NAME:
INDEX NO
SCHOOL \qquad
DATE: \qquad
232/1
PHYSICS
PAPER 1
JULY/AUGUST-2015
TIME: 2 HOURS

KAKAMEGA JOINT EVALUETION TEST 2015

Kenya Certificate of Secondary Education (K.C.S.E.)
232/1
PHYSICS
PAPER 1
JULY/AUGUST-2015
TIME: 2 HOURS

INSTRUCTIONS TO CANDIDATES:

$>$ Write your name and index number in the spaces provided above
$>$ This paper consists of two sections A and B.
$>$ Answer all the questions in section \mathbf{A} and \mathbf{B} in the spaces provided.
$>$ All working must be clearly shown ; marks may be awarded for correct steps even if the answers are wrong
> Mathematical tables and silent electronic calculators may be used.

FOR EXAMINER'S USE ONLY:

SECTION	QUESTIONS	MAXIMUM SCORE	CANDIDATE'S SCORE
A	$1-13$	25	
	14	11	
	15	12	
	16	12	
	17	09	
	18	11	
	TOTAL		

This paper consists of 9 printed pages.
Candidates should check the question paper to ascertain all the pages are printed as indicated

And no questions are missing.
 SECTION A (25 MARKS)

1. A uniform rod of length 30 cm and cross section area 2 cm 2 floats in a liquid with two thirds of its length submerged as shown in the figure below.

Given that the mass of the rod is 35 g , calculate the density of the liquid.
\qquad
\qquad
\qquad
2. Name two types of forces that act between bodies not in contact.
\qquad
\qquad
3. Calculate the maximum pressure a glass block of density $2.5 \mathrm{gcm}^{-3}$ would exert on a horizontal surface, if the block measures $20 \mathrm{~cm} \times 10 \mathrm{~cm} \times 5 \mathrm{~cm}$.
4. Give a reason why fish can survive under water in a pond even when the surface is frozen. (1mark)
\qquad
\qquad
5. Give one advantage of alcohol over mercury as a thermometric liquid.
\qquad
\qquad
6. Two inflated balloons are at the same level while suspended from two threads a short distance apart. Some air is blown gently between the balloons in a horizontal direction. State and explain the observation made.
7. The figure below shows a uniform metal rod of mass 100 g balanced over a pivot using a spring balance and a mass of 300 g .

Calculate the tension in the spring.
8. The figure below shows part of the scale of a vernier callipers. What is the reading indicated by the scale?

9. A force of 4 N produces an extension of 6 cm in a spiral spring. Calculate the extension produced by two such identical springs arranged in series and supporting a force of 3 N . (Neglect weight of the springs)
10. What is Brownian motion?
11. The figure below shows dots made by a ticker-tape timer of frequency 50 Hz on a tape pulled by a trolley.

Calculate the average velocity of the trolley.
12. A tank for storing gas has a safety valve that opens when pressure reaches $10^{6} \mathrm{pa}$. It contains gas at a pressure of $8.0 \times 10^{5} \mathrm{pa}$ at $15^{\circ} \mathrm{C}$. At what temperature will the valve open?
13. In which sate of equilibrium is the marble below?

SECTION B (55 MARKS)

14. (a) An object at rest is dropped from a height of 80 m .
(i) Sketch a velocity-time graph for the object.
(ii) Determine how long it takes to reach the ground
(iii) Determine the velocity as it hits the ground.
(b) A car of mass $1.5 \times 10^{3} \mathrm{~kg}$ moving at $20 \mathrm{~ms}^{-1}$ collides with another stationary car. They both move at $5 \mathrm{~ms}^{-1}$ after collision. Find the mass of the second car. (take $g=10 \mathrm{~N} \mathrm{~kg}^{-1}$)
15. (a) The figure below shows a pulley system being used to raise a load.

(i) Determine the velocity ratio of the system.
(ii) If an effort of 35 N raises a load of 105 N , determine the efficiency of the system.
(b) A 2 kg block falls from top of a building 20 m high. Determine:
(i) The potential energy lost by the block.
(ii) The kinetic energy gained by the block
(iii) The velocity of the block when it hits the ground.
(iv) Time taken by the block to hit the ground. (Take $\mathrm{g}=10 \mathrm{Nkg}^{-1}$)
16. (a) Beaker A contains 200 g of water at $0^{\circ} \mathrm{C}$ while beaker B contains 200 g of ice and water at $0^{\circ} \mathrm{C}$. Two identical metal blocks are removed from a hot furnace. One block is dropped into beaker A while the other is dropped into beaker B at the same time. Explain why more water evaporates from beaker A than from beaker B.
(b) Define the term specific latent heat of vaporization.
(c) In an experiment to determine the specific latent heat of vaporization of water, steam at $100^{\circ} \mathrm{C}$ was passed into water at $24^{\circ} \mathrm{C}$ contained in a well lagged copper calorimeter. The following measurements were made;
Mass of calorimeter $=50 \mathrm{~g}$
Initial mass of water $=70 \mathrm{~g}$

