in the question paper.
- 5. Additional pages **must not** be inserted.

FOR EXAMINER'S USE ONLY:

Question	Maximum Score	Candidate's Score
1 - 26	80	

	ic the c	organelles that are abundant in:	
(a)	Gob	let cells	(1 mark)
(b)	Live	r cells	(1 mark)
Give	a reas	on why it is difficult to calculate Respiratory Quotient (RQ) in p	lants. (2 marks)
List		advantages of asexual reproduction in plants.	(3 marks)
The	diagra	m below represents a stage during cell division.	
The	diagra	m below represents a stage during cell division.	
The (a)	diagra:		(1 mark)

urine.

	Name the structures labelled M . Kirinyaga C	Central (1 mark)
Expl	ain why there is increased heart beat during vigorous exercise in man.	(2 marks)
(a)	State two characteristic features of members of division pteridophyta.	(2 marks)
(b)	Give one way in which pteridophyta differ from spermatophyta.	(1 mark)
(a)	Explain the role of antidiuretic hormone when there is excess water in body.	the human (3 marks)
(b)	State the kidney disorder characterized by production of large volume	dilute

(1 mark)

Biology Paper 1

3

Kirinyaga Central

8. (a) State **one** role of each following hormones in the menstrual cycle.

(i)	Follicle stimulating hormone.					

Luteinising hormone.	(1 mark)
S	` '
	Luteinising hormone.

(b)	Explain why hormone testosterone still exerts it's influence eve	en when vas
	deferens have been cut.	(2 marks)

9. The graph below represents growth pattern in a certain group of animals. Study it and answer the questions that follow.

olog	gy Pap (a)	Name the type of growth curve. Kirinya	aga Central (1 mark)
	(b)	Name the animal phylum that shows this type of growth pattern.	(1 mark)
	(c)	Name the process that occurs in part M .	(1 mark)
	(a)	Name the bacteria found in ceacum of herbivores.	(1 mark)
	(b)	State the association of the bacteria named in (a) above with herb	oivores. (1 mark)
		g germination and early growth, the dry weight of endosperm dec f the embryo increases. Explain.	reases while (2 marks)

12. The figure below shows an alveolus in which gaseous exchange take place.

Biology Pa	iper 1	5	Kirinyaga Central
(a)	(i) 	Define the term diffusion.	(1 mark)
(ii)	Wha	t causes oxygen to diffuse into the blood fro	m the alveoli? (1 mark)
	(iii)	List two features of gaseous exchange surthat are evident in the diagram above.	faces in animals, such as humans (2 marks)
13. State	e two c	characteristics that researchers use/select in b	preeding programmes. (2 marks)
14. (a)	Whic	ch component of the blood gives the body in	nmunity? (1 mark)
(b)	Disti	inguish between natural and acquired immur	nity. (2 marks)

iology Pap 5. (a) ——	per 1 6 Kirinyaga Define 'osmosis'.	Central (2 marl
(b)	State the importance of osmosis in plants.	(2 mar
5. (a)	Give two evidences that support the theory of organic evolution.	(2 mar
(b)	Why is Lamarcks theory of evolution not accepted by biologists tod	av. (2 ma

17. The number and distribution of stomata on three different leaves are shown in the table below.

Leaf	Number of stomata		
	Upper epidermis	Lower epidermis	
A	300	0	
В	150	200	
С	2	13	

Biology Pa	aper 1	7 Kirinyag	ga Central
(a)	Suggest <u>Leaf</u>	t the possible habitat of the plant from which the leaves we	re obtained. (3 marks)
	Α _		
	В _		
(b)	C _ State or	ne modification found in the stomata of leaf (C).	(1 mark)
18. (a)	State or	ne way through which herbaceous plants achieve support.	(1 mark)
_			
(b)	Name t	hree supporting tissues in plants.	(3 marks)

19. (a) One of circulatory systems in animals is open circulatory system. Give the name of the other type of circulatory system found in animals. (1 mark)

(b 	State two advantages of the circulatory system	you have named in (a) above. (2 marks)
	Paper 1 8 ate two advantages of metamorphosis to the life of	Kirinyaga Central insects. (2 marks)
Th (a)	nere are at least 205 known sex-linked recessive disc What is meant by term sex-linkage?	orders. (2 marks)
) Name two sex-linked traits in humans.	(2 marks)