Final mass of water + calorimeter + condensed steam $=123 \mathrm{~g}$
Final temperature of mixture $=48^{\circ} \mathrm{C}$
I. Determine:
(i) Mass of condensed steam.
(ii)Heat gained by the calorimeter and water.
II. Given that L_{v} is the specific latent heat of vaporization of steam,
(i) Write an expression for the heat given out by steam.
(ii) Determine the value of L_{v}.
(Take: specific heat capacity of water $=4200 \mathrm{Jkg}^{-1} \mathrm{k}^{-1}$ and specific heat capacity of copper $=390 \mathrm{Jkg}^{-1} \mathrm{k}^{-1}$)
17. (a) State the law of floatation.
(b) The figure below shows a block of dimensions 4 cm by 4 cm by 16 cm immersed in a liquid in an overflow can with $3 / 4$ of its height submerged.

Given that the mass of the beaker when empty is 85 g and the reading on the scale in the set up above is 245 g , calculate:
(i) The density of the block.
(ii) The density of the liquid.
(c) A metal block is suspended from a spring balance and held inside a beaker without touching the beaker. Water is added gradually into the beaker. The graph below shows the variation of up thrust on the block with depth of water.

Explain the shape of the graph.
\qquad
\qquad
18. (a) The figure below shows a car of mass (m) moving along a curved part of the road with a constant speed.

(i) Explain why the car is more likely to skid at V than at X .
(ii) If the radius of the road at V is 250 m and the car has a mass of 6000 kg , determine the maximum speed at which the car can be driven while at V without skidding. Force of friction between the road and the tyre is 18000 N .
(b) A string of length 0.7 m is used to whirl a stone of mass 500 g in a circle in a vertical plane at $5 \mathrm{rev} / \mathrm{s}$.

Determine:
(i) The period
(ii) The angular velocity.
(c) A body moving in a circle with constant speed is said to have an acceleration. Explain. (1mark)
\qquad

DATE:

232/2
PHYSICS
THEORY
PAPER 2
JULY/AUGUST-2015
TIME: 2 HOURS

KAKAMEGA CENTRAL SUB-COUNTY JOINT EVALUATION EXAM -2015

Kenya Certificate of Secondary Education (K.C.S.E.)

232/2
PHYSICS
THEORY
PAPER 2
JULY/AUGUST-2015
TIME: 2 HOURS

INSTRUCTIONS TO THE CANDIDATES:

- Write your name and index number in the spaces provided above
- This paper consists of $\boldsymbol{t w o}$ sections A and B.
- Answer all the questions in section \mathbf{A} and \mathbf{B} in the spaces provided.
- All working must be clearly shown ; marks may be awarded for correct steps even if the answers are wrong
- Mathematical tables and silent electronic calculators may be used.
- Take gravitational acceleration $=10 \mathrm{~m} / \mathrm{s}^{2}$ and $\pi=3.142$

FOR EXAMINERS' USE ONLY

SECTION			
	QUESTION	MAXIMUM SCORE	CANDIDATE'S SCORE
	$1-12$	25	
	13	09	
	14	13	
	15	10	
	16	12	

This paper consists of 8 printed pages.
Candidates should check the question paper to ascertain all the pages are printed as indicated

And no questions are missing.

SECTION A (25 MARKS) Answer ALL questions in this section in the spaces provided

1. Figure below shows an object \mathbf{O} placed in front of a plane mirror. A ray of light is drawn coming object \mathbf{O} and striking the mirror at \mathbf{P}. After striking the mirror, the ray of light is reflected.

(i) Which of the four dots represent correct position of the image of \mathbf{O} ? Label this dot \mathbf{Q} (1mark)
(ii) By drawing a line on the diagram above to represent the reflected ray at P , mark the angle of reflection and label it \mathbf{r}.
2. (i) State the characteristics of images formed by a pinhole camera.
(ii) What is the effect on the image when the camera is elongated?
\qquad
\qquad
3. The figure below shows the object O and its image O 1 formed by a concave mirror. Locate the position of the principle focus.

4. An electromagnet is made by winding insulated copper wire on an iron core. State three changes that could be made to increase the strength of the electromagnet.
\qquad
\qquad
\qquad
5. Figure below shows a U-shaped magnet stored with a keeper.

Explain how this method helps to retain magnetism longer.
\qquad
\qquad
6. State the energy transformation when fast moving electrons are suddenly stopped by a target in an x-tray tube.
\qquad
7. A current of 13 A flows through a heating element of resistance 8.5Ω for 1.5 minutes. Calculate the quantity of heat supplied.
8. Give a reason why it is not advisable to smoke a cigarette near a charging battery.
\qquad
9. State the dynamo rule.
\qquad
10. Radio X is broadcast on wavelength I 50 m at a frequency of 200 kHz . Calculate the velocity of the radio waves.
\qquad
\qquad
11. Draw a diagram to illustrate the correction of myopia.
12. The figure below shows the displacement of a spot on a cathode ray oscilloscope screen.

The spot appears on the CRO at position A. When DC voltage is applied to Y-plates the spot is displaced to position B . The Y-gain is set at $20 \mathrm{~V} / \mathrm{cm}$.
(i) State the type of voltage applied.
\qquad
\qquad
(ii) Find the voltage applied.
\qquad
\qquad
\qquad

SECTION B (55 MARKS)

Answer ALL questions in this section in the spaces provided

13. (a) Students set up a mass attached to a spring such that when it oscillates it taps on water surface in a wide shallow tank as in figure 11 below.

The students measured time for 20 oscillations and found that the mass takes 36 seconds.

Determine;

(i) The periodic time of the mass.
\qquad
\qquad
(ii) The frequency of the waves produced on the water surface
\qquad
\qquad
(iii) The speed of the waves if the students counted four ripples between the mass and end \mathbf{B} of the tank
\qquad
\qquad
\qquad
(b) An echo sounder of a ship received the reflected waves from a sea bed after 0.20 s .
(i) Determine the depth of the sea bed if the velocity of sound in water is $1450 \mathrm{~m} / \mathrm{s}$
\qquad
\qquad
\qquad
(ii)When the ship above passes over a sunken reef, the echo sounder receives an echo after 0.16 s . Determine the height of the sunken reef
\qquad
\qquad
\qquad
14. (a) (i) State the basic law of electrostatics.
\qquad
(ii) In testing for the sign of charge on a body, explain the behaviour of a positively charged electroscope when charged bodies are brought closer to the electroscope.
\qquad
\qquad
(b) The figure below shows an arrangement which may be used to charge a capacitor of capacitance $50 M F$ and then to connect it to a capacitor of capacitance 20MF.

(i) The switch S is first placed at position A , so that the capacitor C , is connected to the 12 V dc supply. Calculate the charge stored in the capacitor.
\qquad
\qquad
\qquad
(ii) The switch S is now changed to position B . Calculate the final potential difference across the capacitors.
\qquad
\qquad
\qquad
15. (a) State the conditions to be satisfied for total internal reflection to occur.
\qquad
(b) A ray of light traveling in the direction EO in air enters a rectangular block as shown in the diagram. The resulting angle of refraction is 18°.

Find:
(i) The refractive index of the block.
\qquad
\qquad
\qquad
\qquad
(ii) The critical angle C of the block.
\qquad
\qquad
\qquad
\qquad
16. (a) Study the answer the questions
© 2015 KKC Sub-county f

circuit diagram below and that follow.
(ii) Find the voltmeter reading.
(b) A cell drives a current of 3.2 A through a 2.8Ω resistor. When it is connected to 1.6Ω resistor, the current that flows is 5A. Find the e.m.f. (E) and internal resistance of the cell.
(3marks)
17. (a) The figure below shows a connection to the three pin plug.

(i) Identify two mistakes in this wiring.
(ii) What would happen if this plug was connected to the mains of the socket?
(iii)State two reasons why the earth pin is normally longer than the other two pins.
(b) A house has five rooms with $240 \mathrm{~V}, 60 \mathrm{~W}$ bulbs. If the bulbs are switched on from $7.00 \mathrm{p} . \mathrm{m}$. to 10.30p.m.
(i) Calculate the power consumed per day in Kilowatt-hours.
(ii) Find the cost per week for lighting these rooms at Kshs. 6.70 per unit.
18. (a) State the Lenz's law of electromagnetic induction.
(b) The figure below shows two circuits close to each other.

When the switch is closed, the galvanometer shows a reading then returns to zero. When the switch is open, the galvanometer shows a reading in the opposite direction and then returns to zero. Explain these observations.
\qquad
\qquad
\qquad
\qquad
(c) A transformer is connected to a $12.0 \mathrm{~V}, 30.0 \mathrm{~W}$ lamp from the 240 V main. If the transformer is 75% efficient, determine the mains current.
\qquad
\qquad
\qquad
\qquad
(d) The figure below shows an a.c generator
© 2015 KKC Sub

Coil
(i) Label the parts \mathbf{A} and \mathbf{B} (2marks)
AB.(ii) Explain clearly how this type of generator works.(2marks)
\qquad

DATE:

232/3
PHYSICS
PAPER 3
PRACTICLES
JULY/AUGUST-2015
TIME: 2 ½ HOURS

KAKAMEGA CENTRAL SUB-COUNTY JOINT EVALUATION EXAM - 2015

Kenya Certificate of Secondary Education (K.C.S.E.)