22. The diagram below shows the position of an image formed in a defective eye.

	(a)	Name the defect.	(1 mark)
Bioloį	gy <i>Pap</i> (b)	oer 1 9 Kirinyag Explain how the defect named in (c) above can be corrected.	ga Central (2 marks)
23.	(a)	State the importance of the following processes that take place in to fa human kidney. (i) Ultrafiltration.	he nephron (1 mark)
		(ii) Selective reabsorption.	(1 mark)
	(b)	In which part of the nephron does ultrafiltration take place?	(1 mark)

24. A biological washing detergent contains enzymes which remove stains like mucus

www.eeducationg	ngroup.com					
(a)	What was the aim of the experiment?	(1 mark)				
(b)	State the observation made of on the seedling after 3 days.	(2 marks)				
Biology Pap	er 1 11 K	irinyaga Central				

NAME	INDEX NO
231/2	CANDIDATE'S SIGN
BIOLOGY	
PAPER 2	DATE
(THEORY)	
JULY/AUGUST, 2015	

KIRINYAGA CENTRAL SUB-COUNTY JOINT EXAMINATION - 2015

Kenya Certificate of Secondary Education BIOLOGY PAPER 2 (THEORY)

TIME: 2 HOURS

TIME: 2 HOURS

INSTRUCTIONS TO CANDIDATES:

- Write your **name**, **index number** in the spaces provided above.
- **Sign** and write the **date** of examination in the spaces provided above.
- This paper consists of **Two** Sections; **A** and **B**.
- Answer all the questions in Section A in the spaces provided.
- In Section **B** answer question **6** (**Compulsory**) and either question **7** or **8** in the space provided after question **8**.
- Check to ascertain that all pages are printed and that no questions are missing.

FOR EXAMINER'S USE ONLY:

Section	Question	Maximum Candidate		
		Score	Score	
	1	8		
A	2	8		
A	3	8		
	4	8		
	5	8		
В	6	20		
	7	20		
	8	20		
Total Score		80		

SECTION A: (40 MARKS)

Answer all the questions in this section in the spaces provided:

1. Study the diagram shown below of the anterior view of a lumbar vertebra of a mammal.

(3 marks)
(1 mark)
(3 marks)

Biology Paper 2

2

Kirinyaga Central

2. The graph below shows rates of photosynthesis in a plant at different temperatures.

(a) Account for the decrease in the rate of product formation at 41°C from 5 to 20 minutes. (2 marks)

(b) Explain the results obtained at

(i) 25°C.

(2 marks)

(ii) 36°C. (2 marks)

Biolog	у <i>Рар</i> (с)	per 2 (i)	3 Kiriny Other than temperature, state one external factor that affect the rate	aga Centra of
	` ,	.,	photosynthesis.	(1 mark)
		(ii)	Suggest the product which could have been used in the experiment.	(1 mark)
3.	The	diagram	below shows a model of the nephron of a mammalian kidney.	
			Syringe Perforated rubber tubing	
			0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
		Dead	Is and glucose tubing	
			Contrinue A V V	
			- Container B	
	(a)		h parts of the nephron are represented by the: Syringe?	(1 mark)
		(1)		(1 mark)
		(ii)	Perforated rubber tubing?	(1 mark)
		(iii)	Free rubber tubing?	(1 mark)
	(b)	Name	e the type of filtration taking place within the perforated rubber tubing	. (1 mark)
	(c)		would happen to the contents of the syringe if its handle was slowly pard? Explain.	oushed (4 marks)

Biology Paper 2

4

Kirinyaga Central

4. The table below shows the number of Leopards and Impala in a grassland park over a period of six years.

Time in years	1	2	3	4	5	6
Number of Impala	360	498	546	216	120	72
Number of Leopard	11	17	25	7	3	2

(a) (i) What is the average number of Impala in the park during the six years. (2 marks)

(ii) Account for the decrease in the number of leopards between the 4th and 6th year? (3 marks)

- (b) Identify the trophic level occupied by
 - (i) Leopards

(1 mark)

(ii) Tick feeding on the leopard.

(1 mark)

(c) The **two** pyramids shown were obtained in the park.

(i) Identify each type of pyramid.

(2 marks)

I:

		II:
Biolog 5.	_	plant with smooth seeds was crossed with one with wrinkled seeds. The gene for h seeds is dorminant over that for wrinkled seeds. Use letter R to represent the
	(b)	State the gametes produced by the smooth seeds and wrinkled seeds parents. (2 marks)
	(c)	State the genotype and phenotype of F1 generation. Show your working. (4 marks)

SECTION B:(40 MARKS)

Answer question 6 (Compulsory) and EITHER question 7 or 8 in the spaces provided after question 8.