232/3

PHYSICS
PAPER 3
PRACTICLES
TIME: $2 ½$ HOURS

INSTRUCTION TO ALL CANDIDATES

$>$ Write your name, School and Index number in spaces provided
$>$ Answer all the questions in the spaces provided in the spaces provide in the the question paper
$>$ You are required to spend the first 15 minutes of the $21 / 2 \mathrm{hrs}$ allowed for this paper reading carefully the whole paper before commencing your work
$>$ Marks for their suitability, accuracy and the use of them
$>$ Mathematical tables and electronic calculators may be used.
FOR EXAMINERS USE ONLY

QUESTION I	20	
QUESTION II	20	
GRAND TOTAL	$\mathbf{4 0}$	

This paper consists of 6 printed pages.
Candidates should check the question paper to ascertain all the pages are printed as indicated And no questions are missing.

QUESTION 1

1) You are provided with the following;
$>$ A retort stand, boss and clamp
$>$ Test tube
$>$ Piece of duplicating paper
$>$ A thermometer
> A large beaker containing some water
$>$ A tripod stand and wire gauze
$>$ A cardboard with a hole in the middle
$>$ A burner
$>$ A rubber band
$>$ A stop band
$>$ A stop watch

Proceed as follows;

a) Set up the apparatus as shown below

b) Heat the water in the beaker provided and leave it to boil
c) Wrap the given piece of duplicating paper round the bulb of the thermometer. Use rubber band to hold the paper in place
d) Place the thermometer inside in the dry test tube
e) Place the test tube in the water as shown in the diagram above. Make sure that the water does not enter the test tube. Leave the test tube in the boiling water until the thermometer indicates a steady temperature.
f) Remove the thermometer and immediately start the stop watch
g) While holding the thermometer in air record the readings of the thermometer. T_{1} at intervals of 30 seconds for 10 minutes

Time in minutes	0	0.5	1.0	2.0	2.5	3.0	3.5	4.0	4.5	5.0	5.5
$\mathrm{~T} 1\left({ }^{\circ} \mathrm{C}\right)$											
$\mathrm{T} 2\left({ }^{\circ} \mathrm{C}\right)$											

Time in minutes	6.0	6.5	7.0	7.5	8.0	8.5	9.0	9.5	10.0
$\mathrm{~T} 1\left({ }^{\circ} \mathrm{C}\right)$									

h) Place the wrapped thermometer directly into boiling water. Leave the thermometer in the boiling water until it indicates a steady temperature.
i) Repeat procedure (f) and (g) and record the reading T_{2} of the thermometer in the table at half minute intervals for 5.5 minutes.
j) Using the same axes on the grid provided, plot a graph of temperature (y-axis) against time for results obtained in (g) and (i) (labell the graph T1 and T2)

k) From the graphs determine;
i) For each graph the time for temperature to fall from $60^{\circ} \mathrm{C}$ to $40^{\circ} \mathrm{C}$
ii) Find the ratio of the two times in k (i) above

QUESTION 2

a) You require;

- Two dry cells (size D)
- A two cell holder
- A voltmeter
- An ammeter
- Mounted resistance wire on a mm scale
- 7 connecting wires (3 with crocodile clops)
- Vernier calipers (to be shared among five students

Proceed as follows

i) Set the circuit as shown in figure below

ii) With the crocodile clip at P (i.e. $\mathrm{L}=100 \mathrm{~cm}$) take the voltmeter reading V and the ammeter reading I. Repeat the procedure for values of $\mathrm{L}=90,70,50,40$ and 20 cm respectively Record your reading in table below

$\mathbf{L}(\mathbf{c m})$	L(m)	V	I	V/I
$\mathbf{1 0 0}$				
$\mathbf{9 0}$				
$\mathbf{7 0}$				
$\mathbf{5 0}$				
$\mathbf{4 0}$				
$\mathbf{2 0}$				

iii) a) With the same apparatus design a circuit to determine the e.m.f of the two cells
b) Measure the e.m.f of the cells \qquad (volts)
iv) Plot a graph V/I (ohms) against L (metres)

v) Calculate the slope S of the graph
vi) Measure the diameter d of the mounted resistance wire
$\mathrm{d}=$ \qquad .mm= \qquad metres
vii) Given that $S=\pi \mathrm{d}^{2} / 4 \mathrm{~h}$. Calculate the value of h