6. An experiment was carried out in which red blood cells were put in salt solutions of different concentrations. The table below shows the percentage of cells which were destroyed by haemolysis in different salt concentration.

Salt concentration	% of RBC destroyed
(g/dm^3)	By haemolysis
0	100
1	100
2	100
2.5	100
3.0	100
3.5	96
3.7	80

www.eeducationgroup.com

ideation Broad it com			
4.0	60		
4.5	16		
4.7	0		
5.0	0		
6.0	0		

(a) Draw a graph of percentage of red blood cells haemolysed against salt concentration. (6 marks)

Biology Paper 2	6	Kirinyaga Centra
<u> </u>	<u></u>	
<u> </u>		

Biology P		xplain haem	nolysis of red blood co	<i>7</i> ells.		Kirinyaga Central (3 marks)
	_					
(c)) F. (i	om the grap the sal	ph, state: t concentration at wh	ich 50% red blood	l cells were hae	molysed. (1 mark)
	(i	the high	ghest salt concentration	on when the larges	at number of red	blood cells were (1 mark)
(d) (i		st the normal salt con I blood cells were obt		plood of the mar	mmal from which (2 marks)
	(i	——————————————————————————————————————	reason for your ansv	ver in (d)(i) above		(1 mark)
	(i		term is used to descri	be the solution wi	th equal solute o	concentration as (1 mark)

www.cc	(e)	Name the process in the human body that ensures that haemolysis of red blood cell is prevented. (1 mar	
Biolog	y Paper (f)	r 2 8 Kirinyaga Cen State the role of osmosis in organisms. (4 mar	
7.	How a	are respiratory gases, oxygen and carbon (IV) oxide transported to and from tissues nals?	
8.	State a	and explain how the mammalian small intestines are adapted to perform their functi (20 ma	

www.eeducationgroup.com		
Biology Paper 2	9	Kirinyaga Central

www.eeducationgroup.com					
Biology Paper 2	10	Kirinyaga Central			

www.eeducationgroup.com

KIRINYAGA CENTRAL SUB-COUNTY

BIOLOGY PAPER 3

(PRACTICAL)

TIME: 1¾ HOURS

- 1. You are provided with a specimen labelled H which is a piece of a mammalian intestine. Squeeze the contents in the lumen into a test tube. Add 3ml of water and shake the contents. Reserve the piece of intestine for question (b).
 - (a) Use the reagents provided to test for the presence of starch, proteins and reducing sugars in the contents. Record the procedures, observations and conclusions in the table below.

Food substance	Procedure	Observations	Conclusions
Starch			
Proteins			
Reducing sugars			

(9	marks)
ノ	marks

(ii) Account for the results obtained in (a)(i) above.

(3 marks)

- (b) Cut specimen H along its length to expose the inner surface.
 - (i) Feel the inner and outer surfaces of the specimen. Record your observations. (2 marks)
 - (ii) Account for our observations of the inner surface. (3 marks)

2. (a) The figure below shows feet of various birds. Study the diagram and answer the questions that follow.

- (i) Name the type of evolution represented by the diagrams. (1 mark)
- (ii) Using Darwin's theory of evolution, explain how the feet of **bird E** would have evolved. (3 marks)
- (iii) Explain how Larmack could have explained the evolution of feet of **bird C**. (3 marks)
- (b) Figure 1 represents a bat wing, Figure 2 a whale paddle and Figure 3 an insect wing. Study the diagrams and answer the questions that follow.

www	eeducation.	ongroup.co (i)	Name parts labelled E and F .	(2 marks)
		. ,	-	, , , , , ,
		(ii)	State one difference between the wings in Figure 1 and 3.	(1 mark)
		(iii)	Name the type of joint found at proximal end of bone marked	H . (1 mark)
3.	(a)		are provided with a specimen labelled R. Using observable feat fy the class to which the specimen belongs.	ures only,
		Class		_ (1 mark)
		List th	ne observable features used to identify the class which the speci	men belongs. (3 marks)
		(i)		
		(ii)		
		(iii)		
	(b)		e the specimen on the lateral side from the head end to the tail eroking from the tail end to the head end.	end. Repeat
		(i)	Record your observation.	(2 marks)
		(ii)	Observe the arrangement of the scales. Record your observat	ions. (1 mark)
		(iii)	State the significance of the arrangement of the scales.	(1 mark)
	(c)	Name (i)	the observable features that adapt the specimen to: forward movement.	(1 mark)
		(ii)	Balancing.	(1 mark)
		(iii)	Staying upright.	(1 mark)
		(iv)	Fast movement.	(1 mark)